
J. Y. Choi. SNU

Summary Questions of the lecture

1

 Present the spatial view of Simplified ShevNet.

→From the simplified ChebNet's

formulation 𝐹𝑂 = 𝐶𝐹𝐼Θ, we observe the output

graph signal of the 𝑖'th node: 𝐹𝑂[𝑖, : ] =
∑𝑗𝐶[𝑖, 𝑗]𝐹𝐼[𝑗, : ]Θ. From the fact that 𝐶[𝑖, 𝑗] is

zero between nodes that are not neighbors, 

we find that 𝐹𝑂[𝑖, : ] is an aggregation from the

graph signals of neighbor nodes, weighted by

the learnable parameters Θ, which is a spatial

smoothing operation and corresponds to a 

spectral smoothing.
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 What is the difference of Simplified ShevNet from a non-graph neural 

network ?

→Non-graph neural networks cannot leverage the connectivity 

information among graph nodes. Thus, the feature of each node (or 

'data point' in non-graph networks) is transformed independently. On 

the other hand, graph neural networks transform each node by 

aggregating information from connected nodes.
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 Explain the key aspects of GraphSAGE (SAmple and aggreGatE).

→In the context of semi-supervised learning, only aggregating 

information from nodes of distance 1 has a danger of only 

encountering unlabeled nodes. Thus, GraphSage tries to sample and 

aggregate nodes in multi-hop distances. Thus, the resulting message-

passing signal is concatenated with the current node's signal and 

transformed by a learned parameter matrix.
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