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Performance Analysis of Embedded
Software Using Implicit Path Enumeration

Yau-Tsun Steven Li and Sharad Malik,Member, IEEE

Abstract—Embedded computer systems are characterized by
the presence of a processor running application-specific dedicated
software. A large number of these systems must satisfy real-time
constraints. This paper examines the problem of determining the
extreme (best and worst) case bounds on the running time of a
given program on a given processor. This has several applications
in the design of embedded systems with real-time constraints. An
important aspect of this problem is determining which paths in
the program are exercised in the extreme cases. The state-of-the-
art solution here relies on an explicit enumeration of program
paths. This solution runs out of steam rather quickly since
the number of feasible program paths is typically exponential
in the size of the program. We present a solution for this
problem that does not require an explicit enumeration of program
paths, i.e., the paths are consideredimplicitly. This solution is
implemented in the program cinderella (in recognition of
her hard real-time constraint—she had to be back home at the
stroke of midnight), which currently targets a popular embedded
processor—the Intel i960. The preliminary results of using this
tool are also presented here.

I. INTRODUCTION

A. Motivation

EMBEDDED computer systems are characterized by the
presence of a processor running application-specific ded-

icated software. Recent years have seen a large growth of
such systems. In particular, “system on a chip” is becoming
an important implementation technology. These systems in-
tegrate an embedded processor, memory, peripherals, and a
gate array application-specific integrated circuit on a single
integrated circuit. An important factor leading to their growth
is the migration from application-specific logic to application-
specific code running on existing processors. This migration
is driven by two distinct forces. The first is the increasing cost
of setting up a fabrication line for semiconductor vendors.
At over $1 billion for a new line, the only components that
make this affordable are high-volume parts such as proces-
sors, memories, and possibly field programmable gate arrays.
Application-specific logic is getting increasingly expensive to
manufacture and is the solution only when speed constraints
rule out programmable solutions. The second force comes
from the application houses, which are facing increasing
pressures to reduce the time to market as well as to have
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predictable schedules. Both of these challenges can be better
met with software programmable solutions made possible by
embedded systems. Thus, we are seeing a movement from the
logic gate’s being the basic unit of computation on silicon
to an instruction’s running on an embedded processor. This
has motivated our research efforts directed toward examining
analysis and optimization problems for embedded software.

This paper examines the problem of determining the ex-
treme (best and worst) case bounds on the running time
of a given program on a given processor. This has several
applications in the design of embedded systems.

• In hard real-time systems, the response time of the system
must be strictly bounded to ensure that it meets its
deadlines.

• These bounds are required by schedulers in real-time
operating systems. Numerous scheduling methods have
been based on therate monotonic scheduling algorithm
first proposed by Liu and Layland [1]. These depend on
a measure of the deterministic computation requirement
of each task.

• The selection of the partition between hardware and
software, as well as selection of the hardware compo-
nents, is strongly driven by the performance analysis
of software. For example, in a high-performance engine
controller design, the designer may choose to use an
expensive MC68040 if he cannot prove that a less ex-
pensive MC68030 can always compute the engine control
parameters within a single rotation.

B. Problem Statement

A more precise statement of the problem addressed in this
paper is as follows. We need to bound (lower and upper)
the running time of a given program on a given processor
assuming uninterrupted execution. The term “program” here
refers to any sequence of code and does not have to include
a logical beginning and an end. The term “processor” here
includes the complete processor and memory system.

The running time of a program may vary according to
different input data and initial machine state. Suppose that
of all the possible running times, and are the
minimum and maximum of these times, respectively. We
define theactual boundof the program as the time interval

. Our objective is to find a correct estimate of this
bound without introducing undue pessimism. The estimated
time interval , defined as theestimated bound, must
enclose the actual bound. This is illustrated in Fig. 1.
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Fig. 1. The estimated bound[t
min

; tmax] of a program must always bound
its actual bound[T

min
; Tmax].

C. Subproblems

There are two components to the prediction of extreme case
performance. To predict the performance of a given piece of
software on a given processor, we must:

• determine what sequence of instructions will be executed
in the extreme case—this is referred to as theprogram
path analysis problem;

• compute how much time it will take the system to execute
that sequence—this requires a modeling of the host pro-
cessor system, which is referred to asmicroarchitectural
modeling.

Both these aspects need to be studied well in order to
provide a solution to this problem. In our research, we have
attempted to isolate these aspects as far as possible in an
attempt clearly to understand each problem. The focus of this
paper is on the program path analysis problem.

