Summary Questions of the lecture

- Explain the spectral filtering of a graph signal
- Decompose the graph signal \boldsymbol{f} with the Fourier Transform, and multiply the filter \hat{g} to filter the transformed signal in the spectral domain. Then, reconstruct the filtered signal in the spatial/temporal domain with the inverse Fourier Transform.

Summary Questions of the lecture

- How to design the spectral filter for GCN?
- The spectral filters are learned in a data-driven way. For end-to-end learning, such filters are parametrized.

Summary Questions of the lecture

- What is the channel in a graph signal?
- Letting N and d_{1} denote the number of nodes and the feature dimension in each node respectively, the graph signal is represented by a $N \times$ d_{1} matrix. Then, each column of the matrix refers to 'channel'.

$$
\boldsymbol{F}_{\text {in }} \in \mathbb{R}^{N \times d_{1}} \rightarrow \boldsymbol{F}_{\text {out }} \in \mathbb{R}^{N \times d_{2}} .
$$

Summary Questions of the lecture

- How to deal with multi-channel signals in GCN?
- To create the n 'th output channel, we transform each input channel with a different filter and add up the resulting signals. Thus, we need to learn $d_{1} \times d_{2}$ many filters .

$$
\boldsymbol{F}_{O}[:, n]=\sum_{m=1}^{d_{1} \frac{\hat{g}_{n m}(\boldsymbol{L})}{} \boldsymbol{F}_{I}[:, m] \quad n=1, \ldots d_{2}} \begin{array}{ll}
\text { Filter for input channel } \\
& \text { Learn } d_{2} \times d_{1} \text { filter }
\end{array}
$$

GCN(G)

Geometric deep learning via graph convolution ... (continue)

$$
h_{i}^{(l+1)}=\sum_{v_{j} \in N\left(v_{i}\right)} f\left(x_{i}, w_{i j}, h_{j}^{(l)}, x_{j}\right)
$$

