7.10 THE MODIFIED COMPRESSION FIELD THEORY

Figure 7-34 illustrates the stress field in the web of a non-prestressed beam before and after
cracking. Prior to cracking, the shear is carried equally by diagonal tensile and diagonal
compressive stresses acting at 45°, After diagonal cracks form the tensile stresses in the
concrete are substantially reduced. In the compression field theory it is assumed that the
principal tensile stress, fi, equals zero after the concrete has cracked. On the other hand,
the modified compression field theory accounts for the contribution of the tensile stresses
in the concrete between the cracks (see Fig. 7-34c).

The equilibrium conditions for the modified compression field theory will be intro-
duced using the symmetrical cross section subjected to pure shear shown in Fig. 7-35. The
total area of longitudinal prestressing tendons in the section is A,; and the total area of
non-prestressed reinforcement is A,,. The shear on this section will be resisted by the
diagonal compressive stresses, f;, together with the diagonal tensile stresses, f,. It should
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Figure 7-32  Reinforced concrete element failing in shear. From Vecchio and
Collins (Ref. 7-35).

be recognized that the tensile stresses in the diagonally cracked concrete vary in magnitude
from zero at the crack locations to peak values between the cracks (see Fig. 7-35b). As
the equilibrium equations are obtained by integrating the stresses over the cross section
it is appropriate to use the average value of the tensile stresses when formulating these
equilibrium expressions.

From the Mohr’s stress circle shown in Fig. 7-35c, the following relationship for the
principal compressive stress, f;, can be derived:

fo=(anf +cot®v - f (7-27)
where
v (1-5)
v= -
bwjd

The diagonal compressive stresses push apart the flanges of the beam while the diagonal
tensile stresses pull them together (see Fig. 7-35). The unbalanced component must be
carried by tension in the web reinforcement. This equilibrium requirement can be expressed
as

<4v.fv = (fZ Sinzo - f] COS2 B)bu.s
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Figure 7-34  Stress fields in web of reinforced concrete beam.
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Figure 7-35  Equilibrium conditions of modified compression field theory.

where f, is the average stress in the stirrups. Substituting for f, from Eq. (7-27) gives

V = fibyjdcotf + él;—f—lijdcot(? (7-28)

Equation (7-28) expresses the shear resistance of a member as the sum of a concrete
contribution, which depends on tensile stresses in the concrete, and a steel contribution,
which depends on tensile stresses in the stirrups. That is, it has the same form as the ACI
shear equation V, + V.

If the axial load on the member is zero, the unbalanced longitudinal component of
" the diagonal concrete stresses must be equilibrated by tensile stresses in the longitudinal
reinforcement. This longitudinal equilibrium requirement can be expressed as

Asc fe + Ap:tfp =(f2 cos®§ — fi sin® 0y, jd

where f; and f, are the average stresses in the lonéitudinal reinforcing bars and longitudinal
prestressing steel. Substituting for f, from Eq. (7-27) gives

Agzfe+ Apz fp =V cotd — f1b,35d (7-29)

Based on their tests of reinforced concrete panels in pure shear, Vecchio and Collins (Ref. 7-

36) recommended the average tensile stress vs. average tensile strain relationship illustrated
in Fig. 7-36.
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Figure 7-36  Tensile stress-strain relationship for diagonally cracked concrete.

To be consistent with the expression used in Section 4.10, it is recommended that

the following relationships be used
if € <eéer then H=E¢ (7-30)
a0 fer

th = A0l
€] >€CT‘ €n fl l+\/r'06—1—

where ) and a; are factors accounting for the bond characteristics of the reinforcement
and the type of loading (see Section 4.10).

(7-31)
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In the treatment above we have considered average stresses and average strains and
have not dealt with local variations. The stresses that occur at a crack location will differ
from the calculated average values (see Fig. 7-37). At a crack the tensile stress in the
concrete goes to zero, while the tensile stresses in the reinforcement become larger. The
shear capacity of the member may be limited by the ability of the member to transmit
forces across the crack. o

At low shear values, tension is transmitted across the crack by local increases in
reinforcement stresses. At a certain shear force the stress in the web reinforcement will
just reach yield at the crack locations. At higher shear forces transmitting tension across
the crack will require local shear stresses, v.;, on the crack surface (see Fig. 7-37c).

17

(b) Calculated average (c) Local stresses at a crack
stresses

Figure 7-37  Transmitting forces across cracks.

The ability of the crack interface to transmit these shear stresses will depend on the
crack width, w. It is suggested that the limiting value of v.; be taken as

2.16\/f! -

Vei = aw psi and in. (7-32a)
03+ F063
0.18,/f! .
Vei = —-—fc— MPa and mm (7-32b)
24w .
0.3+ :

a+16
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where a is the maximum aggregate size. The expression above has been simplified from
the expressions developed by Vecchio and Collins (Ref. 7-36) using the experimental data
of Walraven (Ref. 7-37). In the expression above the beneficial effects of local compressive
stresses across the crack have been ignored.

The two sets of stresses shown in Fig. 7-37b and ¢ must be staucally equivalent. The
requirement that the two sets of stresses produce the same vertical force is

jd bwjd . id L
Avfo ( ) + sn o cosf = Avay + Ve by jd

s tané stan@

and hence, to maintain this equality, f; must be limited to

fi= v tan g + (fvy fv) (7-33)

where v,; is given by Eq. (7-32).
The crack width, w, to be used in Eq. (7- 32) can be taken as the product of the
principal tensile strain, €;, and the average spacing of the diagonal cracks. Thus

W= €1Sme ' (7-34)

The spacing of the inclined cracks will depend upon the crack control characteristics
of both the longitudinal and the transverse reinforcement. It is suggested that this spacing

be taken as - 0 ‘
. sm€=1/(s“‘ + &8 ) o (7-35)
Smzx Smuv - . '

where s.,. and s,y are the crack Spacings indicative of the crack control characteristics of
the longitudinal and transverse reinforcement, respectively (see Fig. 7-38). Thus sy is the
average crack spacing that would result if the member was subjected to longitudinal tension
while s, is the average crack spacing that would result if the member was subjected to
a transverse tension.

