1. An $800-\mathrm{lb}$ homogeneous cylinder is supported by two rollers as shown below. Determine the forces exerted by the rollers on the cylinder. All surfaces are smooth (frictionless) [10]

2. A scissors jack for an automobile is shown below. The screw threads exert a force F on the blocks at joints A and B. Determine the force P exerted on the automobile if $F=800 \mathrm{~N}$ and $\theta=15^{\circ}$. Repeat for $\theta=30^{\circ}$ and $\theta=45^{\circ}$ [20]

3. Normal and shear stresses on horizontal and vertical planes at a point in a structural member are shown below.
a. Determine the principal stresses, the maximum in-plane shearing stress, and the maximum shearing stress. [15]
b. Locate the planes on which these stresses act and show the stresses on a sketch. [5]

Midterm Examination

4. At a point on the free surface of a steel $(v=0.30)$ machine part, the strain rosette shown below was used to obtain the following normal strain data: $\varepsilon_{a}=-555 \mu \mathrm{~m} / \mathrm{m}, \varepsilon_{b}=+925 \mu \mathrm{~m} / \mathrm{m}$, and $\varepsilon_{c}=+740 \mu \mathrm{~m} / \mathrm{m}$. Determine a. The strain components $\varepsilon_{x}, \varepsilon_{y}$, and $\gamma_{x y}$ at the point [15]
b. Three kinds of principal strains and the maximum shearing strain at the point. A sketch is not required. [10]

5. A 1×2-in. rectangular bar of steel $\left[E=30,000 \mathrm{ksi}\right.$ and $\left.\alpha=6.6\left(10^{-6}\right)^{\circ} \mathrm{F}\right]$ has a length of 4 ft . The bar is subjected to an axial load $P=3000 \mathrm{lb}$ and a temperature increase of $\Delta T^{\circ} F$. Determine the temperature increase $\Delta \mathrm{T}$ if the elongation of the bar is 0.05 in . [10]
6. A structural steel $\left(E=29,000 \mathrm{ksi}\right.$ and $\left.\gamma=0.284 \mathrm{lb} / \mathrm{in}^{3}\right)$ bar of rectangular cross section consists of uniform and tapered sections as shown below. The width of the tapered section varies linearly from 2 in . at the bottom to 5 in . at the top. The bar has a constant thickness of $1 / 2 \mathrm{in}$. Determine the elongation of the bar resulting from application of the 30 -kip load P and the weight of the bar. [15]

