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1. [MHD Equilibrium in Pinch] Consider a cylindrical circular pinch device
where plasma is confined by axial magnetic field in the z-direction only, with
the fluid pressure given by p = p0e

−r2/a2 . Let the magnetic field in vacuum be
B∞ = Bz(r →∞).

(a) Find Bz(r) and jθ(r) in equilibrium.

(b) Estimate the conventional βt = 2µ0〈p〉/B2
0 in terms of β̂ ≡ 2µ0p0/B

2
∞. Here

〈 〉 is the volume average and B0 is the magnetic field at the center r = 0.

2. [Grad-Shafranov Equation] In this problem you will be asked to describe
some of basic features contained in MHD equilibrium for tokamak geometry.

(a) First just write down the equation for tokamak equilibrium that Grad and
Shafranov derived for poloidal flux ψ = RAφ, where R is the major radius and
Aφ is the toroidal component of vector potential. Explain each term as much as
you know.

(b) Imagine a solution rescaling by ψ → αψ. How would you change the two flux
functions p(ψ) and F (ψ) = RBφ where Bφ is the toroidal field, to make your new
ψ still satisfying the Grad-Shafranov equation? Is this rescaled solution changing
any of βt or βp, or q(ψ), or plasma inductance?

(c) The rescaling in (b) results in a change of toroidal plasma current jφ. Can
you imagine another simple way to construct a different solution similar to (b)
but without changing jφ? This method is frequently used to numerically change
q(ψ) without changing jφ or p(ψ), although unfortunately it changes βt.

3. [Magnetic Islands] Suppose a perturbed magnetic field ~B1 = x̂δ sin(ky)

is added onto an equilibrium magnetic field ~B = ŷB
′
y0x + ẑB0. Show that the

field lines projected in (x, y) compose magnetic islands, and that the width of the
magnetic islands is proportional to

√
δ.
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4. [Energy Principle with Simple Force] Suppose a MHD equilibrium given

by ρ~g = ~∇p where ρ is plasma density, p is plasma pressure, and ~g is gravity
vector.

(a) Show that the potential energy due to a fluid displacement ~ξ is given by

δW =
1

2

∫
d~x

[
γp(~∇ · ~ξ)2 + (~ξ · ~∇p)(~∇ · ~ξ) + (~ξ · ~g)~∇ · (ρ~ξ)

]
. (1)

(b) What value should plasma compressibility ~∇ · ~ξ, take to minimize δW?

(c) For stability, what sign should ~∇(p/ργ) take with respect to ~g? This is called
Schwarzschild condition.

(d) For low pressure cases, the equilibrium by gravity is often described by ρ~g =
~∇pB where pB = B2/2µ0 and with γ = 2. Then one can assess the stability
condition just by replacing p by pB in (b) and (c). Show that this can be justified

since the perturbed magnetic field ~Q = ~∇×(~ξ× ~B) becomes zero for ~ξ minimizing
δW , in particular for the interchange instability where line-bending term is not
allowed, i.e. ( ~B · ~∇)~ξ = 0.

5. [Electrostatic Drift Wave] The basic dispersion relation for the electron
drift wave without any dissipation is given by

ω2 − ω∗eω − k2zc2s = 0, (2)

where ω∗e = kyv∗e, v∗e = −(Te0/ene0B0)dne0/dx, cs = (Te0/M)1/2, with elec-
tric charge e, ion mass M , the wave numbers in y and z directions, ky and kz,

through constant magnetic field ~B = B0ẑ, constant electron temperature Te0, but
inhomogeneous electron density ne0(x), without any flow in equilibrium.

Derive the dispersion relation simply by linearizing

• Electron parallel momentum balance ignoring electron inertia and electron
temperature fluctuation (Te1 = 0)

• Ion parallel momentum balance entirely ignoring ion pressure (Ti0,i1 = 0)

• Ion continuity equation

Assume quasi-neutrality condition (ne = ni). Another critical assumption is that

the perturbation is electrostatic, i.e. without magnetic fluctuation ~B1 = 0, and
the perturbed electric field ~E1 = −~∇φ1. Note that the perturbed flow becomes
u1 = (ẑ × ~∇φ1)/B0 + u‖1ẑ, constituting a closed set of equations only with ne1.
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Possibly useless information:

~A · ( ~B × C) = ~C · ( ~A× ~B) = ~B · (~C × ~A)

~∇ · (f ~A) = f(~∇ · ~A) + ~A · ~∇f
~∇× ( ~A× ~B) = ~A(~∇ · ~B)− ~B(~∇ · ~A) + ( ~B · ~∇) ~B − ( ~A · ~∇) ~B

In cylindrical coordinates,

(~∇× ~A)r =
1

r

∂Az
∂θ
− ∂Aθ

∂z

(~∇× ~A)θ =
∂Ar
∂z
− ∂Az

∂r

(~∇× ~A)z =
1

r

∂

∂r
(rAθ)−

1

r

∂Ar
∂θ
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