Design of Piezoelectric Active Structures

Lecture 2:

Fundamentals of Elasticity and Electromagnetism

© Nesbitt W. Hagood

All Rights Reserved

Contents may not be reproduced in whole or in part without the permission of the author

Outline

- Review of Elasticity
- Review of Electrostatics
- Review of Magnetostatics

Mechanical Fields in Matter

• 2 principle fields: S, strain field (tensor)

T, stress field

Both S and T are second order tensors

$$S_{ij}$$
 T_{ij} $i, j = 1, 2, 3$

6 independent in each. (Voight Notation)

$$\vec{S} = \begin{bmatrix} S_{11} \\ S_{22} \\ S_{33} \\ 2S_{23} \\ 2S_{31} \\ 2S_{21} \end{bmatrix}$$

$$\vec{T} = \begin{bmatrix} T_{11} \\ T_{22} \\ T_{33} \\ T_{23} \\ T_{31} \\ T_{21} \end{bmatrix}$$

engineening

• Forms of the equations are parallel in mechanical electrical and magnetic systems

Newton, Coulomb, Ampere

$$\frac{y_1}{2} = \frac{y_1 \lim_{n \to \infty} f_{n} \int_{-\infty}^{\infty} f_{n} \int_{-$$

Displacement Field

• The displacement of a point, p, of a body is represented by $\vec{u}(x_1,x_2,x_3,t)$

• \vec{u} is the single valued continuous function over the body with components.

$$\vec{\mathbf{u}} = \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{u}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{bmatrix}$$

Newton's Law

 Forces on a particle or body (counting inertia) must sum to zero

$$\sum F = ma$$

 Within a body, the forces acting on the faces of a differential element are given by the stress tensor, T_{ij}

 $T_{ij} = \frac{Force}{Area} \text{ on ith face in jth direction}$

- Newton's Law can be applied to a differential element to yield the equilibrium equations for a body in differential form.
- Note T not necessarily symmetric if there are body moments.

Strain Field

 The relative deformation of a cell within the body is represented by the strain tensor.

 Shear Strains - represent 1/2 angle of deviation from 90°

Engineering shear strains $\gamma_{ij} = 2S_{ij}$

- Normal Strains: relative side length change
- Strain Displacement Relations:

$$S_{ij} = \frac{1}{2} \left[\frac{\delta u_i}{\delta x_j} + \frac{\delta u_j}{\delta x_i} \right] = S_{ji}$$
Symetric

 <u>Compatibility</u>: 3 displacements - 6 independent strains. Given S_{ij}, there are conditions which S_{ij} must satisfy for existence of single valued U_j

<u>Equilibrium</u>

<u>Differential Form</u>: (Equations of Motion)

$$\frac{\delta T_{ij}}{\delta X_j} + f_i = \rho a_i \quad (3 \text{ equns})$$

- applies to each particle in a body
- Integral Form principle of virtual work (PVW)

- ignoring
$$\vec{a}$$
 for now (If \vec{a}) is NOT ignored, -) Hamilton's principle)
$$\int_{v} \left\{ \left[\frac{\delta T_{ij}}{\delta X_{i}} + f_{i} \right] \cdot \delta \vec{u} \right\} dv = 0$$

- using calculus of variations can get to

$$\int_{V} T\delta S \ dv = \int_{V} (\vec{f} \cdot \delta u) \ dv + \int_{V} (\vec{f}_{s} \cdot \delta u) \ ds$$

$$\int_{V} Phi height of Minimum Potential Energy.$$

where
$$T = \begin{bmatrix} T_{11} \\ T_{22} \\ T_{33} \\ T_{13} \\ T_{12} \end{bmatrix} = \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix}$$
, $S = \begin{bmatrix} S_{11} \\ S_{22} \\ S_{33} \\ 2S_{23} \\ 2S_{13} \\ 2S_{12} \end{bmatrix} = \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \end{bmatrix}$ Voight Notation

Constitutive Relations

 To solve for the bodies deformation you need the relationship between stress and strain in the body. (in matrix notation)

 Actually, the <u>Elasticity Tensor</u> relates second order strain tensor to 2nd order stress tensor

$$T_{ij} = E_{ijmn} S_{mn}$$
 $S_{ij} = S_{ijmp} T_{mp}$

 Materials classified by the number of independent constants (forms of C & S matrices) needed to classify them.

