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Mechanical Fields in Matter

* 2 principle fields: S, strain field (tensor)
T, stress field
» Both S and T are seconfl order tensors
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* Forms of the equations are parallel in mechanical
electrical and magnetic systems

Newton, Coulomb, Ampere
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Displacement Field

¢ The displacement of a point, p, of a body is
represented by U (x,X5,X3, 1)
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* 1 is the single valued continuous function over the
body with components. |
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Newton's Law

Forces on a particle or body (counting inertia)
must sum to zero

YF=ma

Within a bﬂdly, the forces acting on the faces of a

differential element are given by the stress tensor,
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Tjj on ith face in jth direction
Area
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Newton's Law can be applied to a differential
element to yield the equilibrium equations for a
body in differential form.

Note T not necessarily symmetric if there are
body moments.




Strain Field

The relative deformation of a cell within the body

is represented by the strain tensor.
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Shear Strains - represent 1/2 angle of deviation
from 90°

Engineering shear strains ¥ =25;

Normal Strains: relative side length change

Strain Displacement Relations:
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Symetric

Compatibility: 3 displacements - 6 independent
strains. Given Sj;, there are conditions which S;;
must satisfy for existence of single valued Uj
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Equilibrium

e Differential Form: (Equations of Motion)

T,

—lj+fi= . (3 equns)

- applies to each particle in a body

* Integral Form - principle of virtual work (PVW)
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- using calculus of variations can get to

Jmsav= | (.20 o | (5,80

g, g
—
du dw
Tyl [Ty Sul 15
Tyl |T2 S| |82
i i T 5 s i .
where T =] "33| | *3 = | T3 . |¥3
Tl |T, . S 2825 " |54 Voight Notation
Tz |Ts 2513| |Ss
[ Tia) [T, 12512] [Se)

prinuple )

.J! F'Lf‘m-fﬁ@ “70

|
i

|

lﬁﬁli. AL e FLWWE'PL'

2 i‘ue.rj} ,

| L



Constitutive Relations

e To solve for the bodies deformation you need the
relationship between stress and strain in the body.
(in matrix notation)
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e  Actually, the Elasticity Tensor relates second order
strain tensor to 2nd order stress tensor
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e  Materials classified by the number of
independent constants (forms of C & S matrices)
needed to classify them.

anisotropic - most general - no symmetries | |
orthotropic - 3 orthogonal eyes S LT Gt
transversely isotropic - 1 plane of symmetry

isotropic - 2 constants from E, v, G
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Electric Fields in Matter

Will investigate the relevant characteristics of
electric fields in matter

2 principle fields, E, electric field and D, electrical
displacement S

Both E and D are fII‘St DI‘dE‘I‘ tensors, {vectmr
fields). i

E, [
E = -Ez D = D2
E; Ds

Forms of e%uations are parallel to mechanical
systems and magnetic systems.

Newton, Coulomb, Ampere



The Electric Field - 1

The Electric field is defined in terms of a force
produced on a test charge

E=lim g F (N), q (Coulombs)
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- force between 2 point charges
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- all other electrostatic properties can be derived
from supperposition.

Gauss's Flux Theorem (Integral Form)




The Electric Field - II

Differential Forms:
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- no net work on charge traveling around a closed
path.
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Electric Potential

e Since Es irrotational it has a potential function *
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* From this we get
v ¢ = % Poisson’ Eq.

* DPotential of a Charge Distribution
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Polarization Field
. affwﬁ‘“‘“

o Two charges seEarated by a small distance make
a dipole which has a special electric field.
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*  Volume distribution of dipole moments is called
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o The electric field due to the volume distribution
can be interpreted as coming from free charges
on the surface and bound charges in n the volume.

p = total change density = pf + pB = {2 P)
== 320 :

where i

pf = free net charges

pB = bound zero net polarization charge which on a
homogeneous scale cannot be considered
individually.




Electrical Displacement

We have

1 tot f, .B
i s _‘_‘p izt p+p
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Let p®=-v.P a result of volume polarization

v (E+d)= 3
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It is convenient to describe a new vector

B =g Beb
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then R

V-D =pf LD‘d5=t~f ]

D represents field whose sources are only the free
charges. Has units of charge/area
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Electrical Constitutive Relations

e The polarization of a body is usually dependent
om the electric field

R

A
Electric susceptibility, polarization coef.

more generally "
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piezoelectrics x ~ 1,000- 3,000
electrostrictors k¥ ~ 10,000 -30,000
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Energy Relations:

Electrical Equilibrium

Differential Form:

—

V.D = ¢ applied freecharge

Integral Form:
- premultiply by allowable variation in ¢, 8¢

L[’i’-ﬁ]&cpdv :Lﬂ ¢ dv

allowable §¢ petential )

d¢ = 0 on fixed conductors (applied voltage)
8¢ = constant along conductors

OE = Voo

from calculus of variations,
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Also have a complementary principle with 8D
instead of OE.

To solve you need D E) from Constitutive Rel.



Magnetic Fields in Matter

Will investigate the relevant characteristics of
magnetic fields in matter.

2 principle fields: B, Magnetic field and ( ~ T
H, Coercive field L et V)

Both B and H are first order tensors

B, H,
B = |B,|, H=|H,
B, Hj

Forms of the equatmns are parallel to mechanical,
electrical and magnetic systems.

Newton, Coulomb, Ampere
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The Magnetic Field - 1

Ampere's Law: represents the interaction

between currents, gives force between two current
carrying elements. {wf /
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compare Coulombs Law
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Represent the Force with the magnetic field
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The Magnetic Field - II

Differential Relations

! V:-B=0 VXE=0
N el
—Vx B=p,J Vv E-EG

Vector (not scalar) potential: of ot fre (ol
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Current density, J, can be divided into
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Jror= J.,F * J..,M

free "bound" magnatization currents
Volume Polarization replaced by Volume

Magnitization, M




The Coercive Field FF’

e We have

?xﬁ:uOJTDT=|.10(IF+IM)

o Let JM=fXEI_
Vx (B - poM) =po T

e [tis convenient to describe a new vector

then
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* H represents the field whose source currents
represent the free (extremally applied) current.



Magnetic Constitutive Relations

¢ The magnitization of a body is usually dependent
on the coercive field, H.
M=y,H

magnetic succeptability
more generally

M=XH

¢ In terms of Magnetic Field, B
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Terfenol - k=79
Good magnet iron xm = ~ 1000




