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Performance Analysis of Embedded
Software Using Implicit Path Enumeration

Yau-Tsun Steven Li and Sharad Maliklember, IEEE

Abstract—Embedded computer systems are characterized by predictable schedules. Both of these challenges can be better
the presence of a processor running application-specific dedicated met with software programmable solutions made possible by
software. A large number of these systems must satisfy real-time embedded systems. Thus, we are seeing a movement from the

constraints. This paper examines the problem of determining the loai te’s being the basi it of tati i
extreme (best and worst) case bounds on the running time of a ogic gate's being the basic unit o computation on silicon

given program on a given processor. This has several applications t0 an instruction’s running on an embedded processor. This
in the design of embedded systems with real-time constraints. An has motivated our research efforts directed toward examining
important aspect of this problem is determining which paths in  analysis and optimization problems for embedded software.

the program are exercised in the extreme cases. The state-of-the- This paper examines the problem of determining the ex-

art solution here relies on anexplicit enumeration of program ¢ best and ¢ b d th . i
paths. This solution runs out of steam rather quickly since reme (best and worst) case bounds on the running time

the number of feasible program paths is typically exponential Of @ given program on a given processor. This has several
in the size of the program. We present a solution for this applications in the design of embedded systems.
problem that does not require an explicit enumeration of program

paths, i.e., the paths are consideredmplicitly. This solution is
implemented in the program cinderella (in recognition of
her hard real-time constraint—she had to be back home at the

¢ In hard real-time systems, the response time of the system

must be strictly bounded to ensure that it meets its
deadlines.

stroke of midnight), which currently targets a popular embedded « These bounds are required by schedulers in real-time
processor—the Intel i960. The preliminary results of using this operating systems. Numerous scheduling methods have
tool are also presented here. . ? .

been based on thextte monotonic scheduling algorithm
first proposed by Liu and Layland [1]. These depend on
a measure of the deterministic computation requirement
of each task.

e The selection of the partition between hardware and

MBEDDED computer systems are characterized by the software, as well as selection of the hardware compo-
presence of a processor running application-specific ded- nents, is strongly driven by the performance analysis
icated software. Recent years have seen a Iarge growth of of software. For examp|e, in a high-performance engine
such systems. In particular, “system on a chip” is becoming controller design, the designer may choose to use an
an important implementation technology. These systems in- expensive MC68040 if he cannot prove that a less ex-

tegrate an embedded processor, memory, peripherals, and a pensive MC68030 can always compute the engine control
gate array application-specific integrated circuit on a single parameters within a single rotation.
integrated circuit. An important factor leading to their growth
is the migration from application-specific logic to application-
specific code running on existing processors. This migratian Problem Statement
is driven by two distinct forces. The first is the increasing cost A more precise statement of the problem addressed in this
of setting up a fabrication line for semiconductor vendorpaper is as follows. We need to bound (lower and upper)
At over $1 billion for a new line, the only components thathe running time of a given program on a given processor
make this affordable are high-volume parts such as proc@suming uninterrupted execution. The term “program” here
sors, memories, and possibly field programmable gate arragfers to any sequence of code and does not have to include
Application-specific logic is getting increasingly expensive t8 logical beginning and an end. The term “processor” here
manufacture and is the solution only when speed constraifit§ludes the complete processor and memory system.
rule out programmable solutions. The second force comeslhe running time of a program may vary according to
from the application houses, which are facing increasirflifferent input data and initial machine state. Suppose that
pressures to reduce the time to market as well as to hafeall the possible running timesli,;, and Tyax are the
_ , _ __minimum and maximum of these times, respectively. We
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pessimism_ Actual bound _ pessimism [2], and Park and Shaw [5] all provide for annotations of

’ T o programs that fix the bounds on loops. We believe that this
i } i ] approach is more practical since it involves only minimal
e Lo LIV L additional programming tools.

; Estimated bound ~ There is some debate over where the analysis should be

_ _ done—at the programming language level or the assembly
Eégéit'uamifns&'?a_tedzf’ou?%n7t‘“ﬂ‘x] of a program must always bound |angage level. Providing for analysis at the level of the pro-
e AR gramming language makes it largely independent of the target
processor. Initial research efforts by Shaw in this direction
C. Subproblems resulted in a “schema” wherein time bounds were constructed

There are two components to the prediction of extreme céfoé €ach high-level language construct using time bounds on
performance. To predict the performance of a given piece ig§ constituent parts. Subsequently, these bounds were used
software on a given processor, we must: to provide bounds for entire programs. Subsequent work by

« determine what sequence of instructions will be execute'@W and his coworkers demonstrated the inadequacy of this

in the extreme case—this is referred to as pegram approach, since it was difficult to predict the bounds for
path analysis problem: a high-le\{el language congtruct independent of the. context

. e h h time it will take th temt in which it appeared and independent of the compiler and

compute how much time [t Wil take the system Oexecu&%rget processor. They augmented their initial solution by
that sequence—this requires a modeling of the host p

; hich is referred torai hitectural rrg’r'oviding limited interaction with assembly code to take into
(r;ec;sjglrinsgys em, which 1S referred toraroarchitectural o ccount the effects of program context, compilers, and the

) ) target processor. In contrast, Mek al. [4] use the high-level
Both these aspects need to be studied well in order §goqram description to provide functional information about
provide a solution to this problem. In our research, we hayge program through annotations, which are then passed on
attempted to isolate these aspects as far as possible in@fhe assembly language program. Last, it is the assembly
attempt clearly to understand each problem. The focus of thigguage program that is analyzed to determine the actual

paper is on the program path analysis problem. bounds on the entire program. We believe that this is the
correct approach; the high-level language program is the right
Il. PREVIOUS WORK place to provide useful annotations, since that is what the

