
Memory Organization for Improved Data Cache Performance in Embedded
Processors*

Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau
Department of Information and Computer Science

University of California, Irvine, CA 92697-3425, USA

Abstract

Code generation for embedded processors creates op-
portunities for several pelformanee optimizations not ap-
plicable for traditional compilers. We present techniques
for improving data cache pelformance by organizing van-
ables declared in embedded code into memory, using spe-
cific parameters of the data cache. Our approach clusters
variables to minimize compulsory cache misses, and solves
the memory assignment problem to minimize conflict cache
misses. Our experiments demonstrate significant improve-
ment in data cache pelformance (average 46% in hit ratios)
by the application of our memory organization technique
using code kemels from DSP and other domains on the LSI
Logic CW4001 embedded pmcessol:

1. Introduction
Embedded microprocessors are a common feature in

modern electronic systems due to the advantages they of-
fer in terms of flexibility, reduction in design time and
full-custom layout quality [l l] . These processors are of-
ten available in the form of cores, which can be instanti-
ated as part of a larger system on a chip. This is feasible
in current technology due to the relatively small area occu-
pied by the processor cores, making the rest of the on-chip
die area available for RAM, ROM, coprocessors, and other
modules. A core-based design methodology is driven by
demands for design reuse that ultimately results in reduced
development time. Apart from the processors in the Digital
Signal Processing domain (such as the TMS320 series from
Texas Instruments), we also find microprocessors with rela-
tively general purpose architectures available as embedded
processors. An example of such a general purpose embed-
ded processor is LSI Logic’s CW4001 [2], which is based
on the MIPS family of processors.

Generation of efficient code for embedded processors has
been the subject ofrecent investigation [1,5,13]. Optimiza-

*This work was partially supported by grants from NSF(CDA-
9422095) and ONR(N00014-93- 1 - 1348).

tion techniques that improve the performance of application
programs by exploiting the irregular architectures of embed-
ded processors have been reported [5,9,10, 141.

An important determinant of performance in embedded
systems is the interaction between the processor and exter-
nal memory. General purpose embedded processors such
as the CW4001 are equipped with on-chip instruction and
data caches, which interface with larger off-chip memories.
Since off-chip memory accesses usually stall the CPU exe-
cution for significant durations (each access could take 10-
20 processor cycles, depending on the relative processor and
memory access speeds), it is important to design the inter-
face between cache and main memory carefully.

Cache misses can be classified into three categories:
compulsory misses, capacity misses, and conflict misses [7].
In the computer architecture and compiler domains, many
techniques for achieving cache miss reduction involve ad-
ditional hardware assistance [6, 17, 31, which can often be
expensive in terms of additional on-chip area. A well known
compiler optimization technique called blocking combines
strip mining and loop permutation to maximize temporal 10-
cality of reused data [16]. This technique helps in reducing
capacity misses in data caches, but fails to take advantage
of data placement strategies to reduce conflict misses.

In the embedded processors domain, code placement
methods based on program traces for improvement of in-
struction cache performance have been reported [15]. A
technique for estimation of instruction cache performance
has also been reported [8]. However, no published litera-
ture exists on the improvement of data cache performance
in embedded systems.

Embedded system design is characterized by certain fea-
tures that traditional compilers typically do not consider in
their optimizations. For example, compilers seldom take
into account the specific cache parameters such as cache
line size in their optimizations, because fast compilation
speed requirements preclude the complex analysis proce-
dures. However, in embedded systems, code generation can
be tuned to the specific cache configuration to be used (or the
specific configuration that is being currently explored). Fur-

90
0-8186-7563-2196 $5.00 0 1996 IEEE

ther, the typical execution of only a single program and the
absence of virtual addresses permits the compiler to asign
the exact memory location occupied by the data. In this
work, we exploit this situation to organize data in memory
in order to minimize data cache misses.

2. Problem Description
Consider a direct-mapped cache of size C (C = 2m)

words, with a cache line size L words, i.e., L consecutive
words are fetched from memory on a cache read miss. In our
formulation, we assume a write-back cache with a fetch-on-
miss policy [7] , though the technique remains identical for
other write policies, and is equally effective.

