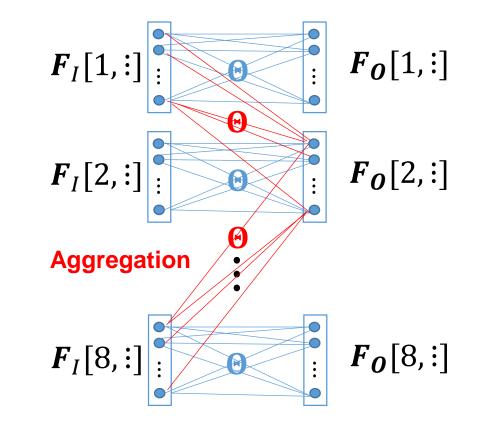
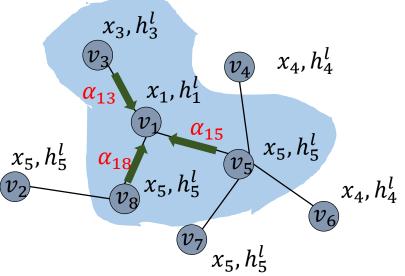
Summary Questions of the lecture

Present the spatial view of Simplified ShevNet. \rightarrow From the simplified ChebNet's formulation $F_{O} = CF_{I}\Theta$, we observe the output graph signal of the *i*'th node: $F_0[i, :] =$ $\sum_{i} C[i, j] F_{I}[j, :] \Theta$. From the fact that C[i, j] is zero between nodes that are not neighbors, we find that $F_0[i, :]$ is an aggregation from the graph signals of neighbor nodes, weighted by the learnable parameters Θ , which is a spatial smoothing operation and corresponds to a spectral smoothing.



Summary Questions of the lecture

- What is the difference of Simplified ShevNet from a non-graph neural network ?
- → Non-graph neural networks cannot leverage the connectivity information among graph nodes. Thus, the feature of each node (or 'data point' in non-graph networks) is transformed independently. On the other hand, graph neural networks transform each node by aggregating information from connected nodes.



Summary Questions of the lecture

Explain the key aspects of GraphSAGE (SAmple and aggreGatE).
→ In the context of semi-supervised learning, only aggregating information from nodes of distance 1 has a danger of only encountering unlabeled nodes. Thus, GraphSage tries to sample and aggregate nodes in multi-hop distances. Thus, the resulting message-passing signal is concatenated with the current node's signal and transformed by a learned parameter matrix.

$$\boldsymbol{h}_{N_{s}(v_{i})}^{(l+1)} = \boldsymbol{A}\boldsymbol{G}\boldsymbol{G}\left(\left\{\boldsymbol{h}_{j}^{(l)} | v_{j} \in N_{s}(v_{i})\right\}\right)$$
$$\boldsymbol{h}_{i}^{(l+1)} = \boldsymbol{\sigma}\left(\boldsymbol{\Theta} \cdot \left[\boldsymbol{h}_{i}^{(l)} \parallel \boldsymbol{h}_{N_{s}(v_{i})}^{(l+1)}\right]\right)$$