A static analysis of the code is needed to see what tREOgrammer directly sees. However, the final analysis must
possible extreme case paths through the code are. Puschnefgn@erformed on the assembly language program in order
Koza [2] observed that this problem is undecidable in genef@l capture all the effects of the actual microarchitectural
and equivalent to the halting problem. In practice, howevdfplementation. Furthermore, aggressive optimizing compilers
designers select algorithms and data structures for embedti@gsform programs so aggressively that high-level language
programs that they believe to be easily bounded. Since @@nstructs no longer maintain a direct correspondence with
programmer must prove to himself that a real-time prografxecuted code.
will terminate, a restricted programming style is typically used. The functionality of the program determines the actual
The above researchers, as well as Kligerman and Stoyenko [Bjths taken during its execution. Any information regarding
have suggested restrictions on programs that make this préis functionality helps in deciding which program paths are
lem decidable. These are absence of dynamic data structuf@asible and which are not. While some of this information can
such as pointers and dynamic arrays; absence of recursion; BAcautomatically inferred from the program, it is widely felt
bounded loops. These restrictions may be imposed throd§it this is a difficult task in general. In contrast, it is relatively
either specific language constructs or programmer annotati@@sier for the programmer to provide such information since
on conventional programs. While specific language construdi€, is familiar with what the program is supposed to' doitial
such as those provided in Real-Time Euclid [3], are usefifforts to include this information were restricted to providing
inasmuch as they provide checks for the programs, they cogfhotations about loop bounds and the maximum execution
with the usual costs associated with a new programmifgunts of a given statement within a given scope. These
language. An entire new set of software development todkere provided through program annotations [2] or annotations
needs to be developed, and programmers need to be traiffed separate timing analysis program [4]. Both of these
in the new language, both of which are costly propositions. [Rechanisms are equivalent in terms of the information that
the absence of optimizing compilers for the new language,tftey provide for analysis. This information, albeit useful, is
is likely that the code quality will be inferior in comparisonvery limited in terms of describing what can and cannot happen
to that produced by the vast array of compilers that exist fétlring the actual program execution. In particular, it does
the established programming languages. Thus, predictabiligt capture any information about the functional interactions
in this case, comes at the cost of performance. This tradebftween different parts of the program.
is not needed, since the restrictions can be enforced by a

mechanism external to the language. Several researchers haVeis has an analog in the domain of digital circuits. There, designer
otations were commonly used to mark paths in the digital circuit that were

. - n
SqueSted the use_ (_)f annotations to existing programs tﬁ r exercised [6]. These paths were then eliminated from consideration in
enforce these conditions. Madt al. [4], Puschner and Koza the timing analysis of the circuit.
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for (i=0; 1<100; i++) { experiments. We observed that the actual computation done by
if (rand() > 0.5) the ILP solver is solving a single linear program. The reasons
J++; for this will be examined in Section IlI-C, and practical data
else supporting this will be presented in Section VI.
k++;

}

Fig. 2. Exponential blowup of paths: an example.

Ill. ILP FORMULATION

A. Objective Function

Subsequent work by Park and Shaw [5] in this area attemptsThe following observation helps us avoid an explicit enu-
to overcome this limitation. Here, they recognize the fact thgieration of paths to determine the best and worst case. Our
the set of all possible path sequences through the progragjective is to determine the extreme case running times and
can be expressed as a regular expression. They then propesenecessarily actually identify the extreme case paths. This
techniques for representing this set of regular expressiasisservation led to the following formulation of the problem.
using a shorthand notation. This is considered to be tg®r the rest of this section, the focus will be the worst case
difficult for use by programmers, and a language [Informatiaiming; the best case can be obtained analogously | éte
Description Language (IDL)] is provided for the users by variable denoting the number of times basic bldgk is
which they can specify most, though not all, path traces thekecuted when the program is executed once. Clearly, the
can actually happen. This is then used to eliminate fropasic block variablez; must be a positive integer. A basic
consideration all possible path sequences that can never ogslgtk of code is a maximal sequence of instructions for which
during the analysis stage. All the paths that are determing only entry point is the first instruction and the only exit
to be feasible by this analysis are then examiegplicitly to  point is the last instruction. Let; be the running time (or
determine the best and worst case paths. cost) of this basic block in the worst case. For now let us

There are several important contributions made by thigsume that; is constant over all possible times this basic
research. The first is recognizing that it is important to providsiock is executed and also that there are practically feasible
information about how different parts of the program interagéchniques for determining this. This issue will be examined
with each other. The second is to recognize that regular @%¥-more detail in Section IV. Thus, for a program withbasic
pressions are capable of describing all possible path sequensiegks, its worst case timing is given by the maximum value
that can and cannot occur. However, there are some drawbagkshe following linear expression:
that arise due to expressing feasible sequences as regular N
expressions. First, as the authors admit, these are not amenable Z o 1)
for specification by programmers. The language interface ~ o
provided to the programmer is an exercise in compromise, N . ) )
giving up full generality for ease of use and analysis. Next, thiithout any additional information, the maximum value of
complexity of computations of negation and intersection f¢piS €xpression iso since anyz; can take on the value ab.
regular expressions may be prohibitive, resulting in the nedis i precisely why this problem is undecidable in general.
for approximate solutions. Last, the need to explicitly examirfeS Pointed out in Section II, however, restrictions must be
all possible feasible paths very often results in an exponentigPosed on the programs if we hope to be able to bound the
blowup since the number of these paths is typically exponentf#Ning times. One of the restrictions is that the bounds on
in the size of the program. The small example shown in Fig.tb_e number _of iterations of each loop must be specified. This
illustrates this point. Here, the functioand() generates a diréctly provides an upper bound for eachthat can be used
random number in the range [0, 1]. The loop B&¥ possible N the gbove expression. The bound obt_amed_ by this method
paths depending on the which branch is taken in each iterati§il typically be very loose, however, since in general the
of the loop. In fact, if the timing cost to incremejitis equal UPPer bound for each; is rarely achieved simultaneously.
to the timing cost to incremerit, all of these paths are worst 1here are two factors that may preclude the upper bounds
case paths. Such scenarios are common in programs, andfé‘Pﬂ’/‘ belng achieved simultaneously. These are illustrated by
analysis technique that explicitly enumerates paths tendst§ following example code fragment:

have limited applicatioR. for (i =0;i<k;i++){
The main contribution of this paper is to provide a method if(OK)
that does notexplicitly enumerate program paths but rather do_something() ;
implicitly considers them in its solution. This is accomplished else {
by converting the problem of determining the bounds to one do_something _else() ;
of solving a set of integer linear programming (ILP) problems. OK= false ;
While each ILP problem can in the worst case take exponential }
time, in practice, exponential blowup never occurred in our 1.

zAgain, in the domain of digital circuits, the initial timing analysis The first factor is that the program structure itself will im-
algorithms that considered the functionality of the circuit elements enumerated diti h ke this i ible. | | h
paths explicitly. More recent work there shows how analysis can be done |g9$e conditions that make this impossible. In our example, the

an implicit consideration of all circuit paths [7]. loop has an upper bound éfiterations. The loop body itself
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if (p) /* p >= 0 */
g=1 q = p;
else while (g<10)
q=2; q++;
r=gq; r = q;
() (b) Fig. 4. An example of thevhile -loop statement and its CFG.
Fig. 3. An example of théf-then-else statement and its CFG.
i = 10; ldl
. . . . store(i); B .
consists of a singl#-then-else statement. If we ignore , - 25, x | hE o= 105
the functionality of the program, in the worst case then  store(n); store(l);
part can have: iterations, as can thelse part. However, V’fi
the mutual exclusion of thé-then-else prevents this void store(int i) By - ge1.
from happening simultaneously. Thus theogram structure { 2 store(n);
imposes conditions on what can and cannot happen in terms “- %‘
. . 2
of execution counts of basic blocks. The second factor that

comes into play is th@rogram functionality This deals with g 5. An example showing how function calls are represented.
what the program is computing. In the above example, the

execution of theelse part sets a condition that precludes ] ]

theelse part from being executed again. Thus, the executiéi@Ph, we have the following constraints:

count of theelse partis at most one. This type of information

is not easily obtained from the program in most cases but is vr=di =dy+ds (2)
something that the writer of the program can provide with Ty =dy =dy 3)
relatively less difficulty. So we need to maximize (1) while x3 =ds =d; (4)
taking into account the restrictions imposed by the program 2y =dy + ds = dg. (5)

structure and functionality.
Fig. 4 shows awhile -loop statement and its CFG. The

B. Linear Constraints constraints extracted from this CFG are
Since (1) is a linear expression, it would be nice if we 1 =d = dy (6)
could state the program structure and functionality restrictions
in the form of linear constraints. This will enable us to use vy =dy +dy = d3 +ds (7)
ILP to determine the maximum value of the expression. In r3=dg =dy 8
this section, we demonstrate how both the program structure T4 =d5 = dg. (9)
and the program functionality restrictions can be specified in
the form of sets of linear constraints. Note that the above constraints do not contain any loop

1) Program Structural ConstraintsSince these constraintscount information. This is because the loop count information
arise from the program control flow graph (CFG) [8], they caflepends on the values of the variables, which are not tracked
be automatically extracted from the CFG. This is illustrated in the CFG. However, the loops can be detected and marked.
Fig. 3 for a program fragment containing #ithen-else After all structural constraints are constructed, the user is asked
statement. We label the edges and the basic blocks by varialitegrovide the loop bounds as part of specifying the program
d; and z;, respectively [Fig. 3(b)]. These variables represefignctionality constraints (see Section 1lI-B2).
the number of times that the program control is passing The function calls are represented by using fhedges in
through those edges and basic blocks when the progranthie CFG as shown in Fig. 5. Afi-variable is similar to ai-
executed. Here, for illustration purpose, the code in each nodwiable, except that its edge contains a pointer pointing to the
of the CFG is shown in the source level code. In actuflFG of the function being called.
implementation, the assembly code is analyzed to construct thd'he construction of the structural constraints in the caller
CFG. Each node contains a sequence of assembly instructidigetion remains the same. In the example, the structural

The constraints can be deduced from the CFG as followganstraints of the caller function are
At each node, the execution count of the basic block must be
equal to both the sum of the control flow going into it and Ty =dy = fi (10)
the sum of the control flow going out from it. Thus, from the z2 = f1 = fo. (11)
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1: check_data () check_data ()

2: { {

3: int 1, morecheck, wrongone; X7 if (wrongone >= 0)

Xg return 0;

4: X1 morecheck = 1; i1 = 0; wrongone = -1; else

Xg return 1;

5: while (morecheck) { }

6: X if (datali] < 0) {

7: X3 wrongone = 1i; morecheck = 0; task ()

8: } {

9: else fio status = check_ data();

10: x4 if (++1 >= DATASIZE) X11 if (!status)

11: x5 morecheck = 0; fiz clear_datal() ;

12: xg }

}

13 X7 if (wrongone >= 0) Fig. 7. An example showing how the path relationship between the caller

14:  xg return 0; and callee functions can be specified.