II. PREVIOUS WORK

A static analysis of the code is needed to see what the
possible extreme case paths through the code are. Puschner and
Koza [2] observed that this problem is undecidable in general
and equivalent to the halting problem. In practice, however,
designers select algorithms and data structures for embedded
programs that they believe to be easily bounded. Since the
programmer must prove to himself that a real-time program
will terminate, a restricted programming style is typically used.
The above researchers, as well as Kligerman and Stoyenko [3],
have suggested restrictions on programs that make this prob-
lem decidable. These are absence of dynamic data structures,
such as pointers and dynamic arrays; absence of recursion; and
bounded loops. These restrictions may be imposed through
either specific language constructs or programmer annotations
on conventional programs. While specific language constructs,
such as those provided in Real-Time Euclid [3], are useful
inasmuch as they provide checks for the programs, they come
with the usual costs associated with a new programming
language. An entire new set of software development tools
needs to be developed, and programmers need to be trained
in the new language, both of which are costly propositions. In
the absence of optimizing compilers for the new language, it
is likely that the code quality will be inferior in comparison
to that produced by the vast array of compilers that exist for
the established programming languages. Thus, predictability,
in this case, comes at the cost of performance. This tradeoff
is not needed, since the restrictions can be enforced by a
mechanism external to the language. Several researchers have
suggested the use of annotations to existing programs that
enforce these conditions. Moket al. [4], Puschner and Koza

[2], and Park and Shaw [5] all provide for annotations of
programs that fix the bounds on loops. We believe that this
approach is more practical since it involves only minimal
additional programming tools.

There is some debate over where the analysis should be
done—at the programming language level or the assembly
language level. Providing for analysis at the level of the pro-
gramming language makes it largely independent of the target
processor. Initial research efforts by Shaw in this direction
resulted in a “schema” wherein time bounds were constructed
for each high-level language construct using time bounds on
its constituent parts. Subsequently, these bounds were used
to provide bounds for entire programs. Subsequent work by
Shaw and his coworkers demonstrated the inadequacy of this
approach, since it was difficult to predict the bounds for
a high-level language construct independent of the context
in which it appeared and independent of the compiler and
target processor. They augmented their initial solution by
providing limited interaction with assembly code to take into
account the effects of program context, compilers, and the
target processor. In contrast, Moket al. [4] use the high-level
program description to provide functional information about
the program through annotations, which are then passed on
to the assembly language program. Last, it is the assembly
language program that is analyzed to determine the actual
bounds on the entire program. We believe that this is the
correct approach; the high-level language program is the right
place to provide useful annotations, since that is what the
programmer directly sees. However, the final analysis must
be performed on the assembly language program in order
to capture all the effects of the actual microarchitectural
implementation. Furthermore, aggressive optimizing compilers
transform programs so aggressively that high-level language
constructs no longer maintain a direct correspondence with
executed code.

The functionality of the program determines the actual
paths taken during its execution. Any information regarding
this functionality helps in deciding which program paths are
feasible and which are not. While some of this information can
be automatically inferred from the program, it is widely felt
that this is a difficult task in general. In contrast, it is relatively
easier for the programmer to provide such information since
he is familiar with what the program is supposed to do.1 Initial
efforts to include this information were restricted to providing
annotations about loop bounds and the maximum execution
counts of a given statement within a given scope. These
were provided through program annotations [2] or annotations
in a separate timing analysis program [4]. Both of these
mechanisms are equivalent in terms of the information that
they provide for analysis. This information, albeit useful, is
very limited in terms of describing what can and cannot happen
during the actual program execution. In particular, it does
not capture any information about the functional interactions
between different parts of the program.

1This has an analog in the domain of digital circuits. There, designer
annotations were commonly used to mark paths in the digital circuit that were
never exercised [6]. These paths were then eliminated from consideration in
the timing analysis of the circuit.
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Fig. 2. Exponential blowup of paths: an example.

Subsequent work by Park and Shaw [5] in this area attempts
to overcome this limitation. Here, they recognize the fact that
the set of all possible path sequences through the program
can be expressed as a regular expression. They then propose
techniques for representing this set of regular expressions
using a shorthand notation. This is considered to be too
difficult for use by programmers, and a language [Information
Description Language (IDL)] is provided for the users by
which they can specify most, though not all, path traces that
can actually happen. This is then used to eliminate from
consideration all possible path sequences that can never occur
during the analysis stage. All the paths that are determined
to be feasible by this analysis are then examinedexplicitly to
determine the best and worst case paths.