N N N

int a[N], b[N], c[N]

f i r i in o to N-1

end for
c[i] = a[i] + b[i] C

Figure 1. u[i], b[i] and c[i] map into the same cache line

We use a small example to illustrate the problem and our
approach. Suppose the code fragment in Figure 1 is exe-
cuted on a processor with the above cache configuration,
where N is an exact power of 2, and N > C. Assuming
one array element per memory word, let array U begin at
memory location 0, b at N , and c at 2 N . Let f(z) denote
the cache line to which the program variable z is mapped.
In a direct-mapped cache, the cache line containing a word
located at memory address M, is given by: (M mod C)/L .
In the above example, array element u [i] is located at mem-
ory address: i . Similarly, we have b[i]: N + i and c[i]:
2N + i. We find that the corresponding cache lines to which
each of them will be mapped are: f (u [i]) = (i mod C) / L ;
f (b [i]) = ((N + i) mod C) / L = (i mod C) / L (since
N is divisible by C); f (c [i]) = ((2 N + i) mod C) / L =
(i mod C)/L . In other words, u [i] , b[i] , and c [i] are mapped
onto the same cache line (Figure 1).

Thus, the sequence of events that take place in one loop
iteration is: a cache miss occurs while accessing u [i] ; the
line f (u [i]) is filled; accessing b[i] now causes a miss, since,
even if it was present in cache before, it was displaced by
the last access to u [i] (since f (u [i]) = f (b [i])) ; f (a [i]) is
now filled by the line from b; the write to c[i] also causes a
miss, since f (c [i]) = f (b [i]) ; in a fetch-on-miss cache, this
causes the same cache line to be displaced by elements of
array c. The same cycle repeats in other iterations. In other
words, every memory access results in a cache miss! Such
memory access patterns are known to result in extremely in-
efficient cache utilization, especially because many applica-
tions deal with arrays whose dimensions are a perfect power
of two [171. In such situations, simply increasing the cache

size does not present an efficient solution, because the cache
misses are not caused due to lack of capacity. The conflict-
misses can be avoided if the cache size C is made greater
than 3 N , but this is often infeasible when N is large, and
where feasible, there is an associated area and access time
penalty incurred when cache size is increased. Reorganiza-
tion of the data in memory results in a more elegant solution,
while keeping the cache size relatively small.

One way of preventing the thrashing caused by excessive
cache conflicts for this simple example is to pad L dummy
memory words between two consecutive arrays that are ac-
cessed in an identical pattern in the loops. For this example,
if array U begins at 0, array b begins at location: N + L (in-
stead of N) and array c begins at: 2N + 2L (instead of 2 N) .
We have:
f(a[i]) = (i mod C) / L
f(b[Z]) = ((N + L + z) mod C) / L = (a mod C) / L + 1
f(c[z]) = ((2 N + 2L + i) mod C) / L = (i mod C) / L + 2

This ensures that u [i] , b [i] , and c[i] are always mapped
into different cache lines, and their accesses do not interfere
with each other in the data cache. We extend this basic idea
to organize scalars (Section 3) and arrays (Section 4).

3. Memory Organization of Scalar Variables

We assume that the scheduling and register allocation of
the code has already been performed, and the sequence of
accesses to variables is fixed.

3.1. Constructing the Closeness Graph

We first generate an Access Sequence, which is a
graph representing memory references (loads and stores are
treated alike) in the code. Figure 2(a) shows an example
Access Sequence. The label 3 on edge e --f a represents a
loop with bound = 3. We then construct a Closeness Graph
of the variables, which represents the degree of desirability
for keeping sets of variables in the same vicinity in mem-
ory. E.g., if L words accessed successively from memory
are placed in consecutive locations, a single memory access
could fetch them all into cache, thereby reducing upto L - 1
extra memory accesses caused due to compulsory misses.

We define the distance between two nodes U and v in
the access sequence as: distance(u, v) = number of distinct
variable nodes encountered on a path from U to v, or v to
U (including u and v). The Closeness Graph CG(YE) is
constructed from the Access Sequence by first creating a
node ‘U E V for every variable in A, and initializing all
edge weights e(u, v) = 0. For all occurrences U’ of vari-
able U during traversal of the Access Sequence, we ex-
amine a window of width A4 preceding and following U’.