These crack spacings can be estimated from the CEB-FIP Code (Ref. 7-28) crack
spacing expression, Eq. (4-23). The CEB expression ‘was intended to calculate crack
spacings on the surface of the member. For use in Eq. (7-32) it is crack spacings in the-
shear area of the beam that are of interest. To account for the fact that crack spacings
become larger as the distance from the reinforcement increases, the maximum distance
from the reinforcement, instead of the cover distance c, will be used (see Fig. 7-39). Thus,
for the uniform tensile straining (i.e., k2 = 0.25), Eq. (4- 23) becomes

_ dps :
S =2 (cx 1 0) +0.25k % (7-36)
Sy =2 (c,, + —) +0. 25k11b2 L (1-37)
10

v

where p, = Ay, /(bys) and p; = (Asz + Apz)/Ac, and ky is 0.4 for deformed bars or 0.8
for plain bars or bonded strands.
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Figure 7-38  Spacing of inclined cracks.

Chap. 7

Yielding of the longitudinal reinforcement at a crack may also limit the magnitude

of concrete tension that can be transmitted. The requirement that the two sets of stresses
in Fig. 7-37 produce the same horizontal force will be satisfied if

Asx fy +Ap:t fps ZAsz fsz +Apx fp:c +fl bwjd

+ [fl - %(fvy - fv)} bu_,jdcotze

(7-38)

All of the relationships needed to predict the response of a beam loaded in shear

have been discussed above. A suitable solution technique for using these relationships is

as follows:
Step 1:
Step 2:
Step 3:
Step 4:
Step S:
Step 6:
Step 7:
Step 8:
9:

Step

Choose a value of ¢€; at which to perform the calculations.

Estimate 6. ]

Calculate w from Eqs. (7-34), (7-35), (7-36), and (7-37).

Estimate f,.

Calculate f) from Eqgs. (7-31) and (7-33) and take the smaller value.
Calculate V from Eq. (7-28).

Calculate f, from Eq. (7-27).

Calculate fonq, from Eq. (7-26).

Check that f; < fomaz-

If f2 > famas, solution is not possible. Return to Step 1 and choose
a smaller ;.
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Figure 7-39  Parameters influencing crack spacing.

Step 10:  Calculate €, = €, (1 Yy fzmw) ... from Eq. (7-26).
Step 11:  Calculate €, and ¢; from Eqgs. (7-23) and (7-24) as

e tan? @ + ¢,

€x = ———5——
1 +tan“é

61+62tan29

€= ————s—
¢ 1 +tan?4

Step 12: Calculéte fo=Eser < fuy.

Step 13:  Check estimate of f,. If necessary, revise estimate and return to Step
5

Step 14: Calculaﬁe fsza=Esex < fy and fp = Ep(e; + Aep) < fpy.
Step 15:  Calculate the axial force on the member.

|4 . .
N = Aszfsz +Ap:tfp - ;a—.;’l_é + flbw]d - fc(Ac - wad)

where f. is the axial compressive stress in the concrete areas outside
the web. :
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Figure 7-40  Details of beam CF1 tested by Arbesman and Conte (Ref. 7-38).
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If ¢, is tensile then f, = 0, otherwise,

fe=1. {2 (%)- C_ﬂ

Step 16:  Check the axial load. If N is not equal to the desired value (usually
zero), make a new estimate of 6 and return to Step 2. Increasing 6
increases N.

Step 17:  Check that the longitudinal reinforcement can carry stresses across the
crack, using Eq. (7-38). If this requirement is not satisfied, we must
lower fi and return to Step 6.

To obtain the complete response of the beam, these calculations are repeated for a
range of values of ¢; starting from the cracking strain {€; ~ 0.1 x 107?) and increasing ¢,
until the shear has reached its maximum value. A short computer program called SHEAR,
based on the calculation procedure above, is described in Appendix B.

7.11 EXAMPLE OF PREDICTING RESPONSE IN SHEAR

In order to illustrate the procedure that can be used to predict the load-deformation response
of a prestressed concrete member subjected to shear, we will consider the member described
in Fig. 7-40. This symmetrically reinforced post-tensioned box beam was loaded so that a
point of zero moment occurred midway along the test length. We wish to determine the
relationship between the applied shear and the strains in the stirrups.

To determine the complete shear force-stirrup strain response, we will determine the
shears and stirrup strains that correspond to various values of the principal tensile strain,
€1. The procedure is described in Section 7.10.

The response of this beam at the location of zero moment can be determined using
program SHEAR described in Appendix B. In using this program we must input the crack
spacing parameters Spmg and Sm,. As the longitudinal reinforcement consists of both
bonded wires (k; = 0.8) and deformed bars (k; = 0.4) it is appropriate to use a weighted
average for k; when calculating s,,,. Thus :

0.4 x 0.66 + 0.8 x 1.436
1 =

T 0.66+1.436
=0.67
Hence 25\ 025 x0.67x0375 |
. . X U. X U, s
me=2(5.05+22 =163 in. (414
s 2(5 S+ 10)+ 066+ 1.436)/102 ~ 163 in. (414 mm)

The crack-control parameter in the y-direction is

6\ 0.25 x 0.4 x 0.375
mo =2 (2. — = 11.6 in. (295
2( 125+10)+ /G x 6 11.6 in. (295 mm)

The results obtained by using program SHEAR are given in Table 7-2.
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Table 7-2 Summary of shear response predictions for beam CF1 using the modified
compression field theory.