> anisotropic - most general - no symmetries orthotropic - 3 orthogonal eyes - 9 magnetic form transversely isotropic - 1 plane of symmetry isotropic - 2 constants from E, v, G

Electric Fields in Matter

- Will investigate the relevant characteristics of electric fields in matter
- 2 principle fields, E, electric field and D, electrical displacement
- Both E and D are first order tensors, (vector fields).

$$E = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}, D = \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix}$$

 Forms of equations are parallel to mechanical systems and magnetic systems.

Newton, Coulomb, Ampere

The Electric Field - I

 The Electric field is defined in terms of a force produced on a test charge

$$E = \lim \frac{F}{q} \qquad F(N), q \text{ (Coulombs)}$$

$$q \to 0$$

$$= \frac{\text{volts}}{m}$$

- Coulomb's Law (experimentally derived)
 - force between 2 point charges

$$F_{2} = \frac{q_{1} q_{2} \vec{r}}{4\pi \epsilon_{0} r^{3}} \qquad \epsilon_{0} = \frac{10^{7}}{4\pi c^{2}} = \frac{\text{farads}}{\text{meter}} \qquad \overrightarrow{r}$$

$$Point charge \qquad \qquad \overrightarrow{|r|^{3}} = P(\overrightarrow{|r|})$$

Field of a point charge

$$\vec{E} = \frac{-q}{4\pi} \vec{\epsilon}_0 \nabla \left(\frac{1}{r}\right) \qquad \vec{E}' = \frac{-\mathcal{G}_i}{4\pi i} \nabla \left(\frac{1}{r}\right).$$

- all other electrostatic properties can be derived from supperposition.
- Gauss's Flux Theorem (Integral Form)

$$\int_{S} \vec{E} \cdot ds = \frac{q}{\epsilon_{0}}$$

The Electric Field - II

Differential Forms: divergence theorem. charge density,
$$\int_s \vec{E} \cdot ds = \int_v \nabla \cdot \vec{E} \ dv = \frac{q}{\epsilon_0} = \int_v \frac{\rho}{\epsilon_0} dv$$

$$\nabla \cdot \vec{E} = \frac{dE_1}{dx_1} + \frac{dE_2}{dx_2} + \frac{dE_3}{dx_3}$$

therefore

Irrotation implies

$$\oint \vec{E} \cdot d\vec{\ell} = 0$$

no net work on charge traveling around a closed

conservative field.

Electric Potential

Since E s irrotational it has a potential function

$$\vec{E} = -\nabla \phi_{c}$$
 scaler
$$E_{i} = \frac{-\delta \phi}{\delta x_{i}}$$

From this we get

$$\nabla^2 \, \phi \, = \frac{-\rho}{\epsilon_0} \ \, \text{Poisson's Eq.}$$

Potential of a Charge Distribution

$$\phi\left(r\right) \,=\, \frac{1}{4\pi\epsilon_{0}} \,\, \int_{v} \, \frac{\rho\left(r\right)}{\left|r-r^{'}\right|} \,\, dv^{'}$$

for a point charge;

$$\phi \ (r) \, = \, \frac{1}{4\pi\epsilon_0} \, \, \frac{q}{r}$$

General property of vector freed

$$\nabla \cdot \vec{v} = S, \quad \nabla \times \vec{v} = \vec{C}.$$

-1 \vec{v} is uniquely defined by

 $\vec{v} = -\nabla \varphi + \nabla \times \vec{A}.$
 $\vec{v}(\vec{r}) = \text{Scalar potential}$
 $\vec{A}(\vec{r}) = \text{Vector potential}$
 $= \frac{1}{4\pi} \int_{V} \frac{S(\vec{r}')}{|\vec{r} - \vec{r}'|} dv'$
 $= \frac{1}{4\pi} \int_{V} \frac{\vec{C}(\vec{r}')}{|\vec{r} - \vec{r}'|} dv'$

Polarization Field

opposite

 Two charges separated by a small distance make a dipole which has a special electric field.

