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Abstract

We present detailed analytical models for estimating the
energy dissipation in conventional caches as well as low
energy cache architectures.  The analytical models use the run
time statistics such as hit/miss counts, fraction of read/write
requests and assume stochastical distributions for signal
values.  These models are validated by comparing the power
estimated using these models against the power estimated
using a detailed simulator called CAPE (CAache Power
Estimator).  The analytical models for conventional caches
are found to be accurate to within 2% error.  However, these
analytical models over–predict the dissipations of low–power
caches by as much as 30%.  The inaccuracies can be attributed
to correlated signal values and locality of reference, both of
which are exploited in making some cache organizations
energy efficient.

Key words: Low–power caches, energy estimation,
analytical models for energy dissipation.

1.  INTRODUCTION

State of the art microprocessors have one or more levels of
on–chip caches [ERB+ 95, Intel 96].  The trend is to increase
cache memory with the increasing transistor budget, because
off–chip accesses are atleast an order of magnitude slower. By
confining memory accesses on–chip, single cycle memory
access latency can be achieved using static RAMs. There is
the added advantage of reducing power because driving
signals through high capacitance I/O pads is less frequent.  An
examination of the die photos of high–end microprocessors
show that anywhere from 15–40% of the die area is dedicated
to on–chip caches. Published reports also corroborate the fact
that on–chip static RAM caches consume substantial fraction
of overall chip power.
(a) The on–chip L1, L2 caches on the DEC 21164 CPU
dissipate about 25% of the total chip power [ERB+ 95]
(b) In the bipolar 300MHz. CPU reported in [JBD+ 93], 50%
power is dissipated in the primary caches
(c) The StrongARM SA–110 processor from Digital that
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boasts the best SPECmarks/watt dissipates about 43% power
in the caches.

It is thus imperative to seek accurate estimates of cache power
as well as implement power reduction techniques in the quest
for high performance, low power microprocessors and
memories.  Power reduction can be achieved by device level
improvisation, RAM cell organization improvements or
cache architectural improvements. We concentrate on the last
one.

To accurately estimate cache power, we develop a model for
static RAM cell and identify its main energy dissipating
components. We then develop an energy dissipation model for
set associative caches based on SRAM cells. We then present
architectural improvements to achieve lower energy
dissipation without sacrificing access time. The analytical
models for estimating cache energy dissipation are then
presented based on the energy model for the cache.  These
require run time statistics of the cache such as hit/miss counts,
fraction of read/write requests, number of dirty victims etc.
and information about the cache organization such as tag
width, line width, cache capacity etc. to derive the signal
transition counts in various cache components. We verify the
accuracy of the analytical model against results obtained
through our simulator called CAPE (CAache Power
Estimator). CAPE is a detailed register level CPU simulator
supporting multiple cache hierarchy and it accurately tracks
the actual transition counts in the cache components
identified in our model. Our analytical model is quite detailed
so as to be quite accurate in estimating power in conventional
caches.  However, we observe that though the analytical
method might be the quickest way to estimate power, it
generally overestimates when applied to the energy efficient
architectures, sometimes by as much as 30%.

The rest of the paper is organized as follows: Section 2
presents the energy model of set associative caches. Section 3
provides energy saving cache organizations. Section 4
discusses the analytical model for estimating transition
counts. Section 5 presents our comparative study of the
accuracy of analytical model against experimental results.
Section 6 presents our conclusions.

2.  ENERGY DISSIPATION IN SRAM  CACHES

In this section we present the energy dissipation model for set
associative caches based on CMOS static RAM cells.

2.1  Set–Associative Caches

Figure 1 depicts the overall architecture of a m–way set
associative cache.  It consists of m RAM banks, each bank row
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storing a contiguous block of  memory words and a tag that
uniquely identifies the block. The k–th  row of all the banks
constitutes the k–th set. A memory word at word address A has
a block id of A div L, a tag value of A div (S*L). A block with
block id B can be placed in at most one block frame in the set
BmodS. A read access to a word in block B proceeds as
follows:
1) Parallel Access of Tag, Data and Status RAMs: All of the
tag, data and status bits in the set numbered B mod S are read
out into latches associated with each way.
2) Tag Comparison and Data Steering: The request tag is
compared simultaneously with the contents of the tag latches.
If a tag match occurs, and if the block frame is valid (indicated
by an associated valid bit), it is a cache hit and the desired
word is steered out to the requester. Otherwise, a miss signal is
generated, stalling the requester until the missing block is
installed, after evicting a victim block chosen by a
replacement algorithm [Smith 82].