15: else

16:  xo return 1;

17: } Here,z; is the count for the basic block just before entering
Fig. 6. check _data example from Park’s thesis. Basic block variakles) the loop and; is the C_Ount for the first basic plOCk of the |0_0p
are labeled alongside with the source code. body. These two variables can be determined automatically

from the CFG. The user only needs to provide the values one
and ten.

TEednLémbker Of_ tlmer? thaé the fun_ctl_on IS executed C?]r_' beThe minimum user information required to perform timing
_trz?c ed by knowing t ef(—jebges pointing to it. Here, this analysis is the loop bound information. After that, the user can
Information is represented by provide additional information so as to tighten the estimated

_ 12 bound. For example, we see that inside the loop, lines 7 and 11
dy=fi+ f2 12) . . :
are mutually exclusive, and either of them is executed at most

whered, represents the count of the starting edge of the callggce. This information can be represented by the following
function store() 's CFG. For the main function, since it isUSer constraint:
only executed once, the count of its starting edge must be _ o _ o
equal to one. Therefore, if variabtg represents the count of (w3 =0& w5 =1)l(ws =1 & 25 = 0). (16)
this edge, the following constraint is constructed: The symbols “&” and 1" represent conjunction and dis-
junction, respectively. Note that this constraint is not a linear
dy = 1. (13)  constraint by itself but a disjunction of linear constraint sets.

. . . . This can be viewed as a set of constraint sets, where at least
2) Program Functionality ConstraintsAs described pre- . e
oni constraint set member must be satisfied.

viously, these constraints are used to denote loop bounds an .
other path information that depend on the functionality of th S another example, we also note that lines 7 and 14 are
P P y glways executed together, and each of them will be executed

program. Currently, the user ainderella (typically the t most once. This can be represented b
author of the program being analyzed) is expected to provige ' y

these constraints. In the future, we envisage some of this being (r3=0& 25 =0)|(x3 =1 & zg = 1). (17)

done automatically by using data flow analysis. We illustrate ) o o o )

the use of these constraints to capture conditions on feasibld he path information is not limited to within a function.

program paths with the example (Fig. 6) taken from park’Ehe user can also specify the path relationship between the

thesis [5]. caller and callee functions. This is illustrated in the example
Functioncheck _data() checks the values of the arrayShown in Fig. 7. _ _

data[] . If any of the values are less than zero, the function e See that functiorclear _data() will only be ex-

will stop checking and return zero immediately; otherwise, ficuted if the return value from functiooheck data()
will return one. is zero. More precisely, the number of times that function

The loop count of thewhile -loop in the function is clear -data() is called atf;, must be equal to the execu-
bounded by one anATASIZE, i.e., the loop will be executed tion count of basic block3s when functioncheck _data()
at least once and at moSIATASIZE times. Suppose that is called at the position represented fy. This information
DATASIZE is previously defined as a constant value tef@n be represented by the constraint
Then to spgmfy this Ioop. bound information, the following fi2 = 8. f10. (18)
two constraints are used:
Here,zs.f1o iS a variable representing the execution count of
Lry a2 (14)  pasic blockBs when functioncheck _data() is called at
Lo <10z1. (15) the position represented by variabfg,. This variable differs
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TABLE | x; for (i = 0; i < 11; i++)
THE FUNCTIONALITY CONSTRAINTS FORFUNCTION check _data() ARE X2 if (i mod 3 == 0)
EXPANDED INTO FOUR FUNCTIONALITY CONSTRAINT SETS. AT LEAST ONE OF X s s
THEM MusT BE SATISFIED. NOTE THAT SETS 2 AND 3 ARE NULL 3 7=
SeETS BECAUSE OF THE CONTRADICTING VALUES ON VARIABLE &3 else
X4 ++3;
Set 1 Set 2 Set3 Set 4
afn  msn  w<n o FI5 i Sharple cote egment o Justite o the fuctonlty con
X2S10X1 XzS]OX] x2£10x1 XQS]O.X] P 9 prog '

X3=0 )C3=1 X3=O X3=1
xs=1 xs=0 xs=1 x5 =0 solver in effect has implicitly considered all paths (different
=0 x=0  x=I x3=1 assignments to the;) in determining the worst case.
=0 =0 =1 =1 Clearly, the solving time is directly proportional to the

number of functionality constraint sets. This number is doubled

from w5, which represents thiotal execution count of basic every time a functionality constraint with disjunction operator
’ “|” is added. While no theoretical bounds on this can be

block Bg during the execution of the program. If function | ) h hat | ) his i
check _data() is only called atf;o, then derived, our observations have been that in practice, this is

not a problem. There are two ways to reduce the number of

zs = 3. f10 (19) functionality constraint sets. The first is to use more sophisti-
L . ...cated linear constraints to describe the same path information

But suppose that the function is called again at some position ; . . .