f2_ mea:t fl w v
€ [/ €& | €z v | ksi ksi psi in. kips
x10% | deg. | x10° | x10® | x10® | (MPa) | (MPa) | (MPa) | (mm) | (kN) Comments
001 [105] 0 |-030| 011] 1.10 | 560 | 37 |o0.000| 24.3(
' (7.6) | (38.6) | 0.3) | (0) | (108)
008 |252| 0 |—030]| 036| 135 | 560 | 299 ! 0.001 | 76.2 | Cracking
' ' ' ' ©.3) | ¢38.6) | @1 {003 | 339 | '
05 |237| 035|-026| 067 1.42 | 560 | 200 |0.005| 71.5
©.8) | 38.6) | 1.4 | ©013)] 318)
10 |246] 075|-021] 111} 1.60 | 560 | 176 | 0.010] 805
o "1 (11.0) | 38.6) | (1.2) | 0.25) | (358)
15 |254| 113 [ -015| 157 1.79 | 560" | 161 [0.014 | 91.0
(12.3) [ (38.6) | (1.1) | (0.36) | (405) |
2.0 [261] 149|010 2.06| 199 | 546 | 150 | 0.019 | 101.4
] a3 | 6.6, 1.0) | 048) [ @5y |
25 |263| 1.87] -0.06| 2.56| 211 | 517 | 110 [ 0.024 |105.7 | Stirrups yield and
: - ) (14.5) | (35.6) | (0.8) | (0.61) | (470) | crack slipping
3.0 257 230|004 | 293|215 | 491 | 9 |0.029 1051
, . , (14.8) | (33.9) | (0.7)..| (0.74) | (468)
40 | 248 315|001} 3.70| 2.21 | 447 76 | 0.038 | 104.4
) | as3y | 30.8) | ©.5) | ©97 | 464)
60 |239] 484 007 | 526]| 226 | 3.78 54 | 0.058 | 102.8
_ as5.6) | @6.1y | 0.4 | a.an | @57
8.0 [234| 652| 013 ] 682 228 |-328 | 42 | 0077|1017
; o lasn | 2.6 | ©0.3) | (1.96) | (452)
100 {232 820| 0.17 | 841| 229 | 2.90 35 | 0.097 | 100.9
(15.8) | 20.0) | (0.2) | 2.46) | (449)
140 | 23.1 {1148 | 0.12 | 11.84| 2.26 2.35 26 | 0.135'| 98.8 | Concrete crushing
(15.6) | (16.2) | (0.2) | (3.43) | (439)

Figure 7-41 compares the predicted and measured stirrup strains for this beam. Note
that for shears less than the diagonal cracking shear the stirrup strains are negligibly small,
a phenomenon correctly predicted by the modified compression field theory. The growth in
stirrup strain after diagonal cracking is predicted well by the theory. Also shown in Fig. 7-
41 is the response predicted using the compression field theory, which can be obtained by

inputting a value of zero for the cracking strength of the concrete.

It can be seen from Fig. 7-41 that by accounting for the tensile stresses in the cracked
concrete, we have more accurately predicted the response of the prestressed concrete mem-
ber. As can be seen from Table 7-2, after cracking, the principal tensile stress, fi, in the
concrete decreases with increasing values of ¢;. For this éxample, the ability of the crack
to transmit shear limited f; at higher values of ¢;.



Sec. 7.11 Example of Predicting Response in Shear 355

: modified compression field theory 4500
100 N\ e e \
4400
80 compression field theory
= 1300
Q -
> 200
40 {
Q 15{/12¢ 1)
20 2l / 4100
t
o 1 1 1 J 1 1 i
0 1 2 3 4 5 6 7x10°3

stirrup strain

Figure 7-41 Comparison of measured stirrup strains and predicted stirrup
strains for beam CF1.

It is interesting to note that for this prestressed concrete member, the inclination,
6, of the principal compressive stresses starts at zero when the shear is zero (i.e., the
principal compressive stresses due to prestressing are longitudinal). As shear is increased,
the principal compressive stresses become more steeply inclined reaching a maximum of
about 26° as the stirrups yield. The very flat inclination of the diagonal compressive
stresses means that the diagonal cracks form at small angles as can be seen in Fig. 7-42.

In predicting the response of beam CF1 shown above, it was assumed that the member
was subjected to pure shear. While the moment was zero at a section midway along the
test length (see Fig. 7-40), other sections in the test length were subjected to significant
flexure. The presence of flexure reduced somewhat the shear capacity of the beam, and
hence failure was initiated in the higher moment regions:

Under the combined action of shear and moment, the longitudinal strains vary over
the depth of the beam (see Fig. 7-43). Vecchio and Collins (Ref. 7-39) have shown how
it is possible to perform a detailed analysis of a cross section subjected to combined shear
and moment. By considering two adjacent cross sections they are able to calculate the
distribution of shear stresses over the cross section. In this analysis, the biaxial stresses
and strains and the manner in which they vary over the height of the beam are considered.
It is found that the inclination, 8, of the principal compressive stress changes over the
height of the beam, becoming larger near the flexural tension face and smaller near the
flexural compression face (see Fig. 7-43a).

The detailed, dual-section analysis is very time consuming. It is possible to greatly
reduce the computation time if the following simplifications are adopted:
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Figure 7-42  Crack pattern near failure load of prestressed beam CF1.
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Figure 7-43  Influence of moment on shear response.
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1. The redistribution of shear stresses that occurs at higher moments is ignored. That
is, the shear stress is assumed to be given by Eq. (7-5) (see Fig. 7-43b).

2. The biaxial stresses and strains are considered at just one level of the web. The
longitudinal strain at this location, €, is used to calculate 8, which is then assumed
to remain constant over the depth of the web (see Fig. 7-43b).

With this simplified procedure a suitable solution technique for analyzing a section

subjected to combined shear and moment is as follows:

Steps 1 through 13: Identical to the steps for pure shear given in Section 7.10.

Step 14:  Using a plane-sections analysis with the strain at the chosen level set to
the €, value calculated in Step 11, find the strain distribution that cor-
responds to the desired moment and then determine the corresponding
axial load, Np.

Step 15:  Calculate the axial force on the member, allowing for the influence of

the longitudinal compressive stresses in the concrete over area byjd
caused by the shear

N =N, —Vcotd

Step 16:  Check whether IV equals the desired axial load on the member. If it
does not, make a new estimate of 6 and return to Step 3. Increasing
0 increases V.

The procedure above has been mcorporated into program RESPONSE (described in
Appendix A), which can be used to predict the response of sections subjected to combined
shear, moment, and axial load.

Before this procedure can be used, a decision must be made as to where in the
web €, will be calculated. As an increase in €, decreases the shear capacity, it would be
conservative to use the highest value of €,. However, members with web reinforcement
have a considerable capacity for redistribution, which results in the shear stresses being
transferred from the most highly strained portions of the cross section to the less highly
strained portions. Because of this redistribution, it is reasonable to use the longitudinal
strain at mid-depth of the web as e;. Members that do not contain web reinforcement have
less capacity for redistribution and hence, for such members the highest longitudinal strain
in the web should be used as €;.

Figure 7-44 compares the shear-moment interaction diagram for beam CF1 obtained
from program RESPONSE with that obtained from the more detailed dual- section analysis.
Note that even though €, was taken as the longitudinal strain at mid-depth of the web, the
failure envelope predicted by program RESPONSE is more conservative than that given
by the dual-section analysis. Also shown in Fig. 7-44 is the shear stress distribution at
one point on the failure envelope predicted by the dual-section analysis. The significant
redistribution of shear stresses across the section that has occurred, can be seen.