Cache writes are handled as a normal cache read followed by a
write.  Two cache variations result, based on where the update
is performed on a write – the write–through cache or a write
back cache [Smith 82].

2.2.  Energy Dissipation in SRAM Cells

Figure 2 shows some key components of a CMOS static RAM
cell.  A detailed description of the operations of all the
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components of a static RAM can be found in [WeEs 93].  The
dominant energy dissipation in CMOS circuits is due to

output transitions of gates which charge or discharge the load
capacitance. The energy dissipated per transition is given by:

Et  = 0.5 ⋅ C ⋅ V2 (1)
where C is the capacitive load and V is the supply voltage as
well as the output voltage change.

The major components of the CMOS SRAM that dissipate
energy whenever the cell is accessed for read or write are:

Bit–line dissipations: caused due to precharging in
preparation for an access and then during the actual read or
write. Based on [WiJo94] we derived the following equations:

Cbit, pr = Nrows ⋅ (0.5 ⋅ Cd,Q1 + Cbit) (2)
Cbit, r/w = Nrows ⋅ (0.5 ⋅ Cd,Q1 + Cbit) + Cd,Qp + Cd,Qpa (3)

where Cbit,pr, Cbit,r/w are the effective load capacitance of the
bit lines during precharging, and read/write to the cell. Cd,Qx
is the drain capacitance of transistor Qx and Cbit is the bitwire
capacitance over the extent of a single bit cell. We assume a
�Vdd voltage swing on the bit lines.

Word–line dissipations: caused due to assertion of the word
select line by the word line drivers to perform the read or write

Cwordline =  Ncolumns ⋅ (2 ⋅ Cg, Q1 + Cwordwire) (4)
where Cwordline is capacitive load of the driver, Cwordwire is
the word select line capacitance across the extent of a bit cell.

Dissipation in output lines: caused due to driving signals on
the interconnects external to the cache.

Input line dissipations: caused due to transitions on the input
lines and input latches.

2.3.  Energy Dissipation in Set–Associative Caches

We now enumerate the energy dissipated within a m–way set
associative cache, with a total data capacity of D bytes, a tag
size of T bits and a line size of L bytes.  Let St denote the
number of status bits per block frame.  These status bits are
implemented as a row of m ⋅ St bits in a status RAM bank.  The
number of sets, S,  is D/( L ⋅ m). The main components of
energy dissipations are:

Energy dissipated in the bit lines, Ebit, due to precharging,
readout and writes is given by:
Nrows = S Ncolumns = m ⋅ (8 ⋅ L + T + St )
Ebit = 0.5 ⋅ Vdd

2 ⋅ [ Nbit, pr ⋅ Cbit, pr  + Nbit, w ⋅ Cbit, r/w +  Nbit, r ⋅ Cbit, r/w +
m ⋅ (8 ⋅ L + T + St ) ⋅ CA ⋅ (Cg,Qpa + Cg,Qpb + Cg,Qp)] (5)

where Nbit,pr, Nbit,r, Nbit,w are the total number of bit line
transitions due to precharging, reads and writes, CA is the
total number of cache accesses.

Energy dissipated in the word lines, Eword, including
energy expended in driving the gate of the row driver
Eword = Vdd

2 ⋅ CA ⋅ m ⋅( L⋅8 +  T + St )⋅(2⋅Cg, Q1 + Cwordwire) (6)

Energy dissipated in the output lines, Eoutput, is the energy
dissipated when driving interconnect lines external to the
cache towards the cpu side or the memory side.
Eaoutput = 0.5 ⋅ Vdd

2 ⋅ (Nout, a2m ⋅ Cout, a2m + Nout, a2c ⋅ Cout, a2c)



