Engineering Economic Analysis

2019 Final solution

Problem 1

(a) Yes.

Let $\tilde{\sim}^{*}$ be the optimal and assume that $p \cdot f\left(\tilde{x}^{*}\right)-\tilde{w} \cdot \tilde{x}^{*}=\pi^{*}>0$
Scale up production by $\mathrm{t}>1$
Since CRS, $f\left(t \tilde{x}^{*}\right)=t f\left(\tilde{x}^{*}\right)$
Then, $p \cdot f\left(\tilde{x}^{*}\right)-\tilde{w} \cdot\left(t \tilde{x}^{*}\right)=t\left\{p \cdot f\left(\tilde{x}^{*}\right)-\tilde{w} \cdot \tilde{x}^{*}\right\}=t \pi^{*}>\pi^{*}$
Contradiction!
(b) Yes.
F.O.C. if profit maximization of a competitive firm is $p=c^{\prime}(y(p))$

Differentiating F.O.C w.r.t p, $1=c^{\prime \prime}(y(p)) \cdot y^{\prime}(p)$
By S.O.C, we know that $c "(y)>0$
Thus, $y^{\prime}(p)>0$
(c) No

Opt. Profit-Max of third-degree price discrimination in two markets,
$\max \pi=R_{1}\left(q_{1}\right)+R_{2}\left(q_{2}\right)-c\left(q_{1}+q_{2}\right)$ when $R_{i}\left(q_{i}\right)=$ revenue for i market
F.O.C. $R_{1}{ }^{\prime}\left(q_{1}\right)-c^{\prime}\left(q_{1}+q_{2}\right)=0$

$$
R_{2}^{\prime}\left(q_{2}\right)-c^{\prime}\left(q_{1}+q_{2}\right)=0
$$

Hessian matrix $H=\left(\begin{array}{cc}R_{1} "-c " & -C " \\ -C " & R_{2} "-C "\end{array}\right)$ should be ND.
Therefore, $R_{i} "<c "$ for $i=1,2$
\therefore MR in each market must be increasing less rapidly than MC for the output as a whole.

Problem 2

(a)

The average cost curve is $\frac{c(\mathbf{w}, y)}{y}=\frac{y^{2}+1}{y} w_{1}+\frac{y^{2}+2}{y} w_{2}$
Since it is convex, it has a unique minimum at $y_{m}=\sqrt{\frac{w_{1} / w_{2}+2}{w_{1} / w_{2}+1}}$.
The derivative of y_{m} with respect to w_{1} / w_{2} is negative, so the minimum of the average cost shifts to the left (right) as w_{1} / w_{2} increases (decreases).
(b)

$$
\begin{aligned}
& \frac{\partial c(\mathbf{w}, y)}{\partial y}=2 y\left(w_{1}+w_{2}\right) \\
& \therefore y(p)=\frac{p}{2\left(w_{1}+w_{2}\right)}
\end{aligned}
$$

(c)
$Y(p)=$ arbitrarily large amount
(if $\quad \mathrm{p}>\mathrm{y} _\mathrm{m}(\mathrm{w} 1+\mathrm{w} 2)$) any amount (if $\left.p=y _m(w 1+w 2)\right)$
(otherwise)

Problem 3

a)

Since average cost of j 's plant is $A C_{j}\left(q_{j}\right)=\alpha+\beta_{j} q_{j}$,
Total cost is as follows $T C_{j}\left(q_{j}\right)=\alpha q_{j}+\beta_{j} q_{j}{ }^{2}$.
Note that cost-min $\left(q_{1}{ }^{*}, q_{2}{ }^{*}\right)$ is same with the profit-max $\left(q_{1}{ }^{*}, q_{2}{ }^{*}\right)$.
We know that the profit-max condition is $M C_{1}\left(q_{1}^{*}\right)=M C_{2}\left(q_{2}^{*}\right)$.
Thus,
$\alpha+2 \beta_{1} q_{1}=\alpha+2 \beta_{2} q_{2} \ldots$ (1)
$q_{1}+q_{2}=Q \ldots$ (2)
By solving (1) and (2), optimum quantities can be got as below
$q_{1}{ }^{*}=\frac{\beta_{2}}{\beta_{1}+\beta_{2}} Q, q_{2}^{*}=\frac{\beta_{1}}{\beta_{1}+\beta_{2}} Q$
b)

