23-2 Dynamics

Mid-term Test

1. A semicircular slot of $\mathbf{2 5 c m}$ radius is cut in a flat plate which rotates about the vertical $A D$ at a constant rate of $\mathbf{1 4 r a d} / \mathbf{s e c}$. A small, $\mathbf{0 . 5} \mathbf{~ k g}$ block E is designed to slide in the slot as the plate rotates. The coefficients of friction are $\mu_{s}=0.4, \mu_{k}=0.3$,
a) Determine whether the block will slide in the slot if it is released in the position corresponding to $\boldsymbol{\theta}=\mathbf{8 0}^{\circ}$. Also, determine the magnitude and the direction of the friction force exerted on the block immediately after it is released. (25 pts)
b) Determine whether the block will slide in the slot if it is released in the position corresponding to $\boldsymbol{\theta}=\mathbf{7 5}^{\circ}$. Also, determine the magnitude and the direction of the friction force exerted on the block immediately after it is released. (25 pts)

2. When the rope is at angle of $\boldsymbol{\alpha}=\mathbf{3 0}^{\circ}$, the $\mathbf{1} \mathbf{k g}$ sphere A has a speed $\mathbf{v}_{\mathbf{0}}=$ $\mathbf{2 . 4} \mathbf{~ m} / \mathrm{s}$. The coefficient of restitution between A and the $\mathbf{2} \mathbf{k g}$ wedge B is $\mathbf{0 . 8}$ and the length of rope $\boldsymbol{l}=\mathbf{1 . 5} \mathbf{~ m}$. The spring constant has a value of $1800 \mathrm{~N} / \mathrm{m}$. and $\boldsymbol{\theta}=\mathbf{2 0}^{\circ}$.
a) Determine the velocity v_{1} of the sphere A just before the impact. (20 pts)
b) Determine the velocities and directions of A and B immediately after the impact. (20 pts)
c) Determine the maximum deflection of the spring. Assume A does not strike B again before this point. (10 pts)