Flexure reduces the shear capacity of beam CF1 because it increases the longitudinal
strain, €;. As this strain increases, shear capacity decreases. Recognizing the key role

played by the longitudinal strain enables us to develop a simple method of accounting for
the influence of flexure on shear capacity.
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Figure 7-44  Shear-moment interaction diagrams for beam CF1 predicted by
program RESPONSE and by a dual-section analysis.

For the non-prestressed section shown in Fig. 7-45 the applied moment, if acting
alone, would cause a tensile strain in the reinforcement of

M
€p = ——— 7-39
x Jd A FE, ( )
M/jd N/2
id
= e T
M/id N/2 —
(a) Cross section (b) Forces and strains (c) Forces and strains
due to moment M due to tension N

Figure 7-45 Comparison of forces and strains due to moment and tension.

If the section was subjected to a pure axial tension, the tensile strain in the reinforce-
ment would be
_ 05N

== A.E,

(7-40)
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Comparing Egs. (7-39) and (7-40) we see that to produce the same longitudinal strain
with an axial force as with a moment, the magnitude of the axial force must be

2M
N=— (7-41)

jd

Thus, if beam CF1 is subjected to a moment of 200 ft-kips (271 kNm) it will have
the same shear capacity as if it was subjected to an axial tension of

_2x200xl2

N
: 20

= 240 kips (1068 kN)

If beam CF1 is analyzed using program SHEAR, for combihed shear and axial
tension, with a constant axial tension of 240 kips (1068 kN) it will be found that the
shear capacity is predicted to be 75.0 kips (334 kN). It can be seen from Fig. 7-44 that
this predicted shear capacity agrees well with the shear capacity predicted by program
RESPONSE for the case of beam CF1 subjected to a moment of 200 ft-kips (271 kNm).

7.12 DESIGN USING MODIFIED COMPRESSION FIELD THEORY

The modified compression field theory was presented in the previous sections as an analysis
method capable of predicting the response of a particular section of a prestressed concrete
member when that section was subjected to combined shear, axial load, and moment. With
the aid of a suitable computer program, such as program RESPONSE or SHEAR, this
method can be used to evaluate the suitability of a chosen section and hence can be used
to design sections for shear.

By making some simplifying assumptions it is possible to rearrange the basic equa-
tions of the modified compression field theory so that they can be used in a more direct
fashion to design a section subjected to combined shear, axial load, and flexure.

Typically, before design for shear commences, the cross-sectional dimensions, pre-
stressing and material strengths have all been chosen to satisfy other design considerations.
Shear design then reduces to checking that the cross-sectional dimensions are adequate and
finding the required amounts of web reinforcement and additional longitudinal reinforce-
ment that will ensure that the required shear strength of the section can be developed.

The nominal shear resistance of a section can be expressed as

Va=Ve+Vi+V, ’ (7-42)

where V. is the nominal shear strength provided by tensile stresses in the concrete, V is
the nominal shear strength provided by tensile stresses in the web reinforcement, and V,

is the nominal shear strength provided by the component in the direction of the applied
shear, of the force in the longitudinal prestressing tendons.

The shear resisted by tensile stresses in the concrete can be expressed as

Ve = 8/ flbwjd (7-43)
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where jd equals the flexural lever arm, which need not be taken less than 0.9d. For
prestressed members, d need not be taken less than 0.8h. The factor 8 depends on the
average tensile stresses in the cracked concrete. Assuming that the cracking stress, f.,,
equals 4\/f_é psi (0.33\/170’- MPa) Eqgs. (7-28) and (7-31) can be rearranged to give

ajaz4dcotd .
=127 7-44
b= T vsoe, e (7-442)
. 8= ayo;0.33cot 8

T 14+/500¢;

If the crack widths are too wide, the average tension in the concrete will be limited
by the mechanisms that transmit the forces across the cracks. In particular, the shear stress
on the crack, v.;, will become critical. To avoid such *“crack slipping” failures, 3 must be
limited to

MPa (7-44b)

2.16
24€|Smg-
a+0.63

0.18
24€18.m9

a+16

Equation (7-45) was derived from Egs. (7-28), (7-32), (7-33), and (7-34). It was
assumed that the stirrups would be yielding at failure (f, = Joy)

It can be seen from both of the above expressions for § that as the tensile straining of
the concrete increases (i.e., €; increases), the shear that can be resisted by tensile stresses
in the concrete, V., decreases. The value of the principal tensile strain, ¢;, will depend on
the magnitude of the longitudinal tensile straining, €., the inclination, 8, of the principal
stresses , and the magnitude of the principal compressive strain, €, in the concrete. From
Egs. (7-23) and (7-24), € is

b gL
03+

psiand in. (7-45a)

8 < , MPa and mm \ : (7-45b)

03+

€= €5 + (€5 — ) co? O (7-46)

The strain ¢; depends upon the rhagnitude of the pn'ricipal compressive stress, f,.
This stress can be estimated conservatively from Eq. (7-27) as .

f2=(tan @ + cotf)v - (7-47)

Assuming that the strain, ¢/, at which the concrete reaches its peak stress is —0.002,
we can rearrange Eq. (7-26) to give

€ = —0.002 (1 — V1= f2/f2max> (7-48)

where ,
fe
0.8 + 170¢;

mea:z: =

(7-49)
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If we substitute the expression for e, given by Eq. (7-48) into Eq. (7-46) and in
addition, substitute the expressions for fo and fom., from Egs. (7-47) and (7-49) we
obtain the following quadratic equation for ¢,

€1 =€z + [ez +0.002 <1 - \/1 - %(tan& +cot 8)(0.8 + 17061))] cot’ 6 (7-50)

Thus, if €, 0, and v/ f/ are known, the strain, ¢, can be found by solving Eq. (7-50).
With ¢; known, the 3 factor can be calculated from Egs. (7-44) and (7-45) provided that
the crack spacing, s..¢, the maximum aggregate size, a, and the tension-stiffening factors,
a3, are known,

