Review: Summary questions of the last lecture

What is the meaning of eigenvalues and eigenvectors of Laplacian?
What is the meaning of the multiplicity of eigenvalue 0 of Laplacian?
What is the meaning of the smoothness of an eigenvector?
How to get the eigen-spectrum of Laplacian of the complete graph?
What is the relation btw Laplacian and random walks on undirected graphs?

Review: Summary questions of the last lecture

What is the meaning of eigenvalues and eigenvectors of Laplacian?
\rightarrow Frequencies and its corresponding graph signals that a graph can have.
A signal \boldsymbol{f} can be written as graph Fourier series:

$$
\boldsymbol{f}=\sum_{i} \hat{f}_{i} \boldsymbol{u}_{i} \quad \boldsymbol{f}^{T} \boldsymbol{u}_{k}=\sum_{i} \hat{f}_{i} \boldsymbol{u}_{i}^{T} \boldsymbol{u}_{k}=\hat{f}_{k}=\boldsymbol{u}_{k}^{T} \boldsymbol{f} \quad \hat{\boldsymbol{f}}=\left[\begin{array}{c}
\hat{f}_{\mathbf{1}} \\
\ldots \\
\hat{f}_{N}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{u}_{1}^{T} \\
\ldots \\
\boldsymbol{u}_{N}^{T}
\end{array}\right] \boldsymbol{f}
$$

$\hat{\boldsymbol{f}}=\boldsymbol{U}^{T} \boldsymbol{f}$
Decompose signal f

Reconstruct signal \boldsymbol{f}
Spatial domain: \boldsymbol{f}

Spectral domain: $\hat{\boldsymbol{f}}$

Review: Summary questions of the last lecture

What is the meaning of the multiplicity of eigenvalue 0 of Laplacian?
\rightarrow The number of connected components in a graph.
[Intuitive Proof]
Letting two eigenvectors be

$$
\begin{aligned}
& \boldsymbol{u}_{1}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right]^{T}, \\
& \boldsymbol{u}_{2}=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]^{T} .
\end{aligned}
$$

Then

$$
\boldsymbol{L} \boldsymbol{u}_{1}=0 \boldsymbol{u}_{1}, \boldsymbol{L} \boldsymbol{u}_{2}=0 \boldsymbol{u}_{2}
$$

Thus
$\left(0, \boldsymbol{u}_{1}\right)$ and ($0, \boldsymbol{u}_{2}$) are eigenpairs.
The multiplicity of eigenvalue 0 of L equals to 2 .

Review: Summary questions of the last lecture

What is the meaning of the smoothness of an eigenvector?
\rightarrow The smoothness of a eigenvector is its eigenvalue (frequency).

$$
S_{G}(\boldsymbol{f})=\boldsymbol{f}^{T} \boldsymbol{L} \boldsymbol{f}=\boldsymbol{f}^{T} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T} \boldsymbol{f}=\boldsymbol{\alpha}^{T} \boldsymbol{\Lambda} \boldsymbol{\alpha}=\|\boldsymbol{\alpha}\|_{\Lambda}^{2}=\sum_{1 \leq i \leq N} \lambda_{i} \alpha_{i}^{2}, \boldsymbol{\alpha}=\boldsymbol{U}^{T} \boldsymbol{f}
$$

Spectral coordinate (unique vector) of eigenvector $\boldsymbol{u}_{k}: \quad \boldsymbol{\alpha}_{k}=\boldsymbol{U}^{T} \boldsymbol{u}_{k}=\boldsymbol{e}_{k}$.

$$
S_{G}\left(\boldsymbol{u}_{k}\right)=\boldsymbol{u}_{k}^{T} \boldsymbol{L} \boldsymbol{u}_{k}=\boldsymbol{u}_{k}^{T} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T} \boldsymbol{u}_{k}=\boldsymbol{e}_{k}^{T} \boldsymbol{\Lambda} \boldsymbol{e}_{k}=\left\|\boldsymbol{e}_{k}\right\|_{\Lambda}^{2}=\sum_{1 \leq i \leq N} \lambda_{i} e_{k, i}^{2}=\lambda_{k}
$$

Review: Summary questions of the last lecture

How to get the eigen-spectrum of Laplacian of the complete graph?
\rightarrow The 1 -st eigen-pair is $\left(0, \mathbf{1}_{N}\right)$ and compute the second eigen-pair of which eigenvector is orthogonal to 1 -st eigenvector. The remaining ones can be computed to be orthogonal to the previous ones.

If $\boldsymbol{u} \neq \mathbf{0}$ and $\boldsymbol{u} \perp \mathbf{1}_{\boldsymbol{N}} \Rightarrow \sum_{i} u_{i}=0$. To get the other eigenvalues, we compute $\left(\boldsymbol{L}_{\boldsymbol{K}_{N}} \boldsymbol{u}\right)_{1}$ and divide by u_{1} (letting $u_{1} \neq 0$).

$$
\left(\boldsymbol{L}_{\boldsymbol{K}_{N}} \boldsymbol{u}\right)_{1}=(N-1) u_{1}-\sum_{2 \leq i \leq N} u_{i}=N u_{1}
$$

$\rightarrow\left(0,1_{N}\right),\left(N,\left[\begin{array}{cccc}1 & -1 & 0 & \ldots\end{array}\right]^{T}\right), \ldots$

Review: Summary questions of the last lecture

What is the relation btw Laplacian and random walks on undirected graphs?
\rightarrow The random walks is a stochastic process with a transition probability $p_{i j}=$
$\frac{w_{i j}}{d_{i}}$ between node i and j of a graph with a Laplacian $L=D-W$.

Transition matrix: $\boldsymbol{P}=\left[p_{i j}\right]=\boldsymbol{D}^{-1} \boldsymbol{W}$ (notice $\boldsymbol{L}_{r w}=\mathbf{I}-\boldsymbol{P}$).
Unique stationary distribution $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{N}\right)$ where $\pi_{i}=\frac{d_{i}}{v o l(V)}$.

$$
\leftarrow \operatorname{vol}(\boldsymbol{G})=\operatorname{vol}(\boldsymbol{V})=\operatorname{vol}(\boldsymbol{W}) \triangleq \sum_{i} d_{i}=\sum_{i j} w_{i j}
$$

$\boldsymbol{\pi}=\frac{\mathbf{1}^{T} W}{v o l(W)}$ verifies $\pi P=\pi$ as

$$
\boldsymbol{\pi} \boldsymbol{P}=\frac{\mathbf{1}^{T} \boldsymbol{W} \boldsymbol{P}}{\operatorname{vol}(\boldsymbol{W})}=\frac{\mathbf{1}^{T} \boldsymbol{D} \boldsymbol{P}}{\operatorname{vol}(\boldsymbol{W})}=\frac{\mathbf{1}^{T} \boldsymbol{D} \boldsymbol{D}^{-1} \boldsymbol{W}}{\operatorname{vol}(\boldsymbol{W})}=\frac{\mathbf{1}^{T} \boldsymbol{W}}{\operatorname{vol}(\boldsymbol{W})}=\boldsymbol{\pi}
$$