For all node instances v’ (of variable v) in this window
(where distance(u’, v’) 5 M) , we update the edge weight
e(u, v) = e(u, v) + k, where k is the number of times con-

91

trol is expected to flow between U' and v' '

x-y-a--b-c--d-e--f f i --g

(8) (b)

Figure 2. (a) Access Sequence (b) Closeness Graph

Figure 2(b) shows the Closeness Graph derived from the
Access Sequence in Figure 2(a), with M = 3.

3.2. Grouping of Variables into Clusters
The next step is to group the variables into clusters of M

words, where M is the number of words in a data cache line.
Intuitively, a higher edge weight between two variables U

and v in the Closeness Graph represents a reduction in the
number of memory accesses, if the two variables are stored
in the same cache line. I.e., we can reduce cache misses by
clustering variables with higher edge weights into the same
cache line. We formulate the problem of maximizing the
sharing of the cache lines by closely correlated variables as
follows: Partition the nodes of the Closeness Graph CG
(i.e., the set of n variables) into clusters of size M , so that
the total weight of edges in all the clusters is maximized.
Since an exact solution to the above problem has a com-
putational complexity of o(n'), we employ the following
greedy heuristic, with complexity O(Mn2) .

Procedure Perfom Clustering
Input: CG(V, E) : Closeness Graph; M : Cache Line Size
Output: Set F: Set of clusters of size M

For each U in V, find S (U) = cwEv e (a , v)
Let X = vertex set V and F = q5
-- X keeps track of variables not yet assigned to clusters
while (X # q5) do

Let U = vertex v E X with maximum S(v) 6)
Create new cluster C = { U }

while (size of cluster C # M) and (X # 4) do
Let 2: be the variable E X with maximum T ,
where T = ~ U E C , w E X - - C e (u , U)
- - sum of edge weights with nodes already in C
C = C U {x}
X = X - {x}

(ii)
-- 2: h a s m a x

-- addx to cluster C
-- removexfromX

Set e(%, w) = 0 for all (a f C) or (v E C)
-- delete all edges to nodes in cluster C just formed
Update S (w) for all v E X ; F = F U { C }

When procedure Pe~ormClustering is applied on the
graph in Figure 2(b), node b is selected first (line i). Next,

'The required values of k in case of conditionals and loops could be
obtained by using profiling information. However, in this work, we use
the often-used simplifying assumption that branch probability is 0.5 for an
if-statement, and that the loop bounds are always known at compile time.

line (ii) causes nodes c and d to be selected into the first
cluster C1. When we have equal T values for multiple
nodes, we select one at random. Nodes b , c, d, and all con-
necting edges are now deleted. From the resulting graph,
a , e, and g form the next cluster Cz. The final clustering is:
c1 : [b , c, 4; c2 : [a, e , SI; c3 : [z, Y, fl.
3.3. The Cluster Interference Graph

After grouping the variables into clusters of size M , we
build an Interference Graph (ZG) of the clusters, which rep-
resents the desirability to store clusters in memory, so that
they do not map into the same cache line. Each node in
the Interference Graph represents one cluster of variables
obtained from procedure Per$ormClustering. A high edge
weight between two nodes indicates a large number of con-
flict misses in the data cache, if the respective clusters were
to map into the same cache line. We first convert the Vari-
able Access Sequence A into a Cluster Access Sequence
by renaming each node U in the sequence by the cluster C,
where U E C. We then construct the Cluster Interference
Graph by first creating a node in IG for each cluster in F
(the set of clusters), and then assigning edge weight e(u, v)
between nodes U and v to be the number of times the access
to clusters U and v alternate along the execution path. E.g.,
for the variable sequence a -+ b i c + d -+ e, M = 2,
and the clustering z : [a, d] ; y : [b , c] and z : [e], we have
the Cluster Access Sequence z -+ y -+ y .-+ x -+ z . Thls
results in an Interference Graph ZG, with edges e(z, y) =
2, e(z, z) = 1, and e(y, z) = 1. The pair of nodes x and y
alternate twice in the execution path, due to the edges x 3 y
and y --f 2, causing e(z, y) = 2. The other pairs change or-
ders only once. The composition rules to be followed for
conditionals and loops are identical to those used for build-
ing the Variable Access Sequence (Section 3.1).

