1. [12 pts] What is the product of the following reactions?

(a)

**(b)** 

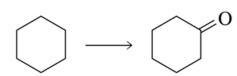
$$\begin{array}{c} \text{CH}_2\text{Br} \\ \hline & \frac{\text{1. Li}}{\text{2. Cul}} \end{array} \xrightarrow{\text{CH}_3\text{Br}}$$

**(c)** 

**(d)** 

**2.** [6 pts] Provide the structure of the alkene that will undergo metathesis to generate the following compounds.

(a)


**(b)** 

**3.** [9 pts] What is the major product of the following reactions.

$$\begin{array}{c} \text{CH}_3 \\ \mid \\ \text{CH}_3\text{CHCH}_3 + \text{Br}_2 & \xrightarrow{\quad \pmb{h}\nu \\ } \end{array}$$

**4.** [6 pts] When 3,3-dimethyl-1-butene is treated with HBr alone, the major product is 2-bromo-2,3-dimethylbutane. When the same alkene is treated with HBr and peroxide, the product is 1-bromo-3,3-dimethylbutane. Explain these results by referring to the mechanism.

**5**. [10 pts] Using the given starting material and any necessary organic or inorganic reagent, indicate how the desired product could be obtained.



## **(b)**

$$HO$$
  $\longrightarrow$   $\bigcirc$ 

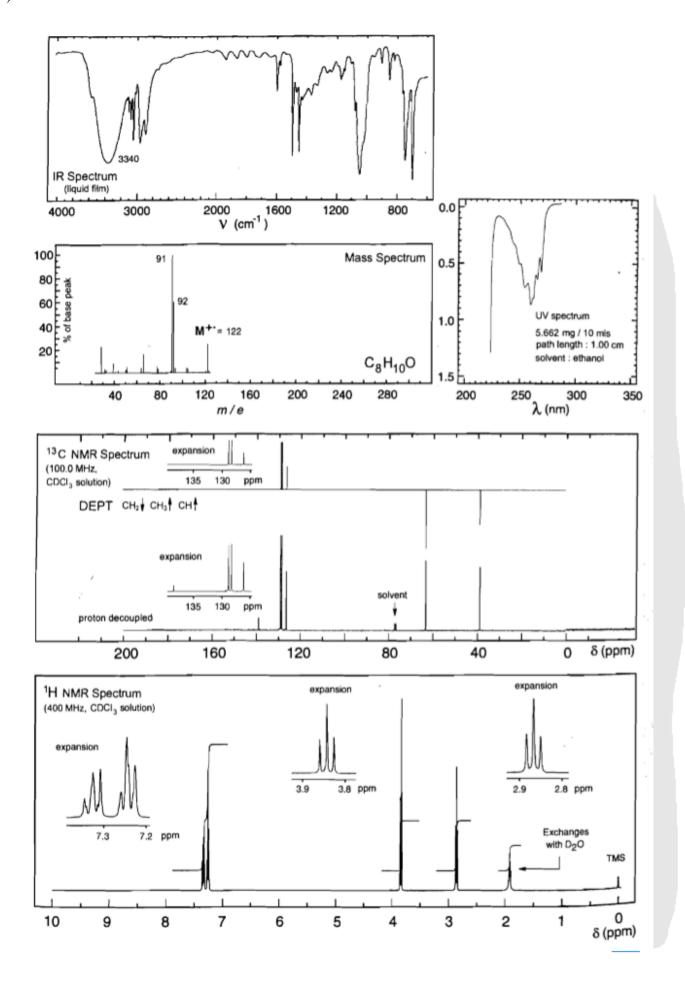
| 6. [4 pts] Show the m/z values of the molecular ion              | n and 5 likely fragments | for the compound ethyl ether, |
|------------------------------------------------------------------|--------------------------|-------------------------------|
| CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>3</sub> |                          |                               |