There are several important contributions made by this
research. The first is recognizing that it is important to provide
information about how different parts of the program interact
with each other. The second is to recognize that regular ex-
pressions are capable of describing all possible path sequences
that can and cannot occur. However, there are some drawbacks
that arise due to expressing feasible sequences as regular
expressions. First, as the authors admit, these are not amenable
for specification by programmers. The language interface
provided to the programmer is an exercise in compromise,
giving up full generality for ease of use and analysis. Next, the
complexity of computations of negation and intersection for
regular expressions may be prohibitive, resulting in the need
for approximate solutions. Last, the need to explicitly examine
all possible feasible paths very often results in an exponential
blowup since the number of these paths is typically exponential
in the size of the program. The small example shown in Fig. 2
illustrates this point. Here, the functionrand() generates a
random number in the range [0, 1]. The loop has possible
paths depending on the which branch is taken in each iteration
of the loop. In fact, if the timing cost to incrementis equal
to the timing cost to increment, all of these paths are worst
case paths. Such scenarios are common in programs, and any
analysis technique that explicitly enumerates paths tends to
have limited application.2

The main contribution of this paper is to provide a method
that does notexplicitly enumerate program paths but rather
implicitly considers them in its solution. This is accomplished
by converting the problem of determining the bounds to one
of solving a set of integer linear programming (ILP) problems.
While each ILP problem can in the worst case take exponential
time, in practice, exponential blowup never occurred in our

2Again, in the domain of digital circuits, the initial timing analysis
algorithms that considered the functionality of the circuit elements enumerated
paths explicitly. More recent work there shows how analysis can be done by
an implicit consideration of all circuit paths [7].

experiments. We observed that the actual computation done by
the ILP solver is solving a single linear program. The reasons
for this will be examined in Section III-C, and practical data
supporting this will be presented in Section VI.

III. ILP FORMULATION

A. Objective Function

The following observation helps us avoid an explicit enu-
meration of paths to determine the best and worst case. Our
objective is to determine the extreme case running times and
not necessarily actually identify the extreme case paths. This
observation led to the following formulation of the problem.
For the rest of this section, the focus will be the worst case
timing; the best case can be obtained analogously. Letbe
a variable denoting the number of times basic block is
executed when the program is executed once. Clearly, the
basic block variable must be a positive integer. A basic
block of code is a maximal sequence of instructions for which
the only entry point is the first instruction and the only exit
point is the last instruction. Let be the running time (or
cost) of this basic block in the worst case. For now let us
assume that is constant over all possible times this basic
block is executed and also that there are practically feasible
techniques for determining this. This issue will be examined
in more detail in Section IV. Thus, for a program withbasic
blocks, its worst case timing is given by the maximum value
of the following linear expression:

(1)

Without any additional information, the maximum value of
this expression is since any can take on the value of .
This is precisely why this problem is undecidable in general.
As pointed out in Section II, however, restrictions must be
imposed on the programs if we hope to be able to bound the
running times. One of the restrictions is that the bounds on
the number of iterations of each loop must be specified. This
directly provides an upper bound for eachthat can be used
in the above expression. The bound obtained by this method
will typically be very loose, however, since in general the
upper bound for each is rarely achieved simultaneously.

There are two factors that may preclude the upper bounds
from being achieved simultaneously. These are illustrated by
the following example code fragment:

for
if(OK)

do something() ;
else

do something else() ;
OK false ;

The first factor is that the program structure itself will im-
pose conditions that make this impossible. In our example, the
loop has an upper bound of iterations. The loop body itself
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(a) (b)

Fig. 3. An example of theif-then-else statement and its CFG.

consists of a singleif-then-else statement. If we ignore
the functionality of the program, in the worst case thethen
part can have iterations, as can theelse part. However,
the mutual exclusion of theif-then-else prevents this
from happening simultaneously. Thus theprogram structure
imposes conditions on what can and cannot happen in terms
of execution counts of basic blocks. The second factor that
comes into play is theprogram functionality. This deals with
what the program is computing. In the above example, the
execution of theelse part sets a condition that precludes
theelse part from being executed again. Thus, the execution
count of theelse part is at most one. This type of information
is not easily obtained from the program in most cases but is
something that the writer of the program can provide with
relatively less difficulty. So we need to maximize (1) while
taking into account the restrictions imposed by the program
structure and functionality.

B. Linear Constraints

Since (1) is a linear expression, it would be nice if we
could state the program structure and functionality restrictions
in the form of linear constraints. This will enable us to use
ILP to determine the maximum value of the expression. In
this section, we demonstrate how both the program structure
and the program functionality restrictions can be specified in
the form of sets of linear constraints.