3.4. Memory Location Assignment
The final assignment of variables to memory locations

should consider the clustering and conflict-penalty infor-
mation in the Interference Graph. To minimize the conflict
misses in the data cache during code execution, we need to
ensure that cluster pairs with large edge weights do not map
to the same cache line when we assign memory locations.

We define the cost of a memory assignment (C) as fol-
lows: C = C z , y E V (I G) e (x , ~) x P(z,u) where e(2,y)
is the edge weight, and P (z , y) = 1 or 0, depending on
whether memory locations for z and y map into the same
cache line or not. Figure 3(b) shows the effect of a sam-
ple memory assignment for an IG with six clusters (Fig-
ure 3(a)), on a cache with four lines. We have P(a, e) =
P(b, f) = 1 and C = e(a, e) + e (b , f) = 1 + 3 = 4. We
solve the following problem: Find an assignment of clus-
ters in IG to memory locations, such that the assignment
cost C is minimized. This problem can be easily shown to

92

0

1

2

For an n-way associative cache, we use the same defini-
tion of cost, except that the cost remains zero for the first n
clusters assigned to the same cache line.

4. Memory Organization for Array Variables
3

4

5

6

7 We solve the memory organization problem for arrays
by first constructing the Znteqerence Graph among arrays
in the code, and then assigning memory addresses to each
array by minimizing the possibility of cache conflicts with
other arrays in the code.

4.1. Constructing the Interference Graph

Memory

(a) (b)

Figure 3. (a) Interference Graph (b) Memory Assign-
ment

be NP-hard, by using a reduction from the Graph Colour-
ing problem. We present below a greedy O(n2) heuristic
(where n is the number of clusters) to solve the Cluster As-
signment problem for a cache of size k that is similar to the
Performclustering procedure.

We proceed to make the memory assignments page by
page, where a memory page consists of k cache lines -
the size of the data cache. Note that k consecutive clus-
ters in memory will never conflict in cache. We define the
cost of assigning cluster U to cache line i as cost(u, i) =
CvEX e(u, U), where X is the set of clusters that have al-
ready been assigned to cache line i. This cost is the sum of
edge weights of U with all nodes that are already assigned
to map into cache line i.
Procedure Assignclusters
Input: IG(V, E) - Cluster Interference Graph
Output: Assignment of Clusters to Memory Locations

Sort the vertices of IG in descending order of S(U)

-- S (u) is defined in Section 3.2
Let X be this sorted list of vertices
while (X # 4) do

Create new page P in memory
while (size of page P < k) and (X # 4) do

U = head of list X
Assign U to line i of page P , where cost(u, z) is
minimum over i = 0.. . k - 1
Delete U from X

For the example IG in Figure 3(a), the page size is
k = 4 lines. When we apply procedure Assignclus-
ters on this example, we first sort the vertices in de-
creasing order of the sum of their incident edge weights:
f(13), c(l l) , e(9), b (8) , a (6) and 4 5) . Clusters f , e, e, and
b are placed into the first page PO. While attempting to as-
sign a into the second page P I , we find: cost(a,O) = 2
(since e(a, f) = 2), cost(a, 1) = 1, cost(a, 2) = 1, and
cost(a, 3) = 1. Thus, we choose a line within page PI that
minimizes the cost, and assign a to line 1. Cluster d has:
cost(d, i) = 1 for all i, so we assign line 0 of PI to d. The
final assignment is: PO: (0 - f; 1 - c; 2 - e; 3 - b) and PI :
(0 - d ; 1 - U).

In the case of arrays, we note that if two arrays A and B
are accessed repeatedly within a loop, then there is a pos-
sibility that the accesses to A and B might cause conflict
misses in the data cache (Section 2). The Interference Graph
(IG) of arrays represents the possibility of cache conflicts
between the arrays in the code.