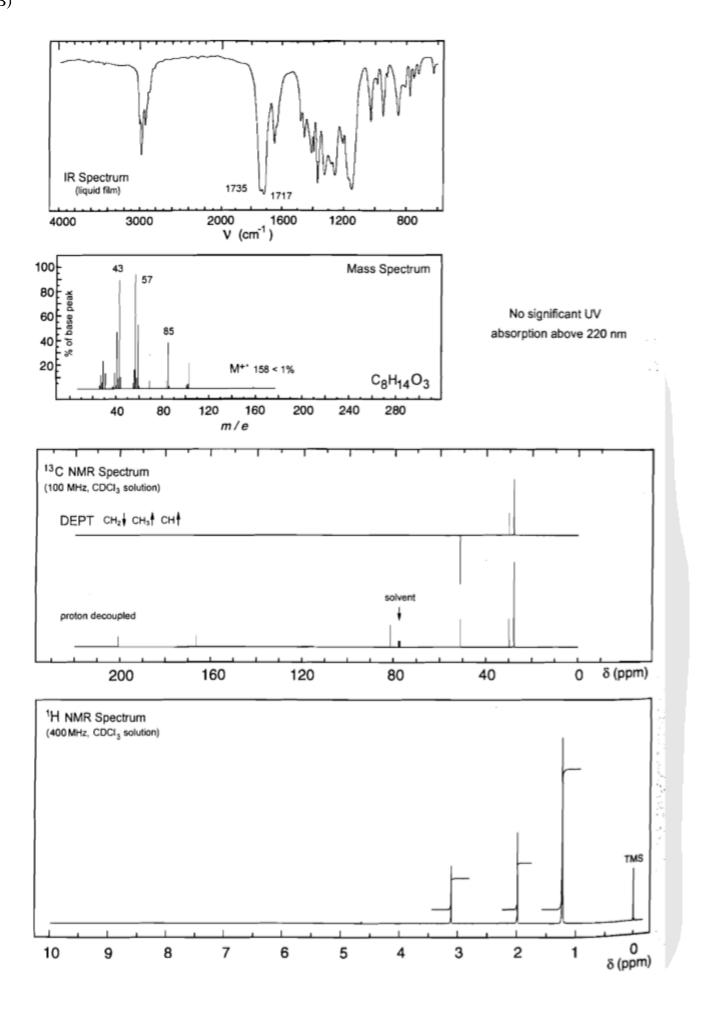
- **7.** [12 pts] Propose structures of the following there compounds consistent with each set of the corresponding data. Assume each compound has an sp3 hybridized C-H absorption in IR spectrum, and other major IR absorptions above 1500 cm<sup>-1</sup> are listed as follows.
- (a) A compound having a molecular ion at 72 and an IR absorption at 1725 cm<sup>-1</sup>.
- (b) A compound having a molecular ion at 55 and an IR absorption at 2250 cm<sup>-1</sup>.
- (c) A compound having a molecular ion at 74 and an IR absorption at 3200-3600 cm<sup>-1</sup>.

8. [5 pts] Is the  $\lambda_{max}$  of phenol in aqueous solution affected by the pH of the solution? If so, explain how and why  $\lambda_{max}$  changes.

9. [6 pts] ) How many signals would you expect to see in the <sup>1</sup>H NMR spectrum of the following compounds?

A


$$\begin{array}{c|c} H \\ H \\ H \\ \end{array}$$


В

- 10. [15 points  $\times$  2] Identify the structure of the following compounds, **A**, and **B** based on the spectral data provided on the following pages, respectively.
  - Try to assign as many peaks in the spectra as possible for the full credit and you should show your peak assignments directly on top of the spectra.
  - Write down the proposed structure and your reasoning process on this page.