Edoutput = 0.5 ⋅ Vdd
2 ⋅ (Nout, d2m ⋅ Cout, d2m + Nout, d2c ⋅ Cout, d2c)

Eoutput = Eaoutput + Edoutput (7)
where Eaoutput, Edoutput are the address and data lines
dissipations, Naout,a2m, Nout,d2m are the number of transitions
on the memory–side address and data line drivers, Cout,a2m
and Cout,d2m are their corresponding capacitive loads.
Similarly Nout,a2c, Nout,d2c and Cout,a2c, Cout,d2c are the
corresponding terms for the cpu–side interconnect. Following
[WiJo 94], the capacitive load for on–chip destinations is
0.5pF and for off–chip destinations, it is 20pF.

Energy dissipated in the address input lines, Eainput is the
energy expended in the input gates of the row decoder,
Eainput = 0.5 ⋅ Vdd

2 ⋅ Nainput ⋅ [(m + 1) ⋅ 2 ⋅ S ⋅ Cin,dec + Cawire] (8)
where Nainput is number of transitions in the address input
lines, Cin,dec is the gate capacitance of first level of decoder,
and Cawire is the wire capacitance of the common address lines
feeding the decoder in each RAM bank.

Energy dissipations occur in the sense amps due to output
loading of the sense amps by the inputs of the data output
drivers and internal short circuit current. Tag comparators,
cache control logic and address comparators in writeback
queue also contribute to enery consumption. These
components have been ignored for the studies presented here
because they are relatively small. The total energy dissipation
in a CMOS SRAM based set associative cache is thus given by

Ecache = Ebit + Eword + Eoutput + Eainput (9)
The actual value of capacitive coefficients is derived from
[WiJo 94] assuming a 0.8 micron implementation. We also
adapt the energy dissipation equations of the different cache
components for various non–standard organizations
presented further.

3.  LOW POWER CACHE DESIGNS

We now discuss the architectural power reduction techniques
that we have used in our studies.

3.1  Block Buffering

Caches exploit spatial and temporal localities in programs.  It
is thus very likely that a requested word is confined to the
block (or one of the blocks of the set) that was last accessed.  In
this situation, which we refer to as block buffer hit, the tag/data
and status arrays need not be read out thereby saving on the
precharge and readout energy.  To implement such a scheme,
we need an extra latch and a comparator that stores and
compares the set address of the last access with that of the
current address. The block buffering scheme suggested in
[SuDe 95] performs the block buffer hit comparison first and
only on a miss is the usual cache probe started.  This adds to
the cache access latency, affecting performance. We propose a
slightly modified version that implements block buffering
without adding to latency (using two phase clocks).
(Modified) Step 1:
Clock phase 0:  Perform tag, set address and valid bit
comparison. Start precharging tag, data and status RAMs.

Clock phase 1:  Read out cells if a block buffer miss occurs.
Step 2: (phase 0 not performed if hit occurs in Step 1)
Clock phase 0:  Perform tag and valid bit comparison.
Clock phase 1:  Steer matching data and update replacement
bits, contents of last_set_addr latch etc.; generate hit/miss
signal, activate replacement logic in case of a miss.

Figure 3(a) shows our scheme for a 2–way set–associative
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cache,  with the components needed for block buffering.
Compared to the scheme of [SuDe 95], our scheme spends
some energy in precharging bit lines on a block buffer hit, but
does not cost in latency. Besides, precharging would be
necessary anyway for subsequent accesses and successive
precharging of bit lines without intervening readouts does not
drain much energy.

3.2  Cache with Data RAM Subbanking

Since the word offset into the block frame is already available
before the cell readout is performed, power savings can be
achieved by reading out only the words at the required offset
from all the ways. This technique is called subbanking.
Figure 3(b) depicts a 2–way set associative cache with two
subbanks in each data RAM. A subbank address decoder is
needed to enable only the desired subbank before the word
line is asserted.  The energy efficiency of single level
subbanked cache was also studied in [SuDe 95].  We extend it
to two level cache hierarchy.

3.3  Other approaches

We have also studied the effectiveness of bus invert coding,
proposed in [StBu 95] for reducing I/O power.  This involves
the use of one extra line to indicate the encoding of the value
on the other lines (logically inverted or non–inverted).