£ then In"a more concise way without using th¢ ‘operator. For

7 example, the functionality constraint (17) can be replaced by

s = xs.f10 + xs.fj. (20) z3+ x5 = 1. And the second functionality constraint (17) can

This approach can be thought of as inlining an instance bg replaced byes = xs. These two functionality gonstraints

the callee function at each function call location. And eacg},I not have th(_a X o_perator. T_herefore, there will be_ only

. . . , e set of functionality constraints. Yet, the new functionality

instance of the callee function has its own set of basic blo%nstraints bound the feasible valuesaof x5, and zs the

vangbles. . . . . same way as the original ones do.
Since the functionality constraints are serving the sameTpa second way to reduce the number of functionality

_purppse as const.ru.cts_ in the ,'DL language provujed by,P%gnstraint sets is to detect the existence of null set—i.e., the
in his work [5], it is instructive to compare their relative

. h b bl q &sﬁet with no solutions—before calling the ILP solver. Although
expressive powers. We have been able to demonstrate &L ILP solver can detect the existence of a null set much

our mechanism for providing the functionality constraints faster than actually solving the solution, the detection of null
more pgwerful tha_m the IDL language. A complete proof Iﬁmctionality constraint sets is trivial in many cases (e.g.,
shown in Appendix A. 3 = 1 andzs = 0 in Table I) and can be checked when
) ) new functionality constraints are added. The functionality

C. Solving the Constraints constraints within a set are maintained in a sorted order. When

The program structural constraint set is a set of programsimple functionality constraint of the form, > b is added,
structural constraints that are conjunctive, i.e., they must all lieis checked with the constraints, < ¥ in the set and
satisfied simultaneously. Due to the presence of the disjunctidetermines if a null set will result. Other, more complicated
“|” operator, the program functionality constraints may, ifunctionality constraints are added to the set unchanged.
general, be transformed into a disjunction of conjunctive The other computational issue is the complexity of solving
constraint sets. There may be one or more functionaligach ILP problem. In general, this problem is known to be NP-
constraint sets. At least one of these program functionalitpmplete. However, there are certain special cases that have
constraint sets must be satisfied for any assignment to t@ynomial time solutions. Since the structural constraints are
z;. For example, the functionality constraints of functiomlerived from the CFG, which is a network flow graph, they
check _data() [(14)—(17)] are expanded into four function-exhibit very good integer property. We were able to show that
ality constraint sets shown in Table I. when they are combined with the functionality constraints that

To solve the estimated bound, each of the functionaligorrespond to the constructs in the IDL language, the resultant
constraint sets is combined (the conjunction taken) with theP problem has an optimum integral solution, i.e., the ILP
set of structural constraints. This combined constraint setgsoblem collapses to an LP problem, which can be solved in
passed to the ILP solver with (1) to be maximized. Thpolynomial time. The complete proof is shown in Appendix B.
ILP solver provides the maximum value of the expressiddowever, the full generality of the functionality constraints can
and solves basic block variables that result in this maximurasult in its being a general ILP problem. In practice, however,
value. The above procedure is repeated for every functionalitys was never experienced. In general, we found that the more
constraint set. The maximum over all of these running timesascurate the path information, the higher the likelihood that the
the maximum running time of the program. Note that a singleP problem will have an integral optimum solution. This is
value of the basic block counts for the worst case is providedillustrated in the code fragment shown in Fig. 8.
the solution even if there may be a large number of solutions,In this example, the loop body is iterated 11 times. Hence,
all of which result in the same worst case timing. The ILWe havers + x4 = 11. Suppose thats; > ¢4 and the user pro-
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Executable file the annotated source files, where the basic block varigbl¢s
_ are labeled beside the source code (Fig. 6). Then, for all loops
Source files . . .
Functionality constraints in the program, it asks the user to provide the loop bounds.
f This is the minimum information that is needed to solve the

cinderella timing bounds, and an initial estimate of these bounds can be
obtained at this point. To tighten the estimated bound, the user

can provide additional functionality constraints and reestimate

Annotated files the bounds. After each estimaticzinderella  outputs the
Esti estimated bound and the basic block costs and counts.
stimated bound, . .. .
block counts Currently, cinderella is implemented to estimate the

running time of programs running on the Intel iI960KB pro-
cessor, i.e., its built-in microarchitectural model is a simplistic
] ) ) ] ] one for the i1960. The i960KB processor is a 32-bit reduced
vides a functionality constraint; < x4. Then the nonintegral jnstryction set computer processor that is being used in many
optimum solution will givezs = x4 = 5.5 and the integral ¢mpedded systems (e.g., in laser printers). It contains an on-
solution will be z3 = 5 and x4, = 6. This constraint does chij floating point unit and a 512-byte instruction cache [11].

not tightly bound that actual paths. We can further tighten thg,g instruction cache is direct mapped and the line size is 16
solution by noting that since the loop index is iterated frorﬂytes.

zero to ten;zz = 4. This functionality constraint will override

the previous one and will also result in an integral optimum
solution. VI. EXPERIMENTAL RESULTS

Fig. 9. Block diagram ofcinderella

As described in Section IlI-A, the estimated running time
IV. MICROARCHITECTURAL MODELING of a program is given by the expression

As mentioned in Section I-C, the emphasis of this pa- N
per is on the path analysis problem; the issues related to Zczxz
microarchitectural modeling will be dealt with separately. i=1
Currently, we are using a simple hardware model to determing L .
the bound of the running time of a basic block. For eac?%ur solution is not guaranteed to give the exact bounds, and
assembly instruction in the basic block, we analyze its adjac:%rﬁ
instructions within the basic block and determine its boun
[tinins timax] from the hardware manual. The bound of th : L . ) ;
complete basic block is obtained by summing up all the bounggm the inaccuracies in the microarchitectural modeling. It

of the instructions using Shaw’s methodology [9]. The sum (?n be_ redu_cgd b_y Improving the modeling. The Iatter_ls

two boundst,.. ¢, |and[t,... ,t, ]is equal to the bound ue to insufficient information in the program path analysis,

i+t ”t‘{‘*“’ ;t" ] Thie model can handle pipeliningwhere some infeasible paths are considered to be feasible.
Tmax J .

reasonai)nlg}];/vell. However, it is very simplistic in its approac his can hopefully be reduced by providing more functionality

to modeling cache memory. For the best case running time, ﬁ%n_stramts. .

