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Problem 1

(a) Use the Knudsen number for the judgment.

λ =
1√

2πd2n
=

RT√
2πd2NAP

We have d = 0.364 × 10−9m and P = 133.3 N/m2. Then λ = 5.28× 10−5m thus

Kn =
5.28 × 10−5m

0.01m
= 5.28 × 10−3 < 0.01

Therefore, the flow is modelled to be continuum.

(b) From the formula in the problem, ρ = 0.11kg/m3. We also use ρ = mn, where m is

the mass of an oxygen atom and n is the number density of the atom. Thus we get

n =
NA

16
ρ = 4.1 × 1024/m3

Then λ is calculated to be 4.1× 10−7m, which yields Kn = 4.1× 10−4 < 0.01. Therefore,

the flow is modelled to be continuum.

Problem 2

(a) In this case, f(k) = k. Thus

〈k〉 =
∞
∑

k=0

k
nke−n

k!
= e−n

∞
∑

k=0

nk

(k − 1)!

A change of variables, j = k − 1 yields

〈k〉 = e−n
∞
∑

j=0

nj+1

j!
= ne−n

∞
∑

j=0

nj

j!

Note that the sum is the series definition for en, therefore:

〈k〉 = n

(b) This problem is much simpler if we first simplify the expression for the variance:

var{k} = 〈(k − 〈k〉)2〉 = 〈k2 + 〈k〉2 − 2k〈k〉〉
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It can be seen from the definition that the expectation value has the distributive property.

Therefore,

var{k} = 〈k2〉+ 〈〈k〉2〉 − 〈2k〈k〉〉 = 〈k2〉 − 〈k〉2

Thus we only need to calculate 〈k2〉 and we are essentially done.

〈k2〉 =
∞
∑

k=0

k2p(k) =
∞
∑

k=0

k2
nke−n

k!
= e−n

∞
∑

k=0

knk

(k − 1)!

= e−n
∞
∑

j=0

(j + 1)nj+1

j!

= ne−n





∞
∑

j=0

nj

(j − 1)!
+

∞
∑

j=0

nj

j!





We’ve already evaluated both of these sums in part (a):

〈k2〉 = ne−n [nen + en] = n2 + n

Thus

var{k} = 〈k2〉 − 〈k〉2 = (n2 + n)− n2 = n

(c) We know
N

V
=

m

V

NA

M̂
=

ρNA

M̂

Let the deviation in the number of molecules, k, be represented by δk. By definition:

(

δk

k

)

rms
=

√

var{k}
〈k〉 =

√
n

n
=

[

N

V
δV

]

−1/2

=

[

ρNA

M̂
δV

]

−1/2

For water, M̂ ≃ 18g/mol and ρ ≃ 106g/m3 at 300 K and 105 Pa. Therefore, for a cube

with sides 100 nm:

(

k′

k

)

rms
≃
[

106(6.02 × 1023)

18

(

10−7
)3

]

−1/2

Thus
(

k′

k

)

rms
≃ 1.7× 10−4

(d) Rearranging the expression from above yields

δV =
M̂

ρNA

(

k′

k

)−2

rms
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Therefore, for a relative rms deviation of 10%:

δV =
18

(106)6.02 × 1023
(0.1)−2

= 3.0 × 10−27m3

Thus the cube will be approximately 1.4 nm on a side.

(e) We need only worry about orders of magnitude at this point. First we must estimate

the total number of air molecules. Assume that the air surrounding the earth is a shell

with a thickness of t = 10 km. Also assume that the air in this shell is of constant density

ρ ≃ 1.32kg/m3. Therefore, the total mass of air surrounding the earth is

M ≃ 4πρR2
eartht ≃ 6.7× 1018kg

Thus the total number of air molecules surrounding the earth is

N =
m

M̂
NA =

6.7× 1018

0.028
6.02 × 1023

= 1.45× 1044molecules

Now assume that in General Yi’s dying moment he used one lungful of air, approximately

one liter. Therefore,

NY i =
ρV

M̂
NA =

1.32(10−3)

0.028
6.02× 1023

= 2.8× 1022molecules

Thus assuming that no air has been created or destroyed since General Yi, the probability

of picking “one” air molecule out of the air that is NOT one that General Yi also breathed

during his final moment is

P1 = 1− NY i

N
= 1− 2× 10−22

Now, assuming that with each breath I breathe in one liter of air as well, the probability

that none of the molecules will be one that General Yi breathed is

Pnot = PNbreath

1 = (1− 2× 10−22)2.8×1022

= (1− x)5.5/x ≈ e−5.5

where the identity

lim
x→0

(1− x)1/x = e−1
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was used. Thus the probability that with each breath I breathe in an air molecule breathed

by General Yi is

P = 1− Pnot = 1− e−5.5 ≃ 1

Therefore, it is very “unlikely” that in my lifetime I will not breathe in an air molecule

breathed by General Yi during his last moment.

Problem 3

The continuum hypothesis breaks down when the Knudsen number exceeds 0.01:

Kn =
λ

L
=

RT√
2πd2NAPL

> 0.01

where L = 50µm. Then the pressure P should satisfy the following:

P <
100RT√
2πd2NAL

= 14kPa

Problem 4

The flow is being driven only by the motion of the boundary, thus the Navier-Stokes

equation reduces to
d2u

dy2
= 0

with the boundary conditions: u = βdu/dy at y = 0 and u = U at y = h. Solving the

differential equation, we get

u =
U

h+ β
(y + β) =

U

h
y

(

1 + β/y

1 + β/h

)

Problem 5

You may use the conventional Hagen-Poiseuille flow solution but with a slip boundary

condition at r = R, where R is the tube radius: us = −β∂u/∂r. Then you find

β =
R

4

(

Uobs

Uexp
− 1

)

,

where Uobs and Uexp are the observed flow velocity and the expected flow velocity, respec-

tively. For case 2, we get β = 67.4 µm which is very close to 68 µm in Table 1.
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