1) Program Structural Constraints:Since these constraints
arise from the program control flow graph (CFG) [8], they can
be automatically extracted from the CFG. This is illustrated in
Fig. 3 for a program fragment containing anif-then-else
statement. We label the edges and the basic blocks by variables

and , respectively [Fig. 3(b)]. These variables represent
the number of times that the program control is passing
through those edges and basic blocks when the program is
executed. Here, for illustration purpose, the code in each node
of the CFG is shown in the source level code. In actual
implementation, the assembly code is analyzed to construct the
CFG. Each node contains a sequence of assembly instructions.

The constraints can be deduced from the CFG as follows.
At each node, the execution count of the basic block must be
equal to both the sum of the control flow going into it and
the sum of the control flow going out from it. Thus, from the

Fig. 4. An example of thewhile -loop statement and its CFG.

Fig. 5. An example showing how function calls are represented.

graph, we have the following constraints:

(2)

(3)

(4)

(5)

Fig. 4 shows awhile -loop statement and its CFG. The
constraints extracted from this CFG are

(6)

(7)

(8)

(9)

Note that the above constraints do not contain any loop
count information. This is because the loop count information
depends on the values of the variables, which are not tracked
in the CFG. However, the loops can be detected and marked.
After all structural constraints are constructed, the user is asked
to provide the loop bounds as part of specifying the program
functionality constraints (see Section III-B2).

The function calls are represented by using the-edges in
the CFG as shown in Fig. 5. An-variable is similar to a -
variable, except that its edge contains a pointer pointing to the
CFG of the function being called.

The construction of the structural constraints in the caller
function remains the same. In the example, the structural
constraints of the caller function are

(10)

(11)



LI AND MALIK: ANALYSIS OF EMBEDDED SOFTWARE 1481

Fig. 6. check data example from Park’s thesis. Basic block variables(xi)
are labeled alongside with the source code.

The number of times that the function is executed can be
tracked by knowing the -edges pointing to it. Here, this
information is represented by

(12)

where represents the count of the starting edge of the callee
function store() ’s CFG. For the main function, since it is
only executed once, the count of its starting edge must be
equal to one. Therefore, if variable represents the count of
this edge, the following constraint is constructed:

(13)

2) Program Functionality Constraints:As described pre-
viously, these constraints are used to denote loop bounds and
other path information that depend on the functionality of the
program. Currently, the user ofcinderella (typically the
author of the program being analyzed) is expected to provide
these constraints. In the future, we envisage some of this being
done automatically by using data flow analysis. We illustrate
the use of these constraints to capture conditions on feasible
program paths with the example (Fig. 6) taken from Park’s
thesis [5].

Function check data() checks the values of the array
data[] . If any of the values are less than zero, the function
will stop checking and return zero immediately; otherwise, it
will return one.

The loop count of thewhile -loop in the function is
bounded by one andDATASIZE, i.e., the loop will be executed
at least once and at mostDATASIZE times. Suppose that
DATASIZE is previously defined as a constant value ten.
Then to specify this loop bound information, the following
two constraints are used:

(14)

(15)

Fig. 7. An example showing how the path relationship between the caller
and callee functions can be specified.

Here, is the count for the basic block just before entering
the loop and is the count for the first basic block of the loop
body. These two variables can be determined automatically
from the CFG. The user only needs to provide the values one
and ten.

The minimum user information required to perform timing
analysis is the loop bound information. After that, the user can
provide additional information so as to tighten the estimated
bound. For example, we see that inside the loop, lines 7 and 11
are mutually exclusive, and either of them is executed at most
once. This information can be represented by the following
user constraint:

(16)

The symbols “&” and “” represent conjunction and dis-
junction, respectively. Note that this constraint is not a linear
constraint by itself but a disjunction of linear constraint sets.
This can be viewed as a set of constraint sets, where at least
one constraint set member must be satisfied.

As another example, we also note that lines 7 and 14 are
always executed together, and each of them will be executed
at most once. This can be represented by

(17)

The path information is not limited to within a function.
The user can also specify the path relationship between the
caller and callee functions. This is illustrated in the example
shown in Fig. 7.