4.  ANALYTICAL MODELS FOR DISSIPATIONS

We present the formulation of the analytical models to
estimate power dissipation in static RAM based caches. These
models use the traditional cache statistics such as hit/miss
counts, fraction of read/write requests, number of dirty
victims etc.  These statistics are obtained from our simulation
tool CAPE (CAche Power Estimator). The transition counts



for the various energy components discussed in Section 2.3
are derived using the cache organizational parameters and
assuming an uniform, independent and identical probability
distribution function for signal transitions.

4.1  Transition Counts in a Set–Associative Cache

The transition counts in the major energy dissipation
components of set associative caches, discussed in Section 2.2
are now derived based on run time statistics and
organizational parameters. The notations Pr0→1, Pr1→0,
Pr0→1,1→0 denote the probabilities of signal transitions
between logical 0 and 1. We make the assumption that all
signal values are independent and have uniform probability of
0 or 1 value, making the above terms equal to 0.5.  We have
used the following notations: Nrhit, Nrmiss are the number of
read hits and misses, Nwhit, Nwmiss are the number of write
hits and misses, Nhit, Nmiss are the total number of hits and
misses, Nwb_req are the number of write back requests and
Nbitlines are the number of bit lines

Nbit, pr : In all the cache organizations, the bit lines are
precharged for every access made to the cache. Total number
of bit line transitions due to precharging will be
Nbit, pr = Pr0→1 ⋅ (Nhit + Nmiss) ⋅ Nbitlines (10)

Nbit, r : These are energy dissipating transitions that occur
when cell contents are read out onto the precharged bit lines.
The total number of bit line read transitions will be
Nbit, r = Pr1→0 ⋅ Narray_acc  ⋅ Nbitlines (11)

Nbit, w : These are energy dissipating transitions that occur in
bit lines when updating contents of the cache. A write occurs
when there is a write–hit or when a missing line is installed.
Let Wavg, data be the average data width of a write request. The
total number of bit line write transitions will be
Nbit, w = Pr0→1,1→0 ⋅ Nwhit ⋅ (St + Wavg, data) ⋅ 2 + 

Pr0→1,1→0 ⋅ Nrmiss ⋅ (T ⋅ 1 + St + 8 ⋅ L ⋅ 1) ⋅ 2 (12)

The number of cache access CA in Equations 5, 6 actually
means the number of array accesses denoted by Narray_acc

CA = Narray_acc (13)

Nout,a2m : The memory–side address bus is driven on a read
miss and on write–back or write–through requests (depending
on the write policy of the cache). We denote  the width of the
address bus by Waddr_bus. The total number of transitions on
the memory–side address bus will be
Nout,a2m = Pr0→1,1→0 ⋅ (Nrmiss + Nwmiss + Nwb_req) ⋅ Waddr_bus

= Pr0→1,1→0 ⋅ (Nrmiss + Nwhit + Nwmiss) ⋅ Waddr_bus (14)
for write–back and write–through caches respectively.

Nout, d2m : The memory–side data bus would be driven when
there is a write–back request (in a write–back cache) or when
there is a write request (in a write–through cache).The number
of transitions on the memory–side data bus would thus be:
Nout,d2m = Pr0→1,1→0 ⋅ Nwmiss ⋅ Wavg, data + Pr0→1,1→0 ⋅ Nwb_req ⋅ 8 ⋅ L

=  Pr0→1,1→0 ⋅ (Nwhit + Nwmiss) ⋅ Wavg, data (15)
for write–back and write–through caches respectively.