If $\beta_{1}<0, \beta_{2}>0$,
$M C_{1}\left(q_{1}\right)=\alpha+2 \beta_{1} q_{1}<M C_{2}\left(q_{2}\right)=\alpha+2 \beta_{2} q_{2}$ for all $q_{1}, q_{2}>0$
Thus it is optimal to distribute all Q to a plant 1.(reminder: $q_{1}+q_{2}=Q$)
$\therefore q_{1}^{*}=Q, q_{2}{ }^{*}=0$
c)

Solved as problem 3-a)
Note that cost-min $\left(q_{1}{ }^{*}, q_{2}{ }^{*}, q_{3}{ }^{*}\right)$ is same with the profit-max $\left(q_{1}{ }^{*}, q_{2}{ }^{*}, q_{3}{ }^{*}\right)$.
We know that the profit-max condition is $M C_{1}\left(q_{1}{ }^{*}\right)=M C_{2}\left(q_{2}{ }^{*}\right)=M C_{3}\left(q_{3}{ }^{*}\right)$.
Thus,
$\alpha+2 \beta_{1} q_{1}=\alpha+2 \beta_{2} q_{2}=\alpha+2 \beta_{3} q_{3} \ldots$ (1)
$q_{1}+q_{2}+q_{3}=Q$
By solving (1) and (2), optimum quantities can be got as below
$q_{1}{ }^{*}=\frac{\beta_{2} \beta_{3}}{\beta_{1} \beta_{2}+\beta_{2} \beta_{3}+\beta_{3} \beta_{1}} Q, q_{2}{ }^{*}=\frac{\beta_{1} \beta_{3}}{\beta_{1} \beta_{2}+\beta_{2} \beta_{3}+\beta_{3} \beta_{1}} Q, q_{3}{ }^{*}=\frac{\beta_{1} \beta_{2}}{\beta_{1} \beta_{2}+\beta_{2} \beta_{3}+\beta_{3} \beta_{1}} Q$

Problem 4

(a)

For firm i
$\max _{q_{i}}\left(a-b q_{i}-b \sum_{j \neq i} q_{j}\right) q_{i}-\left(F+c q_{i}\right)$
F.O.C
$a-2 b q_{i}-b \sum_{j \neq i} q_{j}-c=0$
By symmetry in equal output, i.e., $q_{1}=q_{2}=\cdots=q_{N}$,
F.O.C becomes
$a-b q_{i}-b N q_{i}-c=0$
$\therefore q_{i}^{*}=\frac{a-c}{b(N+1)}$ for $\forall i$
Equilibrium market price is $p^{*}=a-b\left(N-\frac{a-c}{b(N+1)}\right)=\frac{a+\mathrm{Nc}}{N+1}$
(b)

In a long run of competitive market, firms must make no profits, $\pi=0$.
Thus,

$$
\begin{aligned}
\pi_{i} & =(a-b Q) q_{i}-\left(F+c q_{i}\right) \\
& =\frac{(a-c)^{2}}{b(N+1)^{2}}-F=0
\end{aligned}
$$

Thus equilibrium number of firms
$N=\frac{a-c}{\sqrt{b F}}-1$
$\therefore N^{*}=$ The highest integer which is smaller or equal to N.

Problem 5

(a)

Let the firms who sell output goods $f_{i}=1,2$ and the firms who sell input $m_{i}(i=1,2)$
Then, f_{1} and f_{2} compete with output price simultaneously (Bertrand model), and m_{1} and f_{i} competes sequentially (Stackelberg game).

So, based on backward induction, best response of f_{i} should be determined.

(Stage 1 - Bertrand model)

Let the profit function of firm f_{i} as
$\Pi_{1}=\left(a-p_{1}+b p_{2}\right)\left(p_{1}-c_{1}\right)$
$\Pi_{1}=\left(a-p_{2}+b p_{1}\right)\left(p_{2}-c_{2}\right)$
First order condition can be written as
$\frac{\partial \Pi_{1}}{\partial p_{1}}=2 p_{1}-b p_{2}-a-c_{1}=0 \quad \& \quad \frac{\partial \Pi_{2}}{\partial p_{2}}=2 p_{2}-b p_{1}-a-c_{2}=0$
Then, the best response function of each firm f_{i} is

$$
p_{1}=\frac{2\left(a+c_{1}\right)+b\left(a+c_{2}\right)}{4-b^{2}} \& p_{2}=\frac{2\left(a+c_{2}\right)+b\left(a+c_{1}\right)}{4-b^{2}}
$$