We see that functionclear data() will only be ex-
ecuted if the return value from functioncheck data()
is zero. More precisely, the number of times that function
clear data() is called at must be equal to the execu-
tion count of basic block when functioncheck data()
is called at the position represented by . This information
can be represented by the constraint

(18)

Here, is a variable representing the execution count of
basic block when functioncheck data() is called at
the position represented by variable . This variable differs
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TABLE I
THE FUNCTIONALITY CONSTRAINTS FORFUNCTION check data() ARE

EXPANDED INTO FOUR FUNCTIONALITY CONSTRAINT SETS. AT LEAST ONE OF

THEM MUST BE SATISFIED. NOTE THAT SETS 2 AND 3 ARE NULL

SETS BECAUSE OF THECONTRADICTING VALUES ON VARIABLE x3

from , which represents thetotal execution count of basic
block during the execution of the program. If function
check data() is only called at , then

(19)

But suppose that the function is called again at some position
; then

(20)

This approach can be thought of as inlining an instance of
the callee function at each function call location. And each
instance of the callee function has its own set of basic block
variables.

Since the functionality constraints are serving the same
purpose as constructs in the IDL language provided by Park
in his work [5], it is instructive to compare their relative
expressive powers. We have been able to demonstrate that
our mechanism for providing the functionality constraints is
more powerful than the IDL language. A complete proof is
shown in Appendix A.

C. Solving the Constraints

The program structural constraint set is a set of program
structural constraints that are conjunctive, i.e., they must all be
satisfied simultaneously. Due to the presence of the disjunction
“ ” operator, the program functionality constraints may, in
general, be transformed into a disjunction of conjunctive
constraint sets. There may be one or more functionality
constraint sets. At least one of these program functionality
constraint sets must be satisfied for any assignment to the

. For example, the functionality constraints of function
check data() [(14)–(17)] are expanded into four function-
ality constraint sets shown in Table I.

To solve the estimated bound, each of the functionality
constraint sets is combined (the conjunction taken) with the
set of structural constraints. This combined constraint set is
passed to the ILP solver with (1) to be maximized. The
ILP solver provides the maximum value of the expression
and solves basic block variables that result in this maximum
value. The above procedure is repeated for every functionality
constraint set. The maximum over all of these running times is
the maximum running time of the program. Note that a single
value of the basic block counts for the worst case is provided in
the solution even if there may be a large number of solutions,
all of which result in the same worst case timing. The ILP

Fig. 8. An example code fragment to illustrate how the functionality con-
straints will affect the performance of solving the ILP program.

solver in effect has implicitly considered all paths (different
assignments to the ) in determining the worst case.

Clearly, the solving time is directly proportional to the
number of functionality constraint sets. This number is doubled
every time a functionality constraint with disjunction operator
“ ” is added. While no theoretical bounds on this can be
derived, our observations have been that in practice, this is
not a problem. There are two ways to reduce the number of
functionality constraint sets. The first is to use more sophisti-
cated linear constraints to describe the same path information
in a more concise way without using the “” operator. For
example, the functionality constraint (17) can be replaced by

. And the second functionality constraint (17) can
be replaced by . These two functionality constraints
do not have the “” operator. Therefore, there will be only
one set of functionality constraints. Yet, the new functionality
constraints bound the feasible values of and the
same way as the original ones do.

The second way to reduce the number of functionality
constraint sets is to detect the existence of null set—i.e., the
set with no solutions—before calling the ILP solver. Although
the ILP solver can detect the existence of a null set much
faster than actually solving the solution, the detection of null
functionality constraint sets is trivial in many cases (e.g.,

and in Table I) and can be checked when
new functionality constraints are added. The functionality
constraints within a set are maintained in a sorted order. When
a simple functionality constraint of the form is added,
it is checked with the constraints in the set and
determines if a null set will result. Other, more complicated
functionality constraints are added to the set unchanged.

The other computational issue is the complexity of solving
each ILP problem. In general, this problem is known to be NP-
complete. However, there are certain special cases that have
polynomial time solutions. Since the structural constraints are
derived from the CFG, which is a network flow graph, they
exhibit very good integer property. We were able to show that
when they are combined with the functionality constraints that
correspond to the constructs in the IDL language, the resultant
ILP problem has an optimum integral solution, i.e., the ILP
problem collapses to an LP problem, which can be solved in
polynomial time. The complete proof is shown in Appendix B.
However, the full generality of the functionality constraints can
result in its being a general ILP problem. In practice, however,
this was never experienced. In general, we found that the more
accurate the path information, the higher the likelihood that the
ILP problem will have an integral optimum solution. This is
illustrated in the code fragment shown in Fig. 8.

In this example, the loop body is iterated 11 times. Hence,
we have . Suppose that and the user pro-
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Fig. 9. Block diagram ofcinderella .

vides a functionality constraint . Then the nonintegral
optimum solution will give and the integral
solution will be and . This constraint does
not tightly bound that actual paths. We can further tighten the
solution by noting that since the loop index is iterated from
zero to ten, . This functionality constraint will override
the previous one and will also result in an integral optimum
solution.