To simplify the calculations we will assume that for-members with web reinforcement,
the crack spacing, smg, equals 12 in. (305 mm), that oo equals unity, and that a equals
0.75 in. (19 mm). For the values of v/f.,¢;, and @ given in Table 7-3, the values of 3
calculated from the approach above are listed. In using this table, the nominal shear stress
on the concrete is computed as

V-V

Table 7-3  Values of 6 and 3, psi units*, for members with web

reinforcement.
Shear Longitudinal Strain e, x 1000
Stress
v/fl 0 [025}{050({0.75]1.00|1.50]200]|250(3.00]5.00
< 0,050 6| 28° | 31° | 34° [ 36° | 38° | 41° | 43° | 45° | 46° | 56°
£1524 1370301 (262233195172} 154]139]092
0.075 6| 28° [ 30° | 30° | 34° § 36° | 40° | 42° | 43° | 43° | 56°
51486337248 {237 1215|190]1.65| 1.44|125}0.92
0.100 6| 22° [ 26° | 30° [ 34° | 36° | 38° | 38° | 38° | 38° | 55°
827112421231 (227 }1208]1.72}1139]1.16} 1.00] 0.95
0.125 6| 23° [ 27° | 31° [ 34° | 36° | 36° | 36° | 36° | 36° | 55°
512401233229 (216|200]1.52]1.23{1.03]088]094
0.150 6 | 25° | 28° | 31° | 34° | 34° | 34° | 34° | 34° | 35° | 55°
: £51253)225(213]2.06|1.73]1.30(1.04]085]0.77 { 0.94
0.175 6 126° | 29° j 32° [ 329 | 32° [ 32° | 34° | 36° | 38° | 54°
£234]219{211 169|140 1.01 1094|091 (0.881}096
0.200 6] 27° [ 30° | 33° | 34° | 34° | 34° | 37° | 39° | 41° | 53°
£216]213(209]1.821152(1.08(1.11|1.04]0.99| 098
0.225 6 1 28° | 31° | 34° | 34° [ 34° | 37° | 39° | 42° | 44° -
£11971207 (208 (1.67|135{129|1.17]116[1.09| -
0.250 6 1 30° | 32° | 34° | 35° | 36° | 39° | 42° | 45° | 49° | -
£12261200}1.87 (163|145 |1371132]1.28{124] -

*For 8 values in MPa units, divide the values given in the table by 12.
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The shear resisted by tensile stresses in the web reinforcement can be determined
from Eq. (7-28) as
_ Ay fyjdcotd
s

It can be seen from Eq. (7-52) that for a given quantity of stirrups, the lower the
value of 4, the higher the value of V,. However, for a given value of ¢., lower values of
@ will result in higher values of ¢; [see Eg. (7-50)], and hence lower values of V..

The ¢ values given in Table 7-3 have been chosen to ensure that, for highly stressed
members, the compressive stress in the concrete, f2, does not exceed the crushing strength,
f2maz and that the strain in the web reinforcement, ¢,, is at least equal to 0.002. Within
the possible range of values of 6, the values given in the table will result in close to the
minimum amount of shear reinforcement.

To be conservative, the longitudinal strain, €z, will be taken at the level of the flexural
tension reinforcement. This strain will depend upon the magnitude of the flexural moment,
the axial tension (see Fig. 7-45) and the shear (see Fig. 7-23) as well as the amount of
non-prestressed and prestressed longitudinal reinforcement. It may be computed as

Vs (7-52)

_ M +0.5N, +0.5V, cotd — Ay, fo

E A, + E,Aps

(7-53)

Equation (7-53) neglects the stiffness of the concrete when calculating strain. While
this is reasonable for tensile strains, it will not be appropriate for compressive strains.
Hence, if €, given by Eq. (7-53) is negative, the value will be overestimated. In this case
it will be conservative to take €, as equal to zero.

Because the amount of longitudinal reinforcement provided must be sufficient to
avoid yielding of the reinforcement, a simple, conservative procedure for calculating e, is
to estimate the concrete strain associated with yielding of the reinforcement. That is,

fy
z < = -54
€z = E; (7-54)
and f P
€ < B¢ E, = (7-55)

Carrying part of the shear by tensile stresses in the concrete reduces the required
amount of web reinforcement but increases the stresses in the longitudinal reinforcement
at a crack [see Fig. 7-37c and Eq. (7-38)].

The force in the longitudinal reinforcement at a crack caused by shear can be deter-
mined from Eq. (7-38). Substituting for the average reinforcement force Ay, foz + Apz fpe
from Eq. (7-29) and assuming the stirrups are yielding (f, = f,y) enables Eq. (7-38) to be
written as

Asafy+ Apzfps > Vot + fibyjdcot? § (7-56)
But from Eq. (7-28)
Ve = fibyjdcotd (7-57)
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Hence Eq. (7-56) can be written as
Asz fy + Apzfps = Vcotf +V, cotd (7-58)
For the symmetrically reinforced member considered in deriving Eq. (7-38)
V=V.+V,
Thus Eq. (7-58) can be expressed as
Ascfy+ Apz fps > @Ve+ Vi) cot 8 (7-59)

Considering only the reinforcement on the flexural tension side of the member enables
Eq. (7-59) to be written as

Asfy+ Apsfps = (Vo +0.5V;) cot 8 _ (7-60)

But, from Eg. (7-42),
V.+05V, =V, - 05V, -V,

Hence the force in the longitudinal tension reinforcement caused by shear can be expressed
as

Asfy+ Apsfps 2 (% 0.5V, — v,,) cot 8 (7-61)

Thus to avoid yielding of the longitudinal reinforcement, for combined loading the
reinforcement on the flexural tension face must be proportioned so that

M, N, Ve
> 5— — — 0. — -
Asfy+ Apsfps = ¢jd+05 3 +(¢ 0.5V, Vp>cot9 (7-62)

Thus the shear design of a member containing web reinforcement consists of the
following steps:

Step 1:  Calculate the nominal shear stress, v, from Eq. (7-51) and divide by
the concrete strength, f., to obtain the shear stress ratio, v/ f. If this
ratio is higher than 0.25 the section is too small, or the concrete is too
weak.

Step 2:  Calculate the longitudinal strain, €., either directly from Egs. (7-54)
and (7-55) or by trial and error from Eq. (7-53), where an estimate of
0 will be required.