Volume distribution of dipole moments is called $\vec{P} = \vec{P}(3(\omega_0^2 \vec{p}-1))$ the polarization field: $\vec{P} = \vec{p}/v$ olume

 The electric field due to the volume distribution can be interpreted as coming from <u>free</u> charges on the surface and <u>bound</u> charges in the volume.

p = total change density = pf + pB $P^{b} = -P \cdot \overrightarrow{P}$ $P^{b} = -P \cdot \overrightarrow{P}$ $P^{b} = -P \cdot \overrightarrow{P}$

where

. He is which hopens - - - c

 ρ^{f} = free net charges ρ^{B} = bound zero net polarization charge which on a homogeneous scale cannot be considered individually.

Electrical Displacement

We have

$$\nabla \vec{q} = -\nabla \cdot \vec{E} = \frac{\rho^{tot}}{\epsilon_0} = -\left(\frac{\rho^f + \rho^B}{\epsilon_0}\right)$$

• Let $\rho^B = -\nabla \cdot \vec{P}$ a result of volume polarization

$$\nabla \cdot \left(\vec{E} + \frac{\vec{P}}{\epsilon_0} \right) = \frac{\rho^f}{\epsilon_0}$$

•. It is convenient to describe a new vector

then
$$\vec{D} = \varepsilon_{e} \cdot \vec{E} + \vec{P}$$

$$b \cdot g \cdot q \cdot e^{-it} + e^{-it}$$

 D represents field whose sources are only the free charges. Has units of charge/area

Electrical Constitutive Relations

The polarization of a body is usually dependent om the electric field

$$\vec{P} = \epsilon_0 \; \chi \; \vec{E}$$
 Electric susceptibility, polarization coef.

more generally

$$\vec{P} = \varepsilon_0 \times \vec{E} \qquad \qquad \rho_1 = \varepsilon_0 \times \mathcal{E}_{3\times 3}$$

$$\vec{P} = \varepsilon_0 \times \vec{E} \qquad \qquad \rho_2 = \varepsilon_0 \times \mathcal{E}_{3\times 3}$$
In terms of Electrical Displacement, \vec{D}

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 (1 + \chi) \vec{E}$$

$$\vec{D} = \kappa \varepsilon_0 \vec{E} = \varepsilon \vec{E}$$

$$\frac{\text{dielectric tensor (metrix)}}{3x3 \text{ matrix}}$$

piezoelectrics κ ~ 1,000 - 3,000 electrostrictors $\kappa \sim 10,000-30,000$

Boundary Conditions for Electric Fields in Metler

· consider interface between 2 dielectics

since
$$\int 0.ds = qf$$
 in limit $h \rightarrow 0$ you have $\left| \vec{n} \cdot (\vec{0}_2 - \vec{0}_1) = 6 \right|$

- no charge et inferface (0=0) => normalronport 0 remains constant

- Note: Normal composit of E doesn't

consider line regard at interface

sine
$$\int E \cdot ds = 0 \Rightarrow n \times (E_2 - E_1) = 0$$

Energy Relations:

Electrical Equilibrium

Differential Form:

$$\nabla \cdot \vec{D} = \sigma$$
 applied freecharge

Integral Form:

- premultiply by allowable variation in ϕ , $\delta\phi$

$$\int_{v} \left[\nabla \cdot \vec{D} \right] \delta \phi \, dv = \int_{v} \sigma \, \delta \phi \, dv$$

allowable δφ cpotential)

 $\delta \varphi = 0$ on fixed conductors (applied voltage)

 $\delta \phi = constant along conductors$

 $\delta E = -\nabla \delta \phi$

from calculus of variations,

$$\underbrace{\int_{v} \vec{D} \cdot \delta \vec{E} \, dv}_{\delta U} = \underbrace{\sum_{i} q_{i} \, \delta \phi_{i}}_{\delta W}$$

- Also have a complementary principle with δD instead of δE .
- To solve you need $\vec{D}(\vec{E})$ from Constitutive Rel.