(A)

(B)





| Table 14.4 Frequencies of Important IR Stretching Vibrations |                                |                    |  |  |
|--------------------------------------------------------------|--------------------------------|--------------------|--|--|
| Type of bond                                                 | Wavenumber (cm <sup>-1</sup> ) | Intensity          |  |  |
| C≡N                                                          | 2260–2220                      | medium             |  |  |
| C≡C                                                          | 2260–2100                      | medium to weak     |  |  |
| C=C                                                          | 1680–1600                      | medium             |  |  |
| C=N                                                          | 1650–1550                      | medium             |  |  |
|                                                              | ~1600 and ~1500–1430           | strong to weak     |  |  |
| C=0                                                          | 1780–1650                      | strong             |  |  |
| C—O                                                          | 1250–1050                      | strong             |  |  |
| C—N                                                          | 1230–1020                      | medium             |  |  |
| O—H<br>(alcohol)                                             | 3650–3200                      | strong, broad      |  |  |
| O—H<br>(carboxylic acid)                                     | 3300–2500                      | strong, very broad |  |  |
| N—H                                                          | 3500–3300                      | medium, broad      |  |  |
| С—Н                                                          | 3300–2700                      | medium             |  |  |

| Type of proton                   | Approximate chemical shift (ppm) | Type of proton                  | Approximate chemical shift (ppm) |
|----------------------------------|----------------------------------|---------------------------------|----------------------------------|
| −C <mark>H</mark> <sub>3</sub>   | 0.85                             | I—C—H                           | 2.5-4                            |
| —С <mark>Н</mark> <sub>2</sub> — | 1.20                             | Br—C— <mark>H</mark>            | 2.5-4                            |
| −C <mark>H</mark> −              | 1.55                             | Cl—C—H                          | 3–4                              |
| $-C = C - CH_3$                  | 1.7                              | F—C—H                           | 4-4.5                            |
| O                                | 2.1                              | $R-NH_2$                        | Variable, 1.5–4                  |
|                                  | 2.3                              | R-OH                            | Variable, 2–5                    |
| C≡C—H                            | 2.4                              | ОН                              | Variable, 4–7                    |
| R—O—CH <sub>3</sub>              | 3.3                              | <u>Н</u>                        | 6.5-8                            |
| i o ong                          | 5.5                              | O<br> -<br> -<br> -<br> -<br> - | 9.0-10                           |
| R-C=CH <sub>2</sub><br>R         | 4.7                              | O<br>  <br> -C-O <mark>H</mark> | Variable, 10–12                  |
| R-C=C-H $R$ $R$                  | 5.3                              | 0<br>∥<br>−C−N <mark>H</mark> 2 | Variable, 5–8                    |

| <b>Table 15.3</b> Approximate Values of Chemical Shifts for <sup>13</sup> C NMR |                                  |                |                                  |  |  |
|---------------------------------------------------------------------------------|----------------------------------|----------------|----------------------------------|--|--|
| Type of carbon                                                                  | Approximate chemical shift (ppm) | Type of carbon | Approximate chemical shift (ppm) |  |  |
| (CH <sub>3</sub> ) <sub>4</sub> Si                                              | 0                                | C—I            | -20-10                           |  |  |
| R—CH <sub>3</sub>                                                               | 0–35                             | C—Br           | 10-40                            |  |  |
|                                                                                 | 0 55                             | C-Cl           | 25-50                            |  |  |
| $R-CH_2-R$                                                                      | 15–55                            | C-N            | 40-60                            |  |  |
|                                                                                 |                                  | С-О            | 50-90                            |  |  |
| R—CH—R                                                                          | 25–55                            | R<br>C=O       | 165–175                          |  |  |
| R—C—R<br>R—R                                                                    | 30–40                            | ROC=O          | 165–175                          |  |  |
| C≡C                                                                             | 70–90                            | R              |                                  |  |  |
| C≡N                                                                             | 110–120                          | HO C=O         | 175–185                          |  |  |
| C=C                                                                             | 80–145                           | R<br>C=O       | 190–200                          |  |  |
| C=N                                                                             | 150–170                          | H´             |                                  |  |  |
| C                                                                               | 110–170                          | R C=O          | 205–220                          |  |  |