What is the meaning of eigenvalues and eigenvectors of Laplacian?

What is the meaning of the multiplicity of eigenvalue 0 of Laplacian?

What is the meaning of the smoothness of an eigenvector?

How to get the eigen-spectrum of Laplacian of the complete graph?

What is the relation btw Laplacian and random walks on undirected graphs?

What is the meaning of eigenvalues and eigenvectors of Laplacian?

 \rightarrow Frequencies and its corresponding graph signals that a graph can have.

A signal *f* can be written as graph Fourier series:

$$f = \sum_{i} \hat{f}_{i} u_{i} \qquad f^{T} u_{k} = \sum_{i} \hat{f}_{i} u_{i}^{T} u_{k} = \hat{f}_{k} = u_{k}^{T} f \qquad \hat{f} = \begin{bmatrix} f_{1} \\ \vdots \\ \hat{f}_{N} \end{bmatrix} = \begin{bmatrix} u_{1}^{t} \\ \vdots \\ u_{N}^{T} \end{bmatrix} f$$

$$\hat{f} = u^{T} f$$
Decompose signal f
Reconstruct signal f
Design GCN in spectral domain
$$\hat{f}$$
Design GCN in spectral domain
$$\hat{f}$$

ГаТ

J. Y. Choi. SNU

What is the meaning of the multiplicity of eigenvalue 0 of Laplacian?

 \rightarrow The number of connected components in a graph.

 v_8 v_4 [Intuitive Proof] v_3 v_6 v_5 Letting two eigenvectors be $\boldsymbol{u}_1 = [1 1 1 1 1 0 0 0 0]^T$ $\boldsymbol{u}_2 = [0 0 0 0 1 1 1 1]^T$. Then L_1 $Lu_1 = 0u_1, Lu_2 = 0u_2.$ Thus $(0, \boldsymbol{u}_1)$ and $(0, \boldsymbol{u}_2)$ are eigenpairs. L_2 The multiplicity of eigenvalue 0 of *L* equals to 2.

What is the meaning of the smoothness of an eigenvector?

 \rightarrow The smoothness of a eigenvector is its eigenvalue (frequency).

$$S_G(f) = f^T L f = f^T U \Lambda U^T f = \alpha^T \Lambda \alpha = \|\alpha\|_{\Lambda}^2 = \sum_{1 \le i \le N} \lambda_i \alpha_i^2, \quad \alpha = U^T f$$

Spectral coordinate (unique vector) of eigenvector \boldsymbol{u}_k : $\boldsymbol{\alpha}_k = \boldsymbol{U}^T \boldsymbol{u}_k = \boldsymbol{e}_k$.

$$S_G(\boldsymbol{u}_k) = \boldsymbol{u}_k^T \boldsymbol{L} \boldsymbol{u}_k = \boldsymbol{u}_k^T \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^T \boldsymbol{u}_k = \boldsymbol{e}_k^T \boldsymbol{\Lambda} \boldsymbol{e}_k = \|\boldsymbol{e}_k\|_{\boldsymbol{\Lambda}}^2 = \sum_{1 \leq i \leq N} \lambda_i e_{k,i}^2 = \lambda_k$$

J. Y. Choi. SNU

How to get the eigen-spectrum of Laplacian of the complete graph?

 \rightarrow The 1-st eigen-pair is $(0, \mathbf{1}_N)$ and compute the second eigen-pair of which eigenvector is orthogonal to 1-st eigenvector. The remaining ones can be computed to be orthogonal to the previous ones.

If $u \neq 0$ and $u \perp 1_N \Rightarrow \sum_i u_i = 0$. To get the other eigenvalues, we compute $(L_{K_N}u)_1$ and divide by u_1 (letting $u_1 \neq 0$). $(L_{K_N}u)_1 = (N - 1)u_1 - \sum_{2 \leq i \leq N} u_i = Nu_1$

$$\rightarrow (0, \mathbf{1}_N), (N, [1 - 1 \ 0 \ ... \ 0]^T), ...$$

What is the relation btw Laplacian and random walks on undirected graphs?

 \rightarrow The random walks is a stochastic process with a transition probability $p_{ij} =$

 $\frac{w_{ij}}{d_i}$ between node *i* and *j* of a graph with a Laplacian L = D - W.

Transition matrix:
$$P = [p_{ij}] = D^{-1}W$$
 (notice $L_{rw} = I - P$).
Unique stationary distribution $\pi = (\pi_1, ..., \pi_N)$ where $\pi_i = \frac{d_i}{vol(V)}$.
 $\leftarrow vol(G) = vol(V) = vol(W) \triangleq \sum_i d_i = \sum_{ij} w_{ij}$.
 $\pi = \frac{1^T W}{vol(W)}$ verifies $\pi P = \pi$ as
 $\pi P = \frac{1^T W P}{vol(W)} = \frac{1^T D P}{vol(W)} = \frac{1^T D D^{-1} W}{vol(W)} = \frac{1^T W}{vol(W)} = \pi$.

J. Y. Choi. SNU