We first create a node for each array in the specification.
Next, we determine the arrays that are repeatedly accessed
in each loop, and add the loop bound BI to the edge weights
between each pair of arrays. This signifies that a total of
BI cache conflicts could possibly arise between each pair
of arrays during execution of this loop. The resulting I G
gives us a criterion to prioritize the order in which we as-
sign memory addresses to arrays. The complexity of this
procedure is O(Ln2), where L is the number of loops, and
n is the number of arrays in the code.

int a[161, b[161, c[161;

fori = 0 to 7
aril = b[i+3] + 3

forj = O to 15
a[i] = b[i] c[i]

(3 @)

Figure 4. (a) Code showing arrays accessed in loops (b)
Interference Graph

In Figure 4(b), we show the Interference Graph derived
from the code shown in Figure 4(a). The first loop causes
e(a, b) = 7. The second loop adds 15 to e(a, b) , e(a, c) ,
and e(b, e). The IG helps identify the order in which the
memory address qssignment to arrays should be done.

4.2. Memory Assignment to Array Variables

In solving the problem of memory assignment of array
variables, we assume that the loop bounds and array dimen-
sions are known at compile time. We also assume that a uni-
dimensional array of N elements is stored in N consecutive

2The problem of clustering of variables to avoid compulsory misses is
not relevant in the case of arrays, as most arrays are usually much larger
than a cache line - often much larger than the cache itself.

93

memory locations, and multidimensional arrays are stored
in row-major format. (The issue of selection of a good stor-
age technique for multi-dimensional arrays is addressed in
[12]). The memory assignment problem is NP-hard, be-
cause the degenerate case, when the array dimension = l ,
itself happens to be NP-hard (Section 3.4).

From the Interference Graph, we use the S(U) values for
each node U (defined in Section 3.2) to determine the order
of assignment of arrays. S(U) signifies the relative impor-
tance of the nodes, because a higher S(U) indicates that U

could possibly be involved in many cache conflicts.
Central to the technique we use for memory assignment

of arrays, is a computation of the cost of assigning an array
(U) to begin at a specific memory address A. This cost is
equal to the expected number of cache conjlicts with all ar-
rays that have already been assigned, if U were to begin at
A. Note that if the first element of U is fixed at address A,
all the other elements of U are automatically assigned their
respective locations.

To determine whether two specific accesses to two arrays
in the same loop will map into the same cache line (i.e, cause
cache conflict miss), we perform a symbolic evaluation of
the equality checking function. Two memory locations X
and Y will map into the same cache line in a direct-mapped
cache with k lines (M words per line), if the condition:

(I$] - I;]) mod k = 0

i.e., (L X / M J - [Y / M J) is an integral multiple of k , which re-
solves to:

x-Y
M

where n is any integer. Clearly, the symbolically evalu-
ated expression: (X - Y) / M , might not always reduce to a
constant, because X and Y could be arbitrary functions of
any variable in the code. If the expression does not resolve
to a constant, then we conclude that the two arrays do not
conflict.

To formalize a strategy to perform the memory assign-
ment of arrays, we first describe the cost function Assign-
mentcostthat returns the expected number of conflicts when
an array is tentatively assigned a specific location.
Function AssignmentCost
Input: U - Array under test; A - Proposed start address;

< (nk + 1) (1) (nk - 1) < -

Access Sequence; Array assignments already completed;
IC - Interference Graph

Returns: Expected number of cache conflicts for this assignment
Initialize cost = 0
for all vLle(v1, U) # 0, 01 already assigned
- - all assigned arrays having an edge with U in IG

for each loop (bound L) with accesses to V I and U

w = no. of times control would alternate between
elements of vi and U mapping into same cache line (i)
COSt=COSt+ w x L

return cost

In line (i) above, the number of times control alternates
between and U is determined by the access sequence, and
whether they map to the same cache lines is determined by
Condition (1). w represents the number of cache misses in
the loop due to conflict between wl and U . The procedure
AssignArrayAddresses below outlines the strategy for deter-
mining the addresses for each array. s (~) values are used
to prioritize the order of assignment, and each array is as-
signed to start from the first available memory location that
generates the lowest AssignmentCost, taking the arrays al-
ready assigned into consideration.