IV. M ICROARCHITECTURAL MODELING

As mentioned in Section I-C, the emphasis of this pa-
per is on the path analysis problem; the issues related to
microarchitectural modeling will be dealt with separately.
Currently, we are using a simple hardware model to determine
the bound of the running time of a basic block. For each
assembly instruction in the basic block, we analyze its adjacent
instructions within the basic block and determine its bound

from the hardware manual. The bound of the
complete basic block is obtained by summing up all the bounds
of the instructions using Shaw’s methodology [9]. The sum of
two bounds and is equal to the bound

This model can handle pipelining
reasonably well. However, it is very simplistic in its approach
to modeling cache memory. For the best case running time, we
assume that the execution always has cache hits, whereas for
the worst case running time, we assume that the execution will
always result in cache misses. This is clearly a conservative
approximation and needs to be tightened. We have extended
our method to model the cache memory. The cache modeling
is described in [10] and is beyond the scope of this paper.

V. IMPLEMENTATION

We have developed a tool calledcinderella 3 that incor-
porates the ideas presented in this paper for timing analysis.
It is written in C and contains approximately 20 000
lines of code. The formulated ILP problems are passed to a
public-domain ILP solverlp solve .4 Fig. 9 shows the block
diagram ofcinderella .

cinderella first reads the executable code for the pro-
gram. It then constructs the CFG’s and derives the program
structural constraints. Next, it reads the source files and outputs

3Details of the tool can be obtained via thecinderella Web page:
http://www.ee.princeton.edu/�yauli/cinderella.

4 lp solve was written by M. Berkelaar and can be retrieved by Anony-
mous ftp: ftp.es.ele.tue.nl Directory: /pub/lp\_solve.

the annotated source files, where the basic block variables)
are labeled beside the source code (Fig. 6). Then, for all loops
in the program, it asks the user to provide the loop bounds.
This is the minimum information that is needed to solve the
timing bounds, and an initial estimate of these bounds can be
obtained at this point. To tighten the estimated bound, the user
can provide additional functionality constraints and reestimate
the bounds. After each estimation,cinderella outputs the
estimated bound and the basic block costs and counts.

Currently, cinderella is implemented to estimate the
running time of programs running on the Intel i960KB pro-
cessor, i.e., its built-in microarchitectural model is a simplistic
one for the i960. The i960KB processor is a 32-bit reduced
instruction set computer processor that is being used in many
embedded systems (e.g., in laser printers). It contains an on-
chip floating point unit and a 512-byte instruction cache [11].
The instruction cache is direct mapped and the line size is 16
bytes.

VI. EXPERIMENTAL RESULTS

As described in Section III-A, the estimated running time
of a program is given by the expression

Our solution is not guaranteed to give the exact bounds, and
in general, some pessimism will be introduced into the estima-
tion. There are two sources for the pessimism: the pessimism
in and the pessimism in . The former pessimism results
from the inaccuracies in the microarchitectural modeling. It
can be reduced by improving the modeling. The latter is
due to insufficient information in the program path analysis,
where some infeasible paths are considered to be feasible.
This can hopefully be reduced by providing more functionality
constraints.

Since our current work focuses on the path analysis problem,
we would like to evaluate the efficacy of our methodology
in determining the worst and best case paths. Experiment 1
described below is directed toward evaluating the pessimism
in path analysis. In addition, we conducted Experiment 2,
with the goal of measuring the inadequacies in our current
microarchitectural modeling. Here, we compare the estimated
running time given bycinderella and the actual running
time obtained by measuring the execution time of the program
on an evaluation board.

A. Experiment 1: Evaluating the Path Analysis Accuracy

Since there are no established benchmarks for this purpose,
we collected a set of example programs from a variety of
sources for this task. Some of them are from academic sources:
from Arnold [12] and Park [5] on timing analysis of software
and also from Gupta’s thesis [13] on the hardware-software
codesign of embedded systems. Others are from standard
DSP applications, as well as software benchmarks used for
evaluating optimizing compilers. There is also an application
program calleddjpeg , which decompresses JPEG images. It
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TABLE II
SET OF BENCHMARK EXAMPLES

is the biggest and most complicated program being analyzed in
this research area. A full description of these programs, their
source-level line sizes, and their binary code sizes is shown
in Table II.