Step 3:  Using the calculated values of v/f, and ¢, determine ¢ and 3 from
Table 7-3. Linear interpolation can be used or the values given for

the next higher value of ¢, and the next higher value of v/f, can be
taken.
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Step 4:  Calculate the required value of V; from Egs. (7-42) and (7-43) as

Vi, ,
m:E—%—ﬂf@wd (7-63)

Step §:  Calculate the required spacing of stirrups from Eq. (7-52) as

A jd cot 8
s < “f—y](_:o_ (7-64)
Vs

Step 6:  Check yielding of the longitudinal reinforcement using Eq. (7-62). If
needed, either add more longitudinal reinforcement or revise the values
of 6 and 3 using the values for a higher ¢,. These values will reduce
the amount of longitudinal reinforcement but increase the amount of
stirrups required. '

Because the procedure above was based on the assumption that the member con-
tained enough reinforcement to ensure reasonable crack control, irrespective of the crack
direction, it is not appropriate to use this procedure for members that do not contain web
reinforcement. Such members may have crack spacings, s.g, considerably greater than
the assumed value of 12 in. (305 mm). As can be seen from Eq. (7-37), if there is no web
reinforcement (i.e., p, = 0) the crack spacing becomes infinity.

If s.m, equals infinity then Eq. (7-35) becomes

Smz
sin 8
where s, is the spacing of vertical cracks (see Fig. 7-38).

For members without web reinforcement, the nominal shear resistance can be ex-
pressed as

Sme =

(7-65)

Vo=V, +V, (7-66)

Assuming that the crack spacing is given by Eq. (7-65), that a;a; equals unity, and
that the maximum aggregate size, a, equals 0.75 in. (19 mm), the values for 3 can be
obtained from Egs. (7-44), (7-45), and (7-50). These values are listed in Table 7-4. The
values of ¢ given in the table are those that result in the highest value of 3.

The crack spacing, s,,,, will be mainly influenced by the maximum distance from
the reinforcement, c, [see Eq. (7-36) and Fig. 7-39]. Rather than calculating s,,, from
Eq. (7-36) we can determine it from the simple expressions given in Fig. 7-46. From this

- figure and from Table 7-4 it can be seen that as beams without web reinforcement become
deeper, the shear stress required to cause failure becomes smaller.

Convincing evidence of the reduction in shear stress capacity that occurs as members
become larger was provided by an extensive experimental program conducted in Japan by
Shioya, Iguro, Nojiri, Akiyama, and Okada (Refs..7-40 and.7-41). In this program, 13
beams having effective depths, d, ranging from 4 in. (100 mm) to 118 in. (3000 mm) were
uniformly loaded until failure. As shown in Fig. 7-47, the shear stress required to cause
failure decreased as d increased and decreased as the maximum aggregate size decreased.
The largest beam in this series weighed nearly 500 tons and would have failed in shear
under its own weight. The member was tested “upside down” by pressurizing a water-filled
rubber bag between the specimen and a stronger reaction beam (see Fig. 7-48).
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Table 7-4  Values of 6 and 3, psi units*, for members without
web reinforcement.

Spacing Longitudinal Strain ez x 1000
Parameter

Smz 0 1025{050(0.75|1.0011.50]200|250(3.00]5.00
< Sin. | 6| 27° ] 30° { 32° | 33° } 34° | 36° | 38° | 39° | 40° | 43°
<125mm (489374319281 {255{219[195]|1.77] 163|127
10in. | @ | 30° | 34° | 37° | 39° | 41° | 43° | 45° | 47° | 48° | 52°
250mm | 3| 4.65 (340|283 (2461221187 | 164|148 135|103
15in. | @ | 32° | 37° | 41° | 43° | 45° | 48° | 50° | 52° | 53° | 58°
380mm | B | 447 [3.15[259|223]1.991.67 1145|130 1.17]|0.87
25in. | 6 35° | 42° | 46° | 49° | 51° | 54° | 57° | 59° | 61° | 65°
630mm | 3424|282 (227190170 139|119} 1.05]0.94|0.67
50in, | 6 | 38° | 48° | 53° | 57° | 60° | 64° | 66° | 69° | 70° |.75°
1270 mm | 3390239 1.82{1.50{1.28 | 1.01 | 0.84 | 0.72 | 0.63 | 0.41
100in. | @ | 42° | 56° | 62° | 66° | 69° | 73° | 75° | 77° | 78° | 81°
2540 mm | 5] 3.55(1.87| 135} 1.06|0.88 | 0.65|0.52 (043|037 (023
200in. | 6| 46° | 64° | 71° | 74° [ 77° | 80° | 82° | 83° | 84° | 85°
5080 mm | B [3.19| 139|090 | 0.66 | 0.53 | 0.37 | 0.29 { 0.23 | 0.20 { 0.12

*For 3 values in MPa units, divide the values in the table by 12.

W ® ®® Ag >0.003b, Smx

Smx=d ; D

. = .
-
Smx - 3 .

Figure 7-46  Values of crack spacing parameter, sma.

It is interesting to note that the beams described in Fig. 7-47 contained about the
same percentage of longitudinal reinforcement as the roof beams of the Air Force warehouse
described in Fig. 7-18. The warehouse beams had an effective depth of about 34 in. (850
mm) and failed at a shear stress of about 1.2\/f_é (0.10\/}‘-; MPa). This shear stress level
is consistent with the failure stresses observed for beams about 3 ft (1000 mm) deep in the
tests of Shioya et al. Thus it seems likely that the size effect in shear played an important
role in the Air Force warehouse collapse.
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Figure 7-47

d (feet)

Shear stress at failure, on section at distance d from support for

series of beams with different depths and different aggregate sizes. Results from

Shioya (Ref. 7-41).