Nout, d2c : In the first level the cpu–side data bus is driven
when there is a read request and the width of data delivered,
Wavg,data_read, depends on the distribution of byte, halfword
and word size LOAD instructions. For other levels, the data
width will be the block size, Lhigher, of the higher level cache.
Nout,d2c = Pr0→1,1→0 ⋅ (Nrhit+ Nrmiss) ⋅ 8 ⋅ Lhigher (L2 onwards)

= Pr0→1,1→0 ⋅ (Nrhit + Nrmiss) ⋅ Wavg, data_read  (L1) (16)

Naninput : The address input line transitions cause energy
dissipation whenever an address is latched into the address
decoder. The total number of input line transitions will be
given by
Nainput = Pr0→1,1→0 ⋅ (Nhit + Nmiss) ⋅ Waddr_bus (17)

4.2  Energy Dissipation of a Conventional Cache

In a conventional cache, the number of array accesses is same
as the number of cache accesses, and the width of the data read
out from the data cell array is the line width, L bytes, of a
block. In our simulation, all LOAD instructions deliver a
word–wide data from the L1 Dcache, and the required bytes
are selected internally. The following are the analytical
equations for transition counts in a conventional cache
CA = Narray_acc = Nhit + Nmiss
Nbitlines = (T⋅ m + St + 8 ⋅ L ⋅ m) ⋅ 2 
Nbit, pr = 0.5 ⋅ (Nhit + Nmiss) ⋅ (T⋅ m + St + 8 ⋅ L ⋅ m) ⋅ 2
Nbit, r = 0.5 ⋅ (Nhit + Nmiss)  ⋅ (T⋅ m + St + 8 ⋅ L ⋅ m) ⋅ 2
Nbit, w = 0.5⋅Nrmiss⋅(T⋅1 + St + 8⋅L⋅1)⋅2 + 0.5⋅Nwhit⋅(St + Wavg, data)⋅2
Waddr_bus = 32 Wavg, data_read = 32 for Icache, Dcache
Wavg, data = (8 + 16 + 32)/3 = 19 if all caches are write through
Nout,a2m = 0.5 ⋅ (Nrmiss + Nwmiss + Nwb_req) ⋅ 32 (write back)

= 0.5 ⋅ (Nrmiss + Nwhit + Nwmiss) ⋅ 32 (write through)
Nout,d2m = (Nwhit + Nwmiss) ⋅ 0.5 ⋅ Wavg, data (write–through)

= 0.5 ⋅ Nwmiss ⋅ Wavg, data + 0.5 ⋅ Nwb_req ⋅8⋅L(write–back)
Nout, d2c = 0.5 ⋅ (Nrhit + Nrmiss) ⋅ 8 ⋅ Lhigher (L2 cache onwards)

= 0.5 ⋅ (Nrhits + Nrmiss) ⋅ 19 (L1 cache)
Nainput = 0.5 ⋅ (Nhit + Nmiss) ⋅ 32

4.3  Cache Energy Dissipation with Sub–banking

In this case, tag and status bits access is same as conventional
cache, but data access is limited only to the desired word in the
block. Denoting the width of a subbank by Wword we have
CA = Narray_acc = Nhit + Nmiss
Nbitlines = (T⋅ m + St + Wword ⋅ m) ⋅ 2 
Nbit, pr = 0.5 ⋅ (Nhit + Nmiss) ⋅ (T⋅ m + St + Wword ⋅ m) ⋅ 2
Nbit, r = 0.5 ⋅ (Nhit + Nmiss)  ⋅ (T⋅ m + St + Wword ⋅ m) ⋅ 2
Nbit, w = 0.5⋅Nrmiss⋅(T⋅1 + St + 8⋅L⋅1)⋅2 + 0.5⋅Nwhit⋅(St + Wavg, data)⋅2
The equations to compute the output driver  and address input
transition counts will be same as that given in Section 4.2

4.4  Cache Energy Dissipation with Block Buffering

In this case, tag, status bits and data arrays are accessed only
on a miss in the block buffer. The number of bits accessed is
same as that of the conventional cache. We denote the number
of block buffer misses by Nblockbuff_miss. Thus we have
CA = Narray_acc = Nblockbuff_miss
Nbitlines = (T⋅ m + St + 8 ⋅ L ⋅ m) ⋅ 2 



Nbit, pr = 0.5 ⋅ Nblockbuff_miss ⋅ (T⋅ m + St + 8 ⋅ L ⋅ m) ⋅ 2
Nbit, r = 0.5 ⋅ Nblockbuff_miss  ⋅ (T⋅ m + St + 8 ⋅ L ⋅ m) ⋅ 2
Nbit, w = 0.5⋅Nrmiss⋅(T⋅1 + St + 8⋅L⋅1)⋅2 + 0.5⋅Nwhit⋅(St + Wavg, data)⋅2
The equations to compute the output driver  and address input
transition counts will be same as that given in Section 4.2