We studied each program carefully and determined the
loop bounds and other path information as much as possible.
This information is fed intocinderella in the form of
functionality constraints to obtain the estimated bound.

Our objective in this experiment is to validate the accuracy
of the program path analysis. This implies comparing the
values of with the actual measured basic block execution
counts. A program may have more than one extreme case
execution path, however, and therefore there may exist more
than one set of basic block execution counts that result in
the same extreme case execution time. For this reason, we
compared the estimated bound with thecalculated bound,
which is equal to

measuredblock count

measuredblock count

Here, and are the best (shortest) and the worst
(longest) execution times of basic block. They are identical
to those used bycinderella in computing the estimated
bound. By using the same costs in the estimated bounds and
the calculated bounds, the pessimism due to the costs was not
accounted for in this experiment.

To measure the extreme case basic block execution counts,
we need to determine the best and worst case input data
for each program. The input data affect the running time
of a program in two ways. In the microarchitectural level,
the execution times of some instructions, such as floating
instructions, are data dependent, which may in turn depend on
the input data. In the program path level, the input data may
effect the branch decision taken at each compare-and-branch
instruction. This will in turn affect the execution path and
hence the execution time of the program. In this experiment,

since basic block costs () are isolated, only the second effect
is accounted for in the calculated bound.

Note that in order to determine the actual upper (lower)
bound on the execution time, we would actually have to run
the program for all possible inputs. This is clearly not feasible.
Thus, we have replaced this step by trying to identify the
best (worst) case data set by a careful study of the program.
For simple programs likecheck data and sort , this is
trivial. But for complicated programs likedes and djpeg ,
it becomes extremely difficult. In this case, we generated a
series of data sets that we believed would result in execution
times close to the extreme case execution times. We took those
that resulted in the shortest and longest execution times. The
basic block counts were measured by inserting counters into
the basic blocks of the program and executing the program
with the extreme case data sets.

The result of this evaluation is shown in Table III. The
second column indicates the number of constraint sets being
passed to the ILP solver. Of the eight constraints sets of
function dhry , five of them are detected as null sets. They
are eliminated, and the remaining three sets are passed to
the solver. The pessimism in the evaluation is defined as
the relative difference between the calculated bound and the
estimated bound and is calculated as follows:

lower
Calc. lower Est. lower

Calc. lower

upper
Est. upper Calc. upper

Calc. upper

All estimated bounds correctly bound their corresponding
calculated bounds. We also see that when given enough
information, the path analysis can be very accurate. The
exception is the upper bound of thedjpeg program. The main
reason for this discrepancy is due to the Huffman decoding
routine in the program. For computing the upper estimated
bound, we assume that in the worst case, all 64 coefficients
in every 8 8 block are random, and hence no compression
of the coefficients is achieved. But for every random image
we generated for the worst case measurements, some sort of
compression is still achieved. Therefore, each Huffman symbol
takes longer to fetch in the worst case estimation than in our
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TABLE III
PESSIMISM IN PATH ANALYSIS. THE ESTIMATED BOUND AND THE CALCULATED BOUND ARE IN UNITS OF CLOCK CYCLES

TABLE IV
DISCREPANCYBETWEEN THE ESTIMATED BOUND AND THE MEASURED BOUND. THE ESTIMATED BOUND AND THE MEASURED BOUND ARE IN UNITS OF CLOCK CYCLES

actual test runs. This benchmark program also illustrates the
point that timing simulation has its limitation in determining
the worst case execution time, as the worst case input data
may not be determined.

As shown in the table, the number of constraint sets is very
small, usually one. Also, the CPU times taken for this analysis
were insignificant, less than 2 s on an SGI Indigo Workstation
in each case. This is largely due to the fact that the branch-
and-bound ILP solver finds that the solution of the very first
linear program call it makes is integer valued.

B. Experiment 2: Comparison with Actual Running Times

In this experiment, we measured the actual running time
of the program and compared it with the estimated bound.
Each program was compiled by an Intel i960 C compiler on
a PC and then downloaded onto an Intel QT960 board [14],
which is a development board containing a 20-MHz i960KB
processor, memory, and some other peripherals. To determine
the upper measured bound, we flushed the cache memory first
before executing the program with its worst case data set. The
execution time was measured by a logic analyzer. For lower
measured bound, we executed the program first with its best

case data set, so that the cache was filled with the program’s
code. We then executed the program with its best case data
set again and measured its execution time.