The (3 values in Table 7-4 were derived for a maximum aggregate size of 0.75 in.
(19 mm). However, the tabulated values can be used for other aggregate sizes by the use
of an equivalent spacing parameter, sp... From Eqs. (7-45) and (7-65) 3 is a function of
the parameter 24¢) s,n,/(a+0.63). Hence the values in the table can be used for aggregate
sizes other than 0.75 in. (19 mm) if we use an equivalent spacing parameter of

1.38
Smae = Sma 0,63

35
Smze = Smz ;+—16

(7-67a)

(7-67b)

Thus the largest beam shown in Fig. 7-47, which had a maximum aggregate size of
1.00 in. (25 mm) and an effective depth of 118 in. (3000 mm) would have an equivalent
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Figure 7-48 Large beam failing in shear. Failure crack between S and X.
Photograph courtesy of Shimizu Corporation.

crack spacing of

1.38
mze = 11 ———— =100 in. (254
Smze 8 x 1005063~ in. (2540 mm)

Hence the strength of this large beam could be predicted using the 6 and 3 values
given for a crack spacing of 100 in. (2540 mm) in Table 7-4. For example, for €, equals
0.50 x 1073, the 6 and 3 values would be 62° and 1.35. As there is no web reinforcement,

V =V, =6/ flbujd
= $v/3500 x 59 x 0.9 x 118
= 3718 = 501 kips (2230 kN)

If €, equals 0.50 x 1073 then, from Eq. (7-53), with A, equal to 28.3 in? (18240 mm?)

A +0.5 x 501 x cot62°
29,000 x 28.3

0.50 x 1073 =

Hence M = 29,380 in.-kips = 2450 ft-kips (3320 kNm).

Repeating the calculations above for different values of €, we obtain the different
combinations of shear and moment that are predicted to cause failure. For high values of
€z, yielding of the longitudinal reinforcement will govern the failure and hence the moment

values will be found from Eq. (7-62). The predicted shear-moment interaction diagram is
shown in Fig. 7-49.
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Figure 7-49  Shear-moment interaction diagram showing predicted failure lo-
cation.

When a uniformly distributed load is applied to a simply supported beam, different
sections along the span are subjected to different combinations of shear and moment. Thus
the section at the support has the highest shear but no moment, while the section at midspan
has the highest moment but no shear. For the large beam reported by Shioya et al. (Ref. 7-
40), Fig. 7-49 shows both the predicted failure envelope and the moments and shears
applied to different sections of the beam at failure. It can be seen that if the loads were
increased by about 4% the loading envelope would touch the failure envelope at a point
corresponding to a location in the span which is 2d from the support. In the experiment,
the failure crack extended from a location about d from the support to a location about 3d
from the support. Thus, in the experiment, failure occurred at about the location predicted,
and at a load that was 96% of the predicted failure load.

7.13 DESIGN EXAMPLE USING MODIFIED COMPRESSION FIELD THEORY

As an example of the use of the modified compression field theory (MCFT), we will
redesign the PCI standard single tee described in Séctions 7.3 and 7.7.
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Step 1: Choose the sections where stirrups will be designed.

The modified compression field theory can be used to calculate the required stirrups
at a particular section, given the shear and moment acting at that section. However, a shear
failure caused by yielding of the stirrups involves yielding this reinforcement over a length
of beam of about jdcotf (see Figs. 7-37 and 7-24). Hence a calculation for one section
can be taken as representing a length of beam jdcot 8 long, with the calculated section
being in the middle of this length. Thus, the first section we will check is 0.5 jdcotd from
the face of the support. Additional sections will then be checked at about every jdcotd
along the length of the beam.

For the purpose of choosing the design sections, we need to make a conservative
estimate of 6 (that is, a high value). For this prestressed beam, e, will probably be close
to zero near the support. From Table 7-3 choose ¢ equal to 30°. Thus jdcot6 will equal
0.72 x 36 x cot 30° = 45 in. = 3.75 ft (1140 mm). Thus the first section we will check will
be 22.5 in. (572 mm) from the face of the support. That is, (22.5+4)/12 =2.21 ft (673
mm) from the center of the support.

The sections we will check are summarized in Table 7-5. Also given in this table
are the factored shear forces, V,,, and the factored moments, M, at these sections.

Table 7-5  Design of single tee by modified compression field method.

¢ | Vu| My |d—%2 ]| jd b | e B | Ve s | f3s
ft | kips | ft-kips | in. in. Fr | des | x 10> ] psi | kips | in. | ksi
| No. m kN, kN mm | mm ,c_ i MPa | kN | mm | MPa
g 2.21 | 69.2 159 239 259 0072 | 28 0 4.86 | 71.2°1 198 | 111
0.67 | 308 | 216 607 | 658 0.405 | 317 | 5025 | 764

. . . . .86 1. 1
2 5.96 | 59.9 [ 401 25.1 | 259 0061 | 28 0 4 71.2 o 67
1.82 | 266 | 544 638 | 658 0.405 | 317 1154
3 9.71 | 505 | 608 26.2 {262 0050 | 36 | 0.63 62 | 38.8 | 349 | 200
2.96 | 225 824 - 665 665 0.218 | 173 | 886 | 1382
4 13.46 | 41.2 | 780 27.3 | 27.3 0.038 | 43 161 72 (26.6] 259 | 227
4.10 | 183 | 1058 693 693 0.143 | 118 | 658 | 1565
5 17.21 | 31.8 [ 917 28.4 | 284 0027 | 45 234 | 54 12471 63.9 | 247
524 | 141 1243 | 721 721 0.128 | 110 [ 1622 | 1702
‘ 6 2096 [ 22.5 1 1019 29.6 | 29.6 0017 | 46 | 272 1.39 1233 oo 256
6.39 | 100 [ 1382 752 752 0.116 | 104 1766

. . ‘ ) . . 1. 1 2
7 24.71 | 13.2 | 1086 | 30.7 | 30.7 0007 | 46 | 2.85 39 |24 | o 57
753 | 59 | 1472 | 780 | 780 0.116 | 107 1772
3 28.46 | 3.8 1118 31.8 | 31.8 0 46 | 272 1.39 | 25.0 oo 255
8.67 17 1516 808 808 0.116 | 111 1758

3 . . 4

9 30.00 0 1121 | 323 | 323 o 46 | 2.8 1.39 | 25 0 252
9.14 1520 820 820 0.116 | 113 - 11738

* Stress required in strands.
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Step 2: Determine values of (d — %) and jd.

In this beam the distance from the extreme compression fiber to the centroid of the
prestressed reinforcement varies along the length as shown in Fig. 7-10.

