Total 100 points. Write your answers in the space provided. If you need more space, write on the back.

1. [$5 \times 2 \mathrm{pts}$ Give the systematic name for each of the following compounds.
(a) $\sim \sim M g r$
(b)

(c)

(d)

(e)

2. [10 pts] Of the following 2-step synthesis, the first step is the reaction utilizing organometallic compounds, and the second step is a radical reaction. Answer the following questions.

(a) [2 pts] What should be the compound \mathbf{A} ? No need to explain; just draw the structure.
(b) [3 x 2 pts] There can be three [3] methods for the first step. Show the reagents needed for each method.
(1)
(2)
(3)
(c) [2 pts] Show the reagents needed for the second step, the radical reaction.
3. [25 points] When the compound A on the right is heated in methanol $\left[\mathrm{CH}_{3} \mathrm{OH}\right.$], the compound B is formed: Reaction 1 . When the compound A is heated in methanol in the presence of a catalytic amount of HCl , the compound C is formed: Reaction 2 . Answer the following questions.

A
(a) [3 pts] Give the name of the compound \mathbf{A}, \mathbf{B}, and \mathbf{C}.

A \qquad
B \qquad
C \qquad
(b) [4 pts] Show the structure of the compound B and C.
compound B
compound \mathbf{C}
(c) [4 pts] What is the name or nature of the reaction 1 and 2 , respectively?

1 \qquad

2 \qquad
(d) [4 pts] Explain why different products are formed in the two reactions.
(e) [3 pts] Would the MS spectra of the compound \mathbf{B} and \mathbf{C} be markedly distinguishable? Explain your answer, either yes or no.
(f) [3 pts] How would you discern the IR spectra of the compound \mathbf{B} and \mathbf{C} ?
(g) [4 pts] How would the NMR spectrum of the compound \mathbf{B} is different from that of \mathbf{C} ? Discuss in terms of number, position, and splitting of the signals.

4. [16 pts] Answer the following questions.

(a) [4 pts] Show the synthetic steps for the preparation of benzylamine through Gabriel synthesis.

(b) [3 pts] Show why this method is advantageous over the direct substitution of benzyl halide with ammonia.
(c) [3 pts] Show the synthetic steps for the preparation of the compound on the right from benzylamine and a carbonyl compound.

(d) [6 pts] Show the mechanism for the reaction of the product of (c) above and acetone.

5. [15 points] For the reduction of the β-keto ester on the right, answer the following questions.
(a) [2 + 3 pts] If you want to reduce both of the carbonyl groups what reagent would you use? What would be the product in that case?
 reducing agent \qquad structure of product
(b) [2 pts] If you want to reduce only the keto group, what reagent would you use?
(c) [8 pts] If you want to reduce only the ester group, you have to convert the keto group to a protecting group like cyclic acetal group. Using 1,2-ethanediol
 $\left[\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]$ as the reagent and HCl as the catalyst, show the detailed mechanism for the protection reaction. (Hint: There needs 7 steps.)
6. [4 x 3 pts] Draw the structure of $A-D$. No need to explain.

A

B

C

D

7. [12 pts] For the reaction of an α, β-unsaturated ketone below, answer the following questions.

(a) [4 pts] Draw the structure of the kinetic and thermodynamic products.
kinetic product thermodynamic product
(b) [4 pts] Explain your answer to (a); why one is the kinetic and the other the thermodynamic product. You may discuss the transition states and the intermediates.
(c) [4 pts] If you find that the two products are formed in the same amount (50/50), how would you explain the result?

Table 13.4 Frequencies of Important IR Stretching Vibrations

Type of bond	Wavenumber ($\left.\mathbf{c m}^{\mathbf{- 1}}\right)$	Intensity		
$\mathrm{C} \equiv \mathrm{N}$	$2260-2220$	medium		
$\mathrm{C} \equiv \mathrm{C}$	$2260-2100$	medium to weak		
$\mathrm{C}=\mathrm{C}$	$1680-1600$	medium		
$\mathrm{C}=\mathrm{N}$	$1650-1550$	medium		
	~ 1600 and $\sim 1500-1430$	strong to weak		
$\mathrm{C}=\mathrm{O}$	$1780-1650$	strong		
$\mathrm{C}-\mathrm{O}$				
$\mathrm{C}-\mathrm{N}$				$\mathrm{O}-\mathrm{H}$
:---:				
(alcohol)				
$\mathrm{O}-\mathrm{H}$				
(carboxylic acid)				

Table 14.1 Approximate Values of Chemical Shifts (ppm) for ${ }^{1} \mathrm{H}$ NMR*

Type of proton	ppm						
$-\mathrm{CH}_{3}$	0.85		2.3		$2.5-4$	$\mathrm{R}-\mathrm{OH}$	Variable, 2-5
$-\mathrm{CH}_{2}$ -	1.20	$-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	2.4		2.5-4		Variable, 4-7
$\stackrel{\mid}{-\mathrm{CH}}-$	1.55	$\mathrm{R}-\mathrm{O}-\mathrm{CH}_{3}$	3.3		3-4		6.5-8
	1.7		4.7		4-4.5		9.0-10
	2.1		5.3	$\mathrm{R}-\mathrm{NH}_{2}$	Variable, $1.5-4$		Variable, 10-12
							Variable, 5-8