Table IV shows the results of this experiment. The estimated
bound is the same as in Experiment 1. The measured values
described above are shown in the measured bound column.
The pessimism is calculated from the following formulas:

lower
Mea. lower Est. lower

Mea. lower

upper
Est. upper Mea. upper

Mea. upper

We observe that while the estimated bound does enclose
the measured bound, the pessimism in the estimation is rather
high. This is mainly due to the fact that a simple hardware
model is used. In particular, the lower pessimism is generally
smaller than the upper pessimism. The main reason is that
in computing lower estimated bound, we assumed that all
instruction fetches would result in cache hits. This is close to
the actual cache hit ratio, which is typically around 90%. But
for computing the upper estimated bound, we conservatively
assumed that all instruction fetches would result in cache
misses. This pessimistic assumption results in a loose up-
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TABLE V
TRANSFORMATION FROM IDL TO FUNCTIONALITY CONSTRAINTS

per estimated bound. A more sophisticated microarchitectural
modeling, including cache modeling, will certainly improve
the accuracy of the estimated bound.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an efficient method to
estimate the bounds of the running time of a program on a
given processor. The method uses integer linear programming
techniques to perform the path analysis without explicit path
enumeration. It can accept a wide range of information on
the functionality of the program in the form of sets of linear
constraints. A tool calledcinderella has been developed
to perform this timing analysis. Experimental results on a set
of examples show the efficacy of this approach.

Future work includes improving the hardware model to take
into account the effects of cache memory and other features
of modern processors that tend to make the timing relatively
nondeterministic. In addition, we would like also to explore
the possibility of using data flow analysis techniques to derive
automatically some of the functionality constraints that are
currently being provided by the user. Last, we are working on
porting cinderella to handle programs running on other
hardware platforms. In this direction, in collaboration with
AT&T, we have completed a port for the AT&T DSP3210
processor. This is intended for use in the VCOS operating
system to bound the running times of processes for use in
scheduling.

APPENDIX A
FUNCTIONALITY CONSTRAINTS VERSUSIDL

This appendix shows that the functionality constraints de-
scribed in Section III-B2 are at least as powerful as the
IDL devised by Park [5]. This is done by showing that
every information clause in IDL can be represented by the
functionality constraints.

In IDL, each statement is labeled by an upper case alphabet.
The statement corresponds to a basic block in our case. In the
following, if is a statement label used in IDL, then will

be the basic block variable representing the execution count
of the statement . Table V shows the transformation.

The loop information clauses are used to specify loop
bounds. Other information clauses are used to provide addi-
tional path information. Each of these is transformed into a set
of linear constraints of the form , where is an integer.
More complicated path information, such as that the execution
count of a statement is no greater than that of the other, cannot
be represented by IDL. The functionality constraints overcome
this disadvantage. The above path information can be easily
expressed as .

APPENDIX B
INTEGER PROPERTY OFILP FORMULATION

This appendix describes the conditions under which the
optimum solution of the ILP problem is guaranteed to be
integral values. We will show that for a structured program
with functionality constraints derived from Park’s IDL, the
ILP problem collapses to an LP problem.

Proof:
Case 1: If the program contains no loops and all func-

tionality constraints provided by the user are derived from
Park’s IDL, then the CFG becomes a simple network flow
graph and the functionality constraints are of the form ,
where is an integer. These constraints essentially bound the
flow at the nodes of the graph. As a result, the problem of
determining the estimated bound is equivalent to a network
flow program, which is known to have an integral optimum
solution because of the total unimodular property [15].

Case 2: If there is a single loop in a structured program,
and the loop bound is provided as , where

and are positive integers denoting the lower and upper
loop bounds, basic block is the basic block just before
the loop is entered and is the first basic block in the loop
body. Here, the loop bound constraints are not in the form

as in Case 1, as there are variables on both sides of
the inequality. If we can show that is always an integer in
optimum solution, however, then the loop bound constraints
will be transformed to the form , and we can
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apply the result in Case 1 to prove that all basic block variables
are integral.

Because of the structured program, the CFG is reducible,
and the whole loop can be reduced to a single node in the CFG
[8], with its execution count equal to . Since there is no loop
in the reduced graph, the reduced graph is a simple network
flow graph, and therefore must be an integer no matter what
the cost of the loop and the loop bound are. Consequently,
must also be an integer, as are the rest of the basic block
variables inside the loop.

Case 3: If there are nested loops in the structured pro-
gram, we can apply the proof from Case 2 to reduce the
loop into a node repeatedly from the innermost level to the
outermost level. Then, by using the result from Case 2 again,
we can show that all levels of loop bounds can be transformed
to the form , and hence all basic block variables
must be integral in the worst case.
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