4.5  Cache Energy Dissipation with Block Buffering and
Subbanking :

With both, block buffering and subbanking, techniques we
have to account for block buffer hits as well as smaller data
width read out. Thus we have
CA = Narray_acc = Nblockbuff_miss
Nbitlines = (T⋅ m + St + Wword ⋅ m) ⋅ 2 
Nbit, pr = 0.5 ⋅ Nblockbuff_miss ⋅ (T⋅ m + St + Wword ⋅ m) ⋅ 2
Nbit, r = 0.5 ⋅ Nblockbuff_miss  ⋅ (T⋅ m + St + Wword ⋅ m) ⋅ 2
Nbit, w = 0.5⋅Nrmiss⋅(T⋅1 + St + 8⋅L⋅1)⋅2 + 0.5⋅Nwhit⋅(St + Wavg, data)⋅2
The equations to compute the output driver  and address input
transition counts will be same as that given in Section 4.2.

For the case study reported here, we consider a two–level
cache system, where the 2nd level cache (L2) is off chip. The
capacitive coefficients are derived based on the 0.8micron
cache described in [WiJo 94]. We assumed Vdd = 3.3V, and the
CPU and 2–stage pipelined caches were clocked at 85MHz.
The 0.8micron cache has a cycle time of < 10.2 ns, for a wide
range of configurations [WiJo 94], so a 85MHz clock is
appropriate. We simulated the execution of several
SPECint92 benchmarks on the CAPE simulator.

For our base case (Case 1), we chose a 16KB, direct–mapped
L1 Icache and a 16KB, 2–way set–associative L1 Dcache
each with 16byte (4 word) line size. We chose a 64KB, 4–way
unified L2 cache with a 32byte line size. The interconnection
bus width was 16byte data bus between L1 and L2 and
between L2 and main memory. All caches were
write–through with 6 deep write back buffers.
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Figure 4.  Effects on Cache Power Dissipation  Due to Vari-
ous Enhancements (Case 1)
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For Case 2, we maintained the same capacity of the caches.
We increased the associativity of both L1 caches to 4, with the
same line size. The L2 cache was not changed. Many other
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Figure 5.  Effects on Cache Power Dissipation Due to Vari-
ous Enhancements (Case 2)
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IV: cache with II and III
V: same as IV with bit–reverse 

encoding on interconnect

variations in the line size and associativity were also
simulated and we compared the analytical and experimental
results. Only the two cases mentioned above are presented
here. Figures 5 and 6 show the experimentally estimated
power dissipation in the various caches.

5.  VALIDATION OF THE ANALYTICAL MODELS

For experimentally estimating the energy dissipation in static
RAM caches with or without the various energy saving
techniques, the values of Nbit, pr, Nbit, r, Nbit, w, Nout, a2cpu,
Nout, a2m, Nout, d2c, Nout, d2m and Nainput are obtained by
simulation and counting the actual transitions in the
simulator. The use of CAPE to obtain accurate measures of
transition counts by actual simulations is explained in
[KaGh97]. CAPE incorporates a register–level RISC pipeline
simulator, an integrated multilevel cache simulator, and a
transition counting mechanism.  The pipeline simulator has
been adapted from the S20, MIPS–R2000 machine pipeline
simulator [La 95] adapted for cycle level simulation [Ro 96].

Tables 1–4 depict the percentage error between the
experimental and analytical values for each cache in the
simulated system. The percentage error is computed as

%Error = (Powerexpr – Poweranalytical) / Powerexpr * 100

We observe that the error in the overall power is quite small in
L1 caches in cases I, II and III. However the relative error is
large when subbanking and block buffering are jointly used.
This is because the main source of error is the bit line
precharging transitions counts. This arises because the
analytical model fails to take into account the fact that bit
lines do not have to be precharged fully when a consecutive
block buffer hit occurs. We also noticed a large discrepancy in
the bit line write power. This is due to the fact that generally
data values (in Dcache) and instruction encodings (in Icache)
will have large number of bits of the same pattern. The error in
output address power is also consistently large in the order of
200%, attributable to the fact that data and instruction access
addresses exhibit strong locality.



