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Q.1.) 

(a) 

The problem can be formulated as the utility maximization problem like below. 
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Lagrangian: 
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First order condition: 
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Solving equations of F.O.C., we get 
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(b) False! 

Let the total amount of debt, which depends on β , as ( )D β . Then, 
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(Approach 1 - Comparative statics) 

Comparative statics with respect to β  can be calculated as follows. 
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So, if the present bias becomes bigger, the total amount of debt becomes smaller. Therefore, the 

consumer with present-bias ( )1β <  borrow more debt than the consumer without present-bias 

( )1β = . 

 

(Approach 2 - Direct comparison) 
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Thus, the consumer with present-bias borrow more debt than the consumer without present-bias. 

 

 

Q.2.) 

The problem can be formulated as the utility maximization problem like below. 
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Since the utility function is convex, the solution will be at the corner (corner solutions). 
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(Case 1) 1 2p p< : 
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(Case 2) 2 1p p< : 
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Therefore, quantity changes of good 1 with respect to its own price can be depicted like below. 

 
As price becomes higher, the optimal amount of good 1 becomes smaller, if the price of good 1 

is cheaper than that of good 2. If the price of good 1 is more expensive than that of good 2, the 

optimal amount does not change at the level of 0. 

 

 

Q.3.) 

(a) 

The problem can be formulated as 
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Since the utility function is quasi-linear, we can rewrite the problem as 
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p
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The optimal solution (Marshallian demand function) can be obtained from F.O.C. 
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Therefore, the Marshallian demand functions can be written as 
11 1

1 11 1* *1 1
1 2

2 2 2

1 1,
2 2

p pmx x
p p p

α
α αα α

α α

− −− −      = = −      
      

  

 



 5 

(b) 

The indirect utility function can be calculated as 
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Then, expenditure function is 
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Therefore, the Hicksian demand functions are obtained as 
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(c) 

Let 1 210, 2, 0.5m p p α= = = = . The optimal bundles ( ) ( )* *
1 2, 1, 4x x = , with the utility level of 6. 

If price changes to 1 1p = , The optimal bundles ( ) ( )* *
1 2, 4, 2x x = , with the utility level of 7. If 

the consumer want to purchase ( ) ( )1 2, 1, 4x x =  after the price changes, he only pay $8 to feel 

the same utility before the price changed.  

∴ Consumer Surplus =10 8 2− =  

Compensating variations can be calculated as follows. 

CV= ( ) ( )1,2,7 1,2,6 2e e= − =   

Equivalent variations can be calculated as follows. 

EV= ( ) ( )2,2,7 2,2,6 2e e− =  

 

Q.4.) 

(a) 

- Type-A (100 consumers) have the problem as follows. 
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Solving it, the optimal solution can be obtained as 
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- Type-B (200 consumers) have the problem as follows. 
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Solving it, the optimal solution can be obtained as 
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Therefore, the market demand function for good x can be calculated as 
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(b) True! 

Price elasticity can be calculated as 
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It means good x is inelastic with respect to its own price, since | | 1ε < . So, the revenue will 

increase if a producer of good x raises the price of good x.  
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(c) 

If the price of good x = $20 and that of y = $10:  

- type-A will purchase (144, 72), and the utility level is 144.  

- type-B will purchase (90, 180), and the utility level is 90 2 . 

 

If the price of good x becomes $10, and lump-sum tax as t  

(Type A) 
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the optimal solution can be obtained as 
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(Type B) 
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the optimal solution can be obtained as 
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Type A => 1440, Type B => ( )1800 2 2−  

This is the same value of compensating variations.  

 

(cf.) EV  

- EV of type A 

If price of A = $10, price of B = $10, the utility is 240 with the optimal bundle of (240, 120). 
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Therefore, EV = 20*240 10*120 3,600 2,400+ − = . 

- EV of type B 

If price of A = $10, price of B = $10, the utility is 180 with the optimal bundle of (180, 180). 

To feel same utility level when price of A = $20, price of B = $10, 180
20 2

m
=  should holds. 

Therefore, EV= ( )3600 2 1−  
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