assume that the execution always has cache hits, whereas fo§|nce our current work focuses on the path analysis problem,

the worst case running time, we assume that the execution Wi WOUId. I[ke to evaluate the efficacy of our method_ology
determining the worst and best case paths. Experiment 1

always result in cache misses. This is clearly a conservative ibed below is directed t d luating th S
approximation and needs to be tightened. We have exten Sor'oed below s directed foward evaluating the pessimism

our method to model the cache memory. The cache modelfrqﬂpath analysis. In add.ition, we conductgd Experiment 2,

is described in [10] and is beyond the scope of this paper.W. h the goal of measuring the inadequacies in our current
microarchitectural modeling. Here, we compare the estimated

running time given bycinderella and the actual running

time obtained by measuring the execution time of the program
We have developed a tool callethderella  °that incor- on an evaluation board.

porates the ideas presented in this paper for timing analysis.
It is written in C+4 and contains approximately 200005 Experiment 1: Evaluating the Path Analysis Accuracy

lines of code. The formulated ILP problems are passed to a_. h blished benchmark hi
public-domain ILP solvelp _solve .4 Fig. 9 shows the block  >"c€ there are no established benchmarks for this purpose,

diagram ofcinderella we collected a set of example programs from a variety of
cinderella first reads the executable code for the pro's_ources for this task. Some of them are from academic sources:

gram. It then constructs the CFG’s and derives the progra{Fﬂm Arnold [12] and Park [5] on timing analysis of software

structural constraints. Next, it reads the source files and outpﬁ&.d a!so from Gupta’s thesis [13] on the hardware-software
codesign of embedded systems. Others are from standard
3Details of the tool can be obtained via tleinderella Web page:

http://www. ee.princeton. edwyauli/cinderella. DSP applications, as well as software benchmarks used for

4lp _solve was written by M. Berkelaar and can be retrieved by Anony-evaluatmg optlm|2|ng compllers. There is also an gppllcatlon
mous ftp: ftp.es.ele.tue.nl Directory: /pub/ip\_solve. program calleddjpeg , which decompresses JPEG images. It

1general, some pessimism will be introduced into the estima-
n. There are two sources for the pessimism: the pessimism
¢; and the pessimism im;. The former pessimism results

Tmax

Tmin max

V. IMPLEMENTATION
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TABLE 1l
SET OF BENCHMARK EXAMPLES
Program Description Lines Bytes
check data Example from Park’s thesis 23 88
circle Circle drawing routine (from [13]) 100 1,588
des Data Encryption Standard 192 1,852
dhry Dhrystone benchmark 761 1,360
djpeg Decompression of 128x96 color JPEG image 857 5,408
fdect JPEG forward discrete cosine transform 300 996
fft 1024-point Fast Fourier Transform 57 500
line Line drawing routine (from [13]) 165 1,556
matcnt Summation of 2 100x 100 matrices, (from [12]) 85 460
piksrt Insertion Sort of 10 elements 19 104
sort Bubble sort of 500 elements, (from [12]) 41 152
stats Calculate the sum, mean and variance of two 1,000-element arrays, (from [12]) 100 656
whetstone  Whetstone benchmark 196 2,760

is the biggest and most complicated program being analyzedsince basic block costg; are isolated, only the second effect
this research area. A full description of these programs, th&raccounted for in the calculated bound.
source-level line sizes, and their binary code sizes is showrNote that in order to determine the actual upper (lower)
in Table II. bound on the execution time, we would actually have to run
We studied each program carefully and determined tliee program for all possible inputs. This is clearly not feasible.
loop bounds and other path information as much as possibléaus, we have replaced this step by trying to identify the
This information is fed intocinderella in the form of best (worst) case data set by a careful study of the program.
functionality constraints to obtain the estimated bound. For simple programs likeheck _data and sort , this is
Our objective in this experiment is to validate the accuradyivial. But for complicated programs likdes and djpeg ,
of the program path analysis. This implies comparing thebecomes extremely difficult. In this case, we generated a
values ofz; with the actual measured basic block executioseries of data sets that we believed would result in execution
counts. A program may have more than one extreme cadsees close to the extreme case execution times. We took those
execution path, however, and therefore there may exist mahat resulted in the shortest and longest execution times. The
than one set of basic block execution counts that result iasic block counts were measured by inserting counters into
the same extreme case execution time. For this reason, tiwe basic blocks of the program and executing the program
compared the estimated bound with thalculated bound, with the extreme case data sets.

which is equal to The result of this evaluation is shown in Table Ill. The
second column indicates the number of constraint sets being
N passed to the ILP solver. Of the eight constraints sets of
Zc?est % measured)|oc|u;our1rjg>est—data7 function dhry , five of them are detected as null sets. They
=1 are eliminated, and the remaining three sets are passed to
N the solver. The pessimism in the evaluation is defined as
ch"om x measureclock counterst-data | the relative difference between the calculated bound and the
i=1 estimated bound and is calculated as follows:
Calc. lower— Est. lower
Here, cbest and ™"t are the best (shortest) and the worst lower = Calc. lower
(longest) execution times of basic blo&k. They are identical Est. upper Calc. upper
to those used byinderella in computing the estimated upper= Calc. upper .