Procedure AssignArrayAddresses
Input: IG - Interference Graph: k - no. of cache lines
Output: Assignment of addresses to all arrays (nodes in ZG)

Address A = 0
Sort nodes in ZG in decreasing order of S(u): vo . . . vn-l
for i = 0 . . . n - 1

Initialize cost c = 00, min = 0
forj=O ... k - 1

if Assignmentcost(VI, A + j) < c then
c =AssignmentCost(v,, A + j); min = j

Assign address (A + mzn) to first element of v z
Update A = A + mi%+ size(v,)for next iteration

The worst case complexity of procedure AssignArrayAd-
dresses could be O(nkP), where n, k , and Pare thenumber
of nodes (arrays), cache lines, and total array accesses in the
specification respectively. However, in real behaviors, we
have observed that the loop j = 0. . . h - 1 tends to converge
very soon (typically less than 2 or 3 iterations), because the
number of different array elements that are accessed in inner
loops of code is usually small and finite.

This completes the memory address assignment of scalar
and array variables in the behavior.

5. Experiments and Results

We now describe the experiments performed on several
benchmark examples to validate our memory organization
strategy. Our experimental platform was the CW4001 em-
bedded processor core simulator from LSI Logic running a
SUN SS-5, using a sample configuration of: 1 KB instruc-
tion cache; 256 byte data cache; Line size = 4 words; Ar-
ray dimension = 16 (for 1-dimensional) and 16 x 16 (for
2-dimensional): Memory latency = 5 cycles. The latency
number is an aggressively low value for the fastest memo-
ries. Since the performance difference widens even more
for higher memory latencies, the improvements we have
shown are the minimum possible.

Column 1 of Table 1 shows the example designs on
which we performed our experiments, and Column 2 gives
the number of scalar and array variables in each. All the ex-
amples are benchmark code kernels used in image process-
ing, telecommunication, and other applications in the DSP

94

Benchmark
SOR

Laplace
dequant
FFr
idct

leafxomp
matrixadd

hydro
innerprod

tri-diagAim
lin-recur-1
e q u f s t a t e
ADIinteg
2DPIC
IDPIC

implicit-cond
2Dhydro

genlin-recur
ordfransport

planckian
2Dimplhydro

Average

sclar

U2
715
2014
2013
513
213
612
U3
213
312
514
1716
818

4/12

819
513
719
4 5
516

-
417

1 in

-
-

-
Hit Ra
Unopt
17.2
95.8
38.3
2.4

28.3
27.7
9.3

21.3
7.0
2.7

50.6
64.0
53.4
60.2
19.6
2.7
17.4
2.1
8.8
2.7
8.1

25.7

- -

-
-

-
(%)
Opt
52.2
95.8
82.4
23.7
56.8
76.9
75.6
79.7
75.2
75.0
65.7
91.2
61.6
79.7
81.4
74.6
64.1
80.6
19.4
75.2
64.3
72.0

-
-

-
-

-
#Cycle
Unopt
24.3
11.6
7.3
66.4
23.0
5.4
11.5
58.0
31.9
38.5
100.5
93.5
60.6
26.5
89.3
46.4
521.3
51.7
121.4
48.5
150.6

- -

-

-
-
Opt
20.4
11.6
6.3
61.5
20.2
4.8
7.5
38.1
21.8
23.8
99.1
91.5
57.8
20.7
47.6
36.9
267.7
40.4
83.2
33.6
105.8

-

-

-
Red
(%o)
16.0
0.0
13.7
7.4
12.2
11.1
34.8
34.3
31.7
38.2
1.4
2.1
4.6
21.9
46.7
20.5
48.6
21.9
31.5
30.7
29.7
21.9

-

-
-

Table 1. Summary of Results

and scientific domain. SOR and Laplace are algorithms fre-
quently used in DSP applications such as image process-
ing. Dequant, leafxomp and Idct are modules from the
MPEG decoder application. FFT is the Fast Fourier Trans-
form routine, also popular in the DSP domain. Matrixadd,
innerqroduct and tridiagonal-elim are frequently used in
routines involving multi dimensional arrays treated as ma-
trices. Hydro, lin_recur-l, and the rest are other code ker-
nels of typical scientific applications, constituting the Liv-
ermore Loops benchmark suite. Columns 3 and 4 show a
comparison between the data cache hit ratios for the Unop-
timized (no regard to cache parameters) and Optimized (our
technique) memory organizations. In almost all the exam-
ples, we notice that the difference in the hit ratios is sub-
stantial (46 % on an average). Columns 5 and 6 show the
execution time in thousands of cycles). There is a significant
reduction in the total cycle time for most of the applications
(Column 6). The total cycle time reduced by an average
of 21.9% over all the examples. This reduction is less than
the data cache hit ratio because the instruction cache perfor-
mance remains unchanged.