The effective shear depth, jd, can be taken as the flexural lever arm, d — %, but
need not be taken as less than 0.9d nor 0.72h. A conservative estimate of the depth of

compression, a, can be obtained by assuming that the strands are stressed to their ultimate
stress of 270 ksi (1860 MPa). Thus

_12x0.153 x 270
T 0.85 x5 x 120

=0.97 in. 25 mm)

The values of the flexural lever arm, (d — £), calculated using this value of a are listed in
Table 7-5. Also given are the values of jd. '

Step 3: Design the stirrups.
For the first section,
v V,/085-V,

i bujdfl
_69.2/0.85 — 6.96
T 8x259xS5
=0.072

From Table 7-3, and assuming that ¢, is zero, choose # equal to 28°. While interpolation
could be used when choosing values from Table 7-3, it is more convenient to take the
value from the next higher row and the next higher column,

From Eq. (7-53),

_ 159 % 12/25.9+0.5 x 69.2cot28° — 12 x 0.153 x 152
B 29,000 x 12 x 0.153

€z
=-264x 1073

Because Eq. (7-53) neglects the stiffness of the concrete it will overestimate compressive
strains. Hence e, will actually be between zero and —2.64 x 1073, Thus we will use the

column for e; equal to zero when using Table 7-3. Hence our choice of 6 equal to 28°
was appropriate.

From Table 7-3, with € equal to zero and v/ f equal to 0.075 we find that 3 equals
4.86. Hence, from Eq. (7-43)

V. =4.86v/5000 x 8 x 25.9
=71.2 kips (317 kN)
Thus
Ve=Vu/op V.-V,
=69.2/0.85 - 71.2 — 6.96
= 3.25 kips (14 kN)
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That is, only a small quantity of stirrups is required near the support. We will use #3
double-legged stirrups, with f, = 60 ksi (414 MPa). Hence, from Eq. (7-52),
0.22 x 60 x 25.9 cot 28°
s <
- 3.25
< 198 in. (5025 mm)

Hence the stirrups at this section will be governed by maximum spacing requirements.
Repeating the calculations above for the other sections, we obtain the required stirrup
spacings listed in Table 7-5.
Figure 7-50 illustrates the amount of stirrups required at different locations in the
span. It is of interest that no stirrups are required for sections more than about 20 ft (6 m)
from the support and that the sections requiring the most stirrups are located about 13 ft

(4 m) from the support. These predictions agree very closely with those made by the ACI
method (see Fig. 7-21).

(m)
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T L] T ¥
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Figure 7-50  Design of stirrups by modified compression field theofy.

To satisfy minimum shear reinforcement requirements

< Aufy _ 2x0.11 X 60,000

= 50b, 50 x 8
< 33 in. (838 mm)
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To satisfy spacing requirements

$ <0.75h=0.75 x 36
< 27 in. (686 mm)
but s < 24 in. (610 mm)

Hence a stirrup spacing of 24 in. (610 mm) will satisfy strength, minimum reinforcement,
and maximum spacing requirements. Thus the stirrup arrangement shown in Fig. 7-21a
will be used.

Step 4: Design the longitudinal reinforcement.

The longitudinal reinforcement must be capable of resisting the moment and the axial
tension caused by the shear. The tensile force that will be required in the reinforcement
on the fiexural tension side of the member is given by Eq. (7-62) as

M V.
A =—"4|—=-05V,-V, t6
psJps bjd ( P s p) co
Because we are providing more stirrups than are required, we will determine the actual

value of V; at each section since an increase in V, will decrease the required force in the
longitudinal steel. At the first section, where 8 equals 28°,

_0.22 x 60 x 25.9 x cot28°
- 24
= 26.8 kips (119 kN)

Vs

159 x 12/0.9  [69.2
Apsfrs = =335 (0.85

=89 + 115 = 204 kips (905 kN)

—-0.5x26.8 - 6.96) cot 28°

Hence the tensile stress required in the strands is

204

feo= 1350153

= 111 ksi (765 MPa)

Repeating these calculations for the other sections we obtain the required stresses
listed in Table 7-5. From these values it can be seen that the longitudinal reinforcement is
most highly stressed at section 7.

From Eq. (6-7) we can develop at this location, at least the following stress in the
strands:

0.28 12 x 0.153 x 270
fw-”o("m' 120><31.2><5>

= 267 ksi (1844 MPa)
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As the strands can provide a stress of 267 ksi (1844 MPa), while the required stress is
259 ksi (1788 MPa), the longitudinal reinforcement in the central region of the beam is
adequate. '

Figure 7-51 compares the required tensile force in the reinforcement at different
locations along the span with the tensile force that can be provided by the pretensioned
strands. Note that in the middle third of the beam, the shear causes only a very small
increase in longitudinal tension. However, near the support it is the shear that is causing
most of the tension in the longitudinal reinforcement. From Fig. 7-51, it can be seen that
the strands alone will not be capable of providing all of the tension required at the face of
the support. At this location, where the moment is very small, the required tension is

¢

While Eq. (7-68) was derived from Eq. (7-62) it can also be determined on the basis
of the free-body diagram shown in Fig. 7-52 by taking moments about point O. Thus

T= (E‘- - 0.5V, — V,,) cotd (7-68)

73.9 o
T= (a—ég - 0.5 x 268 — 2.23) cot28

= 134.1 kips (597 kN)
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Figure 7-51 Comparison of required tensile force in reinforcement with tensile
capacity of strands.
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Hence the tensile stress required in the strands at this location is 134.1/(12 x 0.153) = 73.0
ksi (503 MPa). As this location is just 8 in. (203 mm) from the free end of the beam
(see Fig. 7-9), the tensile stress the strand can resist will be limited by its bond strength.
The ACI Code (Ref. 7-2) suggests that the stress in the strand can be assumed to vary
linearly from zero at the free end to the effective prestress, f,¢, over a distance of 50 strand
diameters. Hence the stress that the strand can resist at the inner edge of the bearing area

is
8

fps = 50 x 0.5
= 48.6 ksi (335 MPa)

x 152

Therefore the strands can resist a tensile force of 48.6 x 12 x 0.153 = 89.2 kips (397
kN), which is 44.9 kips (200 kN) less than the required force. If two #6 bars, welded to
an embedded anchor plate, are provided at the support, the additional tension that can be
resisted will be 2 x 0.44 x 60 = 52.8 kips (235 kN), which will cover the deficiency.

It

DT pap——

-—— 0.5 jd cot §~———efe— 0.5 jd cOt § ——u

u

¢ .
Figure 7-52  Free-body diagram of end region of beam.

It is a serious deficiency of the current ACI shear design provisions that they ignore
the fact that shear causes high tension in the longitudinal reinforcement at the face of a
support.