The locality of reference in L2 cache is lower than the L1
caches because of the filtering occurring in L1. This reduces
the deviation between analytical and experimental values of
the output energy component inspite of the higher capacitive
load of the off–chip pads.

Orgz
Ebit Eword Eaoutput Edoutput Eainput Etotal

Orgz Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

I 1.78 1.59 0 0 –214 –204 –40 –42 –837 –845 –1.32 –0.49

II 4.81 4.12 0 0 –214 –204 –40 –42 –837 –845 –3.66 –1.24

III 4.83 5.05 0 0 –214 –204 –40 –42 –144 –144 2.43 3.55

IV –21.5 –22.5 0 0 –214 –204 –40 –42 –615 –615 –31.4 –28.6

V –21.5 –22.5 0 0 –214 –204 –40 –42 –615 –615 –31.4 –28.6

Table 1 %Error in Estimating Icache Energy Dissipation

Orgz
Ebit Eword Eaoutput Edoutput Eainput Etotal

Orgz Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

I 0.52 1.02 0 0 –272 –277 –33.4 –35.2 –252 –252 –6.86 –6.03

II 1.47 2.67 0 0 –272 –277 –33.4 –35.2 –252 –252 –16.7 –14.3

III 10.6 11.1 0 0 –272 –277 –33.4 –35.2 –163 –162 2.01 2.76

IV –1.07 0.15 0 0 –272 –277 –33.4 –35.2 –225 –225 –20.2 –17.7

V –1.07 0.15 0 0 –272 –277 –33.4 –35.2 –225 –225 –20.2 –17.7

Table 2 %Error in Estimating Dcache Energy Dissipation

Orgz
Ebit Eword Eaoutput Edoutput Eainput Etotal

Orgz Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

Case
1

Case
2

I 0.02 –0.02 0 0 –285 –282 –41.8 –37.8 –267 –273 –4.99 –4.9

II 0.26 0.10 0 0 –285 –282 –41.8 –37.8 –267 –273 –20.1 –20.1

III 21.2 21.5 0 0 –285 –282 –41.8 –37.8 –170 –178 15.3 15.9

IV –5.76 –5.19 0 0 –285 –282 –41.8 –37.8 –257 –261 –26.5 –25.9

V –5.76 –5.19 0 0 –285 –282 –46.6 –42.4 –257 –261 –27.2 –26.6

Table 3 %Error in Estimating L2 Cache Energy Dissipation

Orgz
L1 I–Cache L1 D–Cache L2–Cache

Orgz
Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

I –1.10 –0.46 –5.92 –5.14 –4.74 –4.66

II –3.06 –1.17 –14.42 –12.21 –18.91 –18.77

III 3.08 3.63 1.62 2.33 16.75 15.54

IV –30.11 –27.79 –17.76 –15.54 –25.46 –24.52

V –30.11 –27.79 –17.76 –15.54 –27.03 –26.13

Table 4 %Error in Total Power Dissipaton

6. CONCLUSIONS

We presented analytical models for estimating the energy
dissipation in conventionally–organized caches as well as
caches organized for lower energy dissipation.   The analytical

approach presented represents a faster way of estimating  the
energy dissipation in caches, compared to the the more
accurate approach of counting all the transitions explicitly
during simulation.

These analytical models use the number of cache hits and
misses, the number of cache reads and writes and similar
parameters obtained from a detailed simulator for a typical
cache system.  In particular, the analytical models ignores the
transitions caused by actual data and address values and
assumes instead that transitions caused by these values are
stochastically distributed.  The accuracy of the analytical
models were checked against the detailed transition counts,
including transitions due to actual data and address values
obtained from the same simulator.  For the cache organization
studied, the analytical models for conventionally–organized
caches predict the overall energy dissipation within less than
2% of the dissipation estimated from detailed transition
counts.  However, for some low power cache organizations,
the analytical models overestimate the power dissipation by
as much as 30%, a fact that can be traced to the correlated
nature of  transitions within a cache.
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