6. Conclusions and Future Work
Code generation for embedded processors reveals the

scope for many optimizations that have been hitherto unad-
dressed in traditional compilers. An important feature that
can be exploited while generating code for embedded pro-
cessors is the parameters of the data cache. In this paper, we
have demonstrated how a careful data layout strategy that
takes into account the parameters of the data cache, such
as cache line size and cache size, could induce significant

performance improvements in the execution of embedded
code.

We described techniques for clustering variables to min-
imize compulsory cache misses, and for solving the mem-
ory assignment problem with the objective of minimizing
conflict cache misses. The experiments we performed on
standard benchmark code kernels from the DSP and sci-
entific domains, indicate that significant performance im-
provements result from our memory assignment techniques.
We noticed an average improvement of 46% in the data
cache hit ratios for the benchmark examples for which we
generated code that was executed on the simulator for the
CW4001 embedded processor core from LSI Logic.

In the future, we plan to integrate our memory assign-
ment techniques with reordering of the memory accesses in
the code. Reordering holds out the possibility of obtaining
further improvements in performance through reduction in
both compulsory and conflict misses in the data cache.

References
[I] G. Araujo, et. al., “Challenges in Code Generation for Embedded

Systems,’’ in Code Generation for Embedded Processors, ed., P.
Marwedel and G. Goosens, pp. 48-64,1995.

[2] K. Au, et. al., “MiniRISC(tm) CW4001 - A Small, Low-Power
MIPS CPU Core,” Proc. CICC, 1995.

[3] D. Callahan, K. Kennedy, and A. Porterfield, “Software Prefetch-
ing,” Proceedings, ASPLOS, pp 40-52, April 1991.

[4] D. Gannon, et. al., “Strategies for cache and local memory man-
agement by global program transformation,” Journal of Parallel
and Distributed Computing, 5(5): 587-616, October 1988.

[5] G. Goosens, et. al., “An Efficient Microcode Compiler for Applica-
tion Specific DSP Processors,” IEEE Transactions on CADIICAS,
vol9, No. 9, pp. 925-937, September 1990.

[6] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,”
ISCA, pp 364-373, May 1990.

[7] N. P. Jouppi, “Cache Write Policies and Performance,” ISCA, pp
191-201, May, 1993.

[8] Y-T. S. Li, et. al., “PerformanceEstimation of Embedded Software
with Instruction Cache Modeling,” ICCAD, November 1995.

[9] S. Liao, et. al., “Storage Assignment to Decrease Code Size,” Proc.
PLDI, June 1995.

[lo] C. Liem, et. al., “Instruction-Set Matching and Selection for DSP
and ASIP Code Generation,” ED&TC, pp. 31-37, March 1994.

[l l] P. Marwedel and G. Goosens, “Code Generation for Embedded
Processors,” Kluwer Academic Publ., 1995.

[I21 P. R. Pandaand N. D. Dun, “Reducing Address Bus Transitions for
Low Power Memory Mapping,”ED&TC, pp 63-67, March 1996.

[I31 P. Paulin, et. al., “FiexWare: A Flexible Firmware Development
Environment for Embedded Systems,” in Code Generarion for
Embedded Processors, ed., P. Marwedel and G. Goosens, 1995.

[14] A. Sudarsanam and S. Malik, “Memory Bank and Register Allo-
cation in software Synthesis for ASIPs,” ICCAD, Nov, 1995.

[15] H. Tomiyama and H. Yasuura, “Optimal Code Placement of Em-
bedded Software for Instruction Caches,” ED&TC, March 1996.

[I61 M. 1. Wolfe, “A Data Locality Optimizing Algorithm,” ACM SIG-
PLAN’S1 Conf. on PLDI, June, 1991.

[17] Y. Yamada, et. al., “Reducing Cache Misses in Numerical Appli-
cations Using Data Relocation and Prefetching,” Technical Report
CRHC-95-04, University of Illinois, Urbana, 1995.

95

