Mechanics of Materials and Lab.

Midterm exam (Closed book), May 8th 10am – 12pm Total 100 pts (5 Questions)

Name: Solution.

Student id number:

Equations:

Normal: $\sigma = \frac{P}{A}$; $\varepsilon = \frac{\delta}{L}$; $\sigma = E\varepsilon$;

Shear: $\tau = G\gamma$; $G = \frac{E}{2(1+\nu)}$

Deformation: $\delta = \frac{PL}{EA}$; $\delta_T = \varepsilon_T L = \alpha (\Delta T) L$

Stress on inclined section: $\sigma_{\theta} = \frac{P}{A}\cos^2{\theta}$; $\tau_{\theta} = -\frac{P}{A}\sin{\theta}\cos{\theta}$

Torsion: $\theta = \frac{d\phi}{dx}$; $\phi = \frac{TL}{GI_P}$; $I_P = \int_A \rho^2 dA = \frac{\pi d^4}{32}$ (circular bar case)

Bending: $\varepsilon = -\frac{y}{\rho} = -\kappa y$; $\sigma_x = E\varepsilon_x = -\frac{Ey}{\rho} = -E\kappa y$

Problem # 1 (15 pts)

A tie-down on the deck of a sailboat consists of a bent bar bolted at both ends, as shown in the figure. The diameter d_B of the bar is 20 mm, the diameter d_W of the washers is 50 mm, and the thickness t of the fiberglass deck is 40 mm.

- 1) Draw possible area under shear stress.
- 2) Draw possible failure shape due to shear failure.
- 3) If the allowable shear stress in the fiberglass is 2 MPa, and the allowable bearing pressure between the washer and the fiberglass is 4 MPa, what is the allowable load P_{allow} on the tie-down?

3) Pallow shear = 2-2.10 pa ·
$$\pi$$
 · 0.05 · 0.04 = 25 kN
Pallow normal = 2-4.10 pa · $\frac{\pi}{4}$ (0.052-0.022) = 13 kN
=> Pallow = 13 kN.

Problem #2. (25 pts)

The fixed-end bar **ABCD** consists of three prismatic segments, as shown in the figure. The end segments have cross-sectional area A_1 (diameter of 30 mm) and length L_1 = 200 mm. The middle segment has cross-sectional area A_2 (diameter of 50 mm) and length L_2 = 250 mm. Loads P_B and P_C are equal to 25 kN and 18 kN, respectively. The Young's modulus of AB and CD segment is 20 GPa while that of BC segment is 15 GPa.

- 1) Determine the reactions and its directions of R_A and R_D at the fixed supports.
- 2) Determine the compressive axial forces of all segments.
- 3) Determine whether the applied axial force is tension or compression for each segments.
- 4) Calculate maximum shear stress for each segments.
- 5) Draw potential failure shape due to shear stress for each segments.

1)
$$R_{A} = -8.48 \text{ (A)} (4)$$

 $R_{b} = 1.48 \text{ (A)} (4)$

2)
$$P_{A13} = 8.48 \text{ KN}$$

 $P_{13c} = -16.52 \text{ KN}$
 $P_{ch} = 1.48 \text{ KN}$

4)
$$T_{AB} = \frac{8.48 \text{ X}_{2}^{1}}{74(0.03)^{2}} + \frac{357}{4}$$

$$T_{BL} = 4.2 MPA$$

$$T_{CD} = 1.0 MPA$$

Problem #3. (20 pts)

A propeller shaft for a small yacht is made of a solid steel bar 150 mm in diameter with a hole of 80 mm diameter. The allowable stress in shear is 40 MPa and the allowable rate of twist is 2.0° in 3.5 meters.

Assuming that the shear modulus of elasticity is G = 80 GPa, determine the maximum torque T_{max} that can be applied to the shaft.

$$T_{\text{max}} = \frac{40.70^{6} Pa}{\frac{0.15}{2}} I_{p} = \frac{40.70^{6} Pa}{\frac{0.15}{2}} \frac{\pi}{32} (0.15^{9} - 0.08^{4})$$

$$= 24.3 \text{ kN m}$$

Problem #4. (15 pts)

The shear-force diagram for a simple beam is shown in below figure.

- 1) Determine the loading on the beam
- 2) Draw the bending-moment diagram, assuming that no couples act as loads on the beam.
- 3) Compute maximum moment and mark its position(s).

Problem #5. (25 pts)

A simple beam with two overhangs has one load downward (*P*) and the other upward (*P*), and clockwise moments *Pb* as shown in below figure. The beam has rectangular steel section.

- 1) Draw shear force diagram (SFD) and bending moment diagram (BMD),
- 2) Based on the BMD, draw possible deflection shape of the beam.
- 3) If the beam fails due to shear, mark possible failure section(s) or region(s).
- 4) If the beam fails due to compression, mark potential failure point(s).

