Midterm Exam

Nov. 4th, 2021

1. Explain/solve followings. [48]
1) Definition of photogrammetry and three types of photograph [4]
2) Definition of refractive index and Snell's law. [2]
3) Definitions of optical axis, focal point, focal length, and focal plane [4].
4) Explain the lens formula [3]
5) Definition of depth of field and effects of aperture, focal length, and object distance on the depth of field [4]
6) Explain how to calculate total exposure and meaning of f-stop [2]
7) Five elements of interior orientation (내부표정요소) [3]
8) Compare graphically the geodetic, geocentric, and local vertical coordinate systems. [6]
9) Compare two conformal map projection methods: Lambert conformal conic and transverse Mercator. [8]
10) Definition of parallax [2]
11) Explain collinearity condition [10]
2. A camera calibration report specifies the calibrated focal length $\mathrm{f}=153.206 \mathrm{~mm}$ and coordinates of the calibrated principal point as $x_{p}=0.008 \mathrm{~mm}$ and $y_{p}=-0.001$ mm . The report also provides a function of radial lens distortion from the principal point as below. Using this function of distortion, compute the corrected coordinates for an image point having coordinates $x=62.579 \mathrm{~mm}, y=-80.916 \mathrm{~mm}$ relative to the fiducial axes. [10]

$$
\Delta r=0.2296 r-35.89 r^{3}+1,018 r^{5}+12,100 r^{7}
$$

3. The highest terrain, average terrain, and lowest terrain are $610,460,310 \mathrm{~m}$ above mean sea level, respectively. Calculate the maximum, minimum, and average scales if flying height above mean sea level is $3,000 \mathrm{~m}$ and the camera focal length is 152.4 mm . [12]
4. A vertical photo taken from an elevation of 535 m above mean sea level. The elevation at the base of a tower in the photo is 259 m above MSL. The relief distance d of the tower is 54.1 mm , and the radial distance to the top of the tower from the photo center was 121.7 mm . What is the height of the tower? [10]
5. A pair of overlapping vertical photographs was taken from a flying height of $1,233 \mathrm{~m}$ above sea level with a $152.4-\mathrm{mm}$ of focal length. The air base was 390 m . Flight-line coordinates for points a and b are $x_{a}=53.4 \mathrm{~mm}, y_{a}=50.8 \mathrm{~mm}, x^{\prime}{ }_{a}=$ $-38.3 \mathrm{~mm}, y^{\prime}{ }_{a}=50.9 \mathrm{~mm}, x_{b}=88.9 \mathrm{~mm}, y_{b}=-46.7 \mathrm{~mm}, x_{b}=-7.1 \mathrm{~mm}, y_{b}^{\prime}=-46.7 \mathrm{~mm}$. Elevation of points A and B, and the horizontal length of line $A B$? [10]
6. In the computation of the elevation of point A in Problem 5, suppose that the random errors were $\pm 2 \mathrm{~m}$ in $H, \pm 2 \mathrm{~m}$ in B, and $\pm 0.1 \mathrm{~mm}$ in p_{a}. Compute the resulting error in h_{A} due to the presence of these errors. [10]