(Stage 2 - Stackelberg model)

The profit function of each firm m_{i}, given the best response function of f_{i} can be written as

$$
\begin{aligned}
& \Pi_{m_{1}}=\left(a-p_{1}+b p_{2}\right) c_{1}=\left(a-\left(\frac{2\left(a+c_{1}\right)+b\left(a+c_{2}\right)}{4-b^{2}}\right)+b\left(\frac{2\left(a+c_{2}\right)+b\left(a+c_{1}\right)}{4-b^{2}}\right)\right) c_{1} \\
& \Pi_{m_{2}}=\left(a-p_{2}+b p_{1}\right) c_{2}=\left(a-\left(\frac{2\left(a+c_{2}\right)+b\left(a+c_{1}\right)}{4-b^{2}}\right)+b\left(\frac{2\left(a+c_{1}\right)+b\left(a+c_{2}\right)}{4-b^{2}}\right)\right) c_{2}
\end{aligned}
$$

From the first order conditions ($\frac{\partial \Pi_{m_{i}}}{\partial c_{i}}=0$), the optimal c_{1}, c_{2} can be calculated as
$c_{1}^{*}=c_{2}^{*}=-\frac{a(b+2)}{2 b^{2}+b-4}$
By symmetry, optimal price of each firm m_{i} is equal, i.e., $c_{1}^{*}=c_{2}^{*}=c^{*}$.
(b)

Since the optimal $c^{*}=-\frac{a(b+2)}{2 b^{2}+b-4}$ for firm m_{1}, m_{2}, the optimal price of each firm f_{i} can be calculated as $p_{n}^{*}=\frac{\left(a+c^{*}\right)(2+b)}{\left(4-b^{2}\right)}=-\frac{2 a\left(b^{2}-3\right)}{(b-2)\left(2 b^{2}+b-4\right)}$

If f_{1} integrates its system, the problem is changed. The formulation can be written as below.

(Stage 1 - Bertrand model)

$\Pi_{1}=\left(a-p_{1}+b p_{2}\right) p_{1}$
$\Pi_{1}=\left(a-p_{2}+b p_{1}\right)\left(p_{2}-c_{2}\right)$
First order condition can be written as

$$
\frac{\partial \Pi_{1}}{\partial p_{1}}=2 p_{1}-b p_{2}-a=0 \quad \& \quad \frac{\partial \Pi_{2}}{\partial p_{2}}=2 p_{2}-b p_{1}-a-c_{2}=0
$$

Then,

$$
p_{1}=\frac{2 a+b\left(a+c_{2}\right)}{4-b^{2}} \& p_{2}=\frac{2\left(a+c_{2}\right)+a b}{4-b^{2}}
$$

(Stage 2 - Stackelberg model)

$\Pi_{m_{2}}=\left(a-p_{2}+b p_{1}\right) c_{2}=\left(a-\left(\frac{2\left(a+c_{2}\right)+a b}{4-b^{2}}\right)+b\left(\frac{2 a+b\left(a+c_{2}\right)}{4-b^{2}}\right)\right) c_{2}$
From the first order condition, the optimal $c_{2}^{*}=\frac{a(2+b)}{2\left(2-b^{2}\right)}$.

Then, $p_{1}^{*}=\frac{a\left(4+b-2 b^{2}\right)}{2\left(2-b^{2}\right)(2-b)}=p_{v}$.

Therefore, $p_{v}<p_{n}$ is as below

$$
p_{v}-p_{n}=\frac{a\left(4+b-2 b^{2}\right)}{2\left(2-b^{2}\right)(2-b)}-\left(-\frac{2 a\left(b^{2}-3\right)}{(b-2)\left(2 b^{2}+b-4\right)}\right)=\frac{-a\left(3 b^{2}-8\right)}{2\left(2-b^{2}\right)(2-b)\left(2 b^{2}+b-4\right)}<0
$$

Since $a>0, b>0$
$\therefore \frac{\left(3 b^{2}-8\right)}{\left(b^{2}-2\right)(b-2)\left(2 b^{2}+b-4\right)}>0$

Inequality plot:

Therefore, The condition for $p_{v}<p_{n}$ is
$0<b<\frac{\sqrt{33}-1}{4}$,
$\sqrt{2}<b<\frac{2 \sqrt{6}}{3}$,
$2<b$