bound. By using the same costs in the estimated bounds and
the calculated bounds, the pessimism due to the costs was ndtll estimated bounds correctly bound their corresponding
accounted for in this experiment. calculated bounds. We also see that when given enough
To measure the extreme case basic block execution couimfrmation, the path analysis can be very accurate. The
we need to determine the best and worst case input dataeption is the upper bound of tigeg program. The main
for each program. The input data affect the running timeason for this discrepancy is due to the Huffman decoding
of a program in two ways. In the microarchitectural levekoutine in the program. For computing the upper estimated
the execution times of some instructions, such as floatibgund, we assume that in the worst case, all 64 coefficients
instructions, are data dependent, which may in turn dependiarevery 8 x 8 block are random, and hence no compression
the input data. In the program path level, the input data may the coefficients is achieved. But for every random image
effect the branch decision taken at each compare-and-bramehgenerated for the worst case measurements, some sort of
instruction. This will in turn affect the execution path andompression is still achieved. Therefore, each Huffman symbol
hence the execution time of the program. In this experimemakes longer to fetch in the worst case estimation than in our
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TABLE I
PESSIMISM IN PATH ANALYSIS. THE ESTIMATED BOUND AND THE CALCULATED BOuNnD ARE IN UNITS oF CLock CYCLES
Constraint Estimated Bound Calculated Bound Pessimism
Program Sets lower upper lower upper | lower | upper
check.data 4=2 35 1,193 35 1,193 0.00 0.00
circle 1 431 15,958 431 15,726 0.00 0.01
des 2 73,912 672,298 75,033 667,127 0.01 0.01
dhry 8=3 314,266 1,326,475 314,266 1,326,475 0.00 0.00
djpeg 1 12,703,432 | 122,838,368 | 12,925,769 | 98,696,050 0.02 0.24
fdct 1 5,587 16,693 5,587 16,693 0.00 0.00
fft 1 1,589,026 3,974,624 1,593,122 3,974,601 0.00 0.00
line 1 380 9,148 380 9,148 0.00 0.00
matcnt 1 1,722,105 8,172,149 1,722,105 8,172,149 0.00 0.00
piksrt 1 236 5,862 236 5,862 0.00 0.00
sort 1 13,965 50,244,928 13,965 | 50,244,928 0.00 0.00
stats 1 1,007,815 2,951,746 1,007,815 2,951,746 0.00 0.00
whetstone 1 5,634,926 14,871,610 5,634,926 | 14,871,610 0.00 0.00

TABLE IV
DiSCREPANCY BETWEEN THE ESTIMATED BOUND AND THE MEASURED BOUND. THE ESTIMATED BOUND AND THE MEASURED BOUND ARE IN UNITS OF CLock CYCLES
Estimated Bound Measured Bound Pessimism
Program lower upper lower upper | lower | upper
check_data 35 1,193 35 430 | 0.00 1.77
circle 431 15,958 585 14,483 0.26 0.10
des 73,912 672,298 111,468 243,676 0.34 1.76
dhry 314,266 1,326,475 575,492 575,622 0.45 1.30
djpeg 12,703,432 | 122,838,368 | 14,975,268 | 35,636,948 0.15 2.45
fdct 5,587 16,693 7,616 9,048 0.27 0.84
fft 1,589,026 3,974,624 1,719,813 2,204,472 0.08 0.80
line 380 9,148 929 4,836 0.59 0.89
matcnt 1,722,105 8,172,149 2,202,276 2,202,698 0.22 2.71
piksrt 236 5,862 337 1,705 0.30 2.44
sort 13,965 50,244,928 16,492 9,991,172 0.15 4.03
stats 1,007,815 2,951,746 1,158,142 1,158,469 0.13 1.55
whetstone 5,634,926 14,871,610 6,935,612 6,935,668 0.19 1.14

actual test runs. This benchmark program also illustrates ttese data set, so that the cache was filled with the program’s

point that timing simulation has its limitation in determiningcode. We then executed the program with its best case data

the worst case execution time, as the worst case input da&é again and measured its execution time.

may not be determined. Table IV shows the results of this experiment. The estimated
As shown in the table, the number of constraint sets is velopund is the same as in Experiment 1. The measured values

small, usually one. Also, the CPU times taken for this analysiescribed above are shown in the measured bound column.

were insignificant, less than 2 s on an SGI Indigo Workstatiorhe pessimism is calculated from the following formulas:

in each case. This is largely due to the fact that the branch- Mea. lower— Est. lower
and-bound ILP solver finds that the solution of the very first lower = Mea. lower
linear program call it makes is integer valued. Est. upper; Mea. upper
upper= .
PP Mea. upper

B. Experiment 2: Comparison with Actual Running Times  \ve ohserve that while the estimated bound does enclose
In this experiment, we measured the actual running tintke measured bound, the pessimism in the estimation is rather
of the program and compared it with the estimated bounkigh. This is mainly due to the fact that a simple hardware
Each program was compiled by an Intel i960 C compiler amodel is used. In particular, the lower pessimism is generally
a PC and then downloaded onto an Intel QT960 board [14}naller than the upper pessimism. The main reason is that
which is a development board containing a 20-MHz i960KB1 computing lower estimated bound, we assumed that all
processor, memory, and some other peripherals. To deternimgruction fetches would result in cache hits. This is close to
the upper measured bound, we flushed the cache memaory tingt actual cache hit ratio, which is typically around 90%. But
before executing the program with its worst case data set. Tioe computing the upper estimated bound, we conservatively
execution time was measured by a logic analyzer. For lowassumed that all instruction fetches would result in cache
measured bound, we executed the program first with its besisses. This pessimistic assumption results in a loose up-
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TABLE V

TRANSFORMATION FROM IDL TO FUNCTIONALITY CONSTRAINTS
Description IDL information clause  Functionality Constraint
Statement A is always executed.  always(4) x4 21
Statements A and B are always samepath(A, B) xa21&xg21) | (xa=0& x5=0)
executed together.
No execution path passes nopath(4, B) x4=0]xp=0
through both statements A and B.
Statements A and B are mutually exclusive(A, B) xa21&xp=0)| (xa=0&x21)

cxclusive.
Statement A is executed between execute A [/, u] times I<xs &xs<u
{ and u times.