Magnetic Fields in Matter

- Will investigate the relevant characteristics of magnetic fields in matter.
- 2 principle fields: B, Magnetic field and (~ €)

Both B and H are first order tensors

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \mathbf{B}_3 \end{bmatrix}, \quad \mathbf{H} = \begin{bmatrix} \mathbf{H}_1 \\ \mathbf{H}_2 \\ \mathbf{H}_3 \end{bmatrix}$$

 Forms of the equations are parallel to mechanical, electrical and magnetic systems.

Newton, Coulomb, Ampere

The Magnetic Field - I

 Ampere's Law: represents the interaction between currents, gives force between two current carrying elements.

compare Coulombs Law

$$F_2 = \frac{1}{4\pi\epsilon_0} q_1 q_2 \vec{r}_{12} \vec{\beta}$$
geometry

Represent the Force with the magnetic field

$$\begin{aligned} F_2 &= J_2 \oint_2 d\ell_2 \times B_2 \\ B_2 &= \frac{\mu_0}{4\pi} J_1 \oint_1 \frac{d\ell_1 \times \vec{r}_{12}}{|r|^3} \end{aligned}$$

Generalizes to consider <u>current densities</u>, J

$$F = \int_{V} (\vec{J} \times \vec{B}) dv \qquad \vec{B} = \frac{\mu_0}{4\pi} \int_{V} \frac{\vec{J} \times \vec{r} dv^1}{|r|^3} \quad \text{integration to point of}$$
 freed.

The Magnetic Field - II

Differential Relations

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = 0$$

$$\nabla \cdot \mathbf{E} = \frac{\mathbf{q}}{\varepsilon_0}$$

· Vector (not scalar) potential: of magnetize field.

$$\vec{B} = \nabla x \vec{A}$$

$$\vec{A} = \frac{\mu_0}{4\pi} \int_{v} \frac{\vec{J} dv}{|r|}$$

$$E = -\nabla \cdot \phi$$

$$\phi = \frac{1}{4\pi\epsilon_0} \int_{v} \frac{\rho dv}{|r|}$$

Current density, J, can be divided into

$$\vec{J}_{TOT} = \underline{J}^F + \underline{J}^M$$

free "bound" magnatization currents

• Volume Polarization replaced by Volume Magnitization, \vec{M}

$$\int_{\mathbf{D}} \mathbf{D} = \nabla \times \vec{\mathbf{M}} \qquad \qquad \rho_{b} = -\nabla \cdot \vec{\mathbf{P}}$$

The Coercive Field H

· We have

$$\nabla \ x \ \vec{B} = \mu_0 J^{TOT} = \mu_0 \left(J^F + J^M \right)$$

- Let $J^{M} = \nabla \times \vec{M}$ $\nabla \times (\vec{B} \mu_{0} \vec{M}) = \mu_{0} J^{F}$
- It is convenient to describe a new vector

then
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \qquad \vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

$$\nabla x \vec{H} = \vec{J}^F + \frac{\delta \vec{D}}{\delta t} \qquad \nabla \cdot \vec{D} = \rho^F$$

$$\nabla \cdot \vec{H} = 0 \qquad \qquad \vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

$$\nabla \cdot \vec{D} = \rho^F$$

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

 H represents the field whose source currents represent the free (extremally applied) current.

Magnetic Constitutive Relations

 The magnitization of a body is usually dependent on the coercive field, H.

$$\vec{M} = \chi_m \vec{H}$$

magnetic succeptability

more generally

$$\vec{M} = X \vec{H}$$

In terms of Magnetic Field, B

$$\vec{B} = \mu_0 (\vec{H} + \vec{M}) = \mu_0 (\chi_m + 1) \vec{H}$$

$$= \kappa_m \mu_0 \vec{H}$$

$$= \mu \vec{H}$$

$$\uparrow \rho ermeability$$

Terfenol - $\kappa_{\rm m} = 7.9$

Good magnet iron $\kappa_m = \sim 1000$