If statement C is executed, then C imply /¢ x¢ =0 | (functionality constraint of Ir)
information clause /¢ is valid.

Loop L is iterated between [ and loop L [/, u] times Ixp <xp & xg <uxp,

u times.

where B is the first statement in the loop body.

per estimated bound. A more sophisticated microarchitectulsd the basic block variable representing the execution count
modeling, including cache modeling, will certainly improveof the statementd. Table V shows the transformation.
the accuracy of the estimated bound. The loop information clauses are used to specify loop
bounds. Other information clauses are used to provide addi-
tional path information. Each of these is transformed into a set
of linear constraints of the form; > b, whereb is an integer.

In this paper, we have presented an efficient method [{fore complicated path information, such as that the execution
estimate the bounds of the running time of a program oncgunt of a statement is no greater than that of the other, cannot
given processor. The method uses integer linear programmgrepresented by IDL. The functionality constraints overcome

techniques to perform the path analysis without explicit pathis disadvantage. The above path information can be easily
enumeration. It can accept a wide range of information ¥pressed as 4 < zp.

the functionality of the program in the form of sets of linear
constraints. A tool calle¢inderella has been developed
to perform this timing analysis. Experimental results on a set
of examples show the efficacy of this approach.

Future work includes improving the hardware model to take This appendix describes the conditions under which the
into account the effects of cache memory and other featu@fimum solution of the ILP problem is guaranteed to be
of modern processors that tend to make the timing relativdjtegral values. We will show that for a structured program
nondeterministic. In addition, we would like also to explor&ith functionality constraints derived from Park’s IDL, the
the possibility of using data flow analysis techniques to deriyeP problem collapses to an LP problem.
automatically some of the functionality constraints that are Proof:
currently being provided by the user. Last, we are working on  Case 1: If the program contains no loops and all func-
porting cinderella to handle programs running on Otheﬂ:ionality ConStI’ain'[S prOVided by the user are derived from
hardware platforms. In this direction, in collaboration witf*ark’s IDL, then the CFG becomes a simple network flow
AT&T, we have completed a port for the AT&T DSP32109raph and the functionality constraints are of the farn> b,
processor. This is intended for use in the VCOS operatiN@ereb is an integer. These constraints essentially bound the

system to bound the running times of processes for usefi@w at the nodes of the graph. As a result, the problem of
scheduling. determining the estimated bound is equivalent to a network

flow program, which is known to have an integral optimum
solution because of the total unimodular property [15].
Case 2: If there is a single loop in a structured program,

and the loop bound is provided &s; < rp < uxr, where

This appendix shows that the functionality constraints dé-and « are positive integers denoting the lower and upper
scribed in Section 1lI-B2 are at least as powerful as tHeop bounds, basic bloci;, is the basic block just before
IDL devised by Park [5]. This is done by showing thathe loop is entered an8p is the first basic block in the loop
every information clause in IDL can be represented by thedy. Here, the loop bound constraints are not in the form
functionality constraints. z; > b as in Case 1, as there are variables on both sides of

In IDL, each statement is labeled by an upper case alphalige inequality. If we can show that;, is always an integer in
The statement corresponds to a basic block in our case. In tmimum solution, however, then the loop bound constraints
following, if A is a statement label used in IDL, then will  will be transformed to the formf’ < zp < v/, and we can

VII. CONCLUSION AND FUTURE WORK

APPENDIX B
INTEGER PROPERTY OFILP FORMULATION

APPENDIX A
FUNCTIONALITY CONSTRAINTS VERSUSIDL
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apply the result in Case 1 to prove that all basic block variabl@g] Intel Corporationj960KA/KB Microprocessor Programmer’s Reference
are integral. Manual Santa Clara, CA: Intel Books, 1991.

. .. [12] R. Arnold, F. Mueller, D. Whalley, and M. Harmon, “Bounding worst-
Because of the structured program, the CFG is redumb[e, case instruction cache performance,” Roc. 15th IEEE Real-Time

and the whole loop can be reduced to a single node in the CFG Systems SympDec. 1994, pp. 172-181.

YA ; ; ; [13] R. K. Gupta,Co-Synthesis of Hardware and Software for Digital Em-
_[8]’ with its execution count equal 0. Smce_ there_ ISNo |00p bedded SystemBh.D. dissertation, Stanford University, Stanford, CA,
in the reduced graph, the reduced graph is a simple network pec. 1993. _
flow graph, and therefore;, must be an integer no matter whalﬁg% lAntelsclfrporLaﬂon, “lgT%O user minu?l,t” %amta Clar{ﬂtth C/f, }_99?_-

. ultan, Linear Programming, An Introauction wi pplications.

the cost of the Ioop and the loop bound are. Consequenﬂy, New York: Academic, 1993.
must also be an integer, as are the rest of the basic block
variables inside the loop.

Case 3: If there are nested loops in the structured pro-

gram, we can apply the proof from Case 2 to reduce the Yau-Tsun Steven Lireceived the B.A. (first-class

loop into a node repeatedly from the innermost level to tt honors) degree in engineering and computer science

outermost level. Then, by using the result from Case 2 aga from Oxford University, U K., in 1992 and the M.A.
and Ph.D. degrees in electrical engineering from

we can show that all levels of loop bounds can be transform L Princeton University, Princeton, NJ, in 1994 and

to the form!’ < xp </, and hence all basic block variables N 1997, respectively.
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