
31.1

Software Synthesis of Process-Based Concurrent Programs
Bill Lin

Electrical and Computer Engineering Department, University of California, San Diego, La Jolla, California, 92093-0407

Abstract- We present a Petri net theoretic approach to the software
synthesis problem that can synthesize ordinary C programs from process-
based concurrent specifications without the need for a run-time multi-
thrending environment. The synthesized C programs can be readily retar-
geted to different processors using available optimizing C compilers. Our
compiler can also generate sequential Java programs as output, which can
also be readily mapped to a target processor without the need for a multi-
threading environment. Initial results demonstrate significant potentials for
improvements over current run-time solutions.

I. INTRODUCTION

OFTWARE is playing an increasingly important role in embedded S systems. While high-level language compilers exist for implement-
ing sequential programs on embedded processors [17]. e.g. starting
from C [lo], many embedded software applications are more naturally
expressed as concurrent programs, specified in terms of communicat-
ing processes. This is because typically actual system applications are
composed of multiple tasks.

Currently, the most widely deployed solution is to use an embed-
ded operating system to manage the run-time scheduling of processes
and to handle the inter-process communication. However, this solution
tends to add significant overhead in program size, run-time memory
requirements, and execution time.

Several altemative high-level approaches have been proposed. Static
data-flow solutions [2], successfully used to design DSP-oriented sys-
tems, achieve compile-time scheduling at the expense of disallow-
ing conditional and non-deterministic execution. Other researchers
have considered hybrid approaches [7], [181 that generate application-
specific run-time schedulers to handle the multi-tasking of conditional
and non-deterministic computations. Reactive approaches, e.g. Es-
terel [I], rely on a strong synchrony hypothesis that makes two fun-
damental assumptions: the existence of a global clock abstraction to
discretize computation over instances, and computation takes no time
within each instance. This hypothesis is difficult to satisfy for dis-
tributed implementations and may not match naturally to many appli-
cations from a specification standpoint.

In contrast, our work is based on a model of asynchrony where the
concurrent parts can evolve independently and only synchronize where
specified. Recently, we introduced a new Petri net theoretic software
synthesis method based on a new Petri net theoretic technique that can
synthesize efficient embedded software implementations from asyn-
chronous process-based specifications without the need for a run-time
scheduler [ll]. This approach has been implemented in a system under
development called Picasso. In this paper, we further develop on our
approach. We also briefly describe a new Java-based implementation,
in addition to our earlier C-based implementation.

The remainder of this paper is organized as follows: Our specifica-
tion model is introduced in Section II. The Perri net intermediate rep-
resentation is introduced in Section III. The software synthesis method
is detailed in Section IV. Initial results from an encryption example are
presented in Section V.

11. SPECIFICATION

Our programs are hierarchically composed of processes that com-
municate through synchronizing channels. The semantics is based on

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage, the copyright notice, the title of the publi-
cation and its date appear, and notice is given that copying is by permission of ACM,
lnc. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 98, San Francisco, Califomia
0 1998 ACM 0-8979 1 -964-S/98/06. .$5 .OO

the CSP formalism [9], but the syntax is similar to C. Consider the fol-
lowing simple example composed of two processes called ping and
p o w .

1 ping (input chan(int) a, output chan(int) b) {
2 int x;
3 f o r (; ;) {
4 x = <-a; / * receive * /
5 if(x < 100) x = 10 - x;
6 else x = 10 t x;
7 b <-= x; / * send * /
8 1 1

9 pong (input chan(int) c, output chan(int) d) {
10 int y, z = 0;
11 for (;;) {
12 d <-= lo;/* send * /
13 y = <-c; / * receive * /
14 z = (z t y) % 345; / * send * /
1 5 11
16 system () {
17 chan(int) cl, c 2 ;
18 par {
19 ping (c2, cl);

Channels are declared using the chan statement, as exemplified in
Line I. The unary receive operator, <-, receives data on the channel
specified as its right operand. The received value may then be manipu-
lated by other operators, e.g. it can be assigned to a variable, as exem-
plified in Line 4. The send operator, <-=, transmits the result of the
expression provided as its right operand on the channel specified as its
left operand, as exemplified in Line 7. Basic control-flow constructs,
like if-then-else, for-loops, and while-loops, and basic arith-
metic and relational operators, like t, -, *, %, and >, >=, ==, ! =, are the
same as in C. There is also an alt construct [9], not used here, that pro-
vides a mechanism for non-deterministic execution. Finally, processes
can be hierarchically composed to form larger systems, as exemplified
by the process system. The par statement executes the statements
in its body in parallel and joins the threads of execution at the end by
waiting for all processes to terminate before proceeding.

111. INTERMEDIATE REPRESENTATION

A. Petri nets
Let G = (P, T, F, mo) be a Petri net [141, where P is a set of places,

T is a set of transitions, F E (P x T) U (T x P) is the flow relation,
and mo : P + N is the initial marking, where N is the set of natural
numbers. The symbols et and t o define, respectively, the set of input
places and the set of output places of transition t. Similarly, ep and
po define, respectively, the set of input transitions and the set of output
transitions of place p . A place p is called a confIictplace if it has more
than one output transition. Two transitions, ti and t j are said to be in
conflicr if and only if .ti f l ot j # 8. A state, or marking, m : P + N ,
is an assignment of a non-negative number to each place. m(p) denotes
the number of tokens in the place p . A transition t can Ere at marking
ml if all its input places contain at least one token. The firing of t
removes one token from each of its input places and adds a new token
to each of its output places, leading to a new marking m2. This firing
is denoted by mi 4 m2. Given a Petri net G, the reachability set of
G is the set of all m a r h g s reachable in G from the initial marking
mo via the reflexive transitive closure of the above firing relation. The

502

corresponding graphical representation is called a reachability graph. B. Expansions
A Petri net G is said to be live if \ft E T, 3m reachable from theinitial
marking mo such that t is enabled. It is said to be safe if in every
reachable marking, there is at mo:;t one token in any place. In this case,
we can simply represent each mrirking m : P -+ (0,l) as a binary
assignment.

IRI (Expansion) An expansion is an acyclic Petri net
with the following properties: . There is one or more places without input transitions.

There is one or more places without output transitions.
There are no transitions without at least one input place or one

B. Intermediate construction output place.
The places without input transitions are called initialplaces. The places
without output transitions are called cut-offplmes.

Definirion 1x2 (~ a x i ~ a l expansion) Let G be a pebri net and let
be a

In [4], [19], a process algebra v m developed for constructing apetri
net model from a program of cominunication processes. Consider again
the example presented in Section II. The derived Petri net models for
processes ping and pong shown in Fig. l(a> and Fig. I@), respec-
tively, along with their initial markings.

of G. ne malmal expansion of G with respect to m, E,
is an acyclic Petri net with the following properties:

(Cl

(a) (b) (C)
c2: x=<-a c2: d<-=:LO c2: x=10
b: (x<O) cl: Y=<-c: b: (x<O)
C: x=lO-X f: Z = (Z . ’ - y) % 3 4 5 C: X=lO-X
d: x=lO+x d: x=lO+x
cl: b<-=x cl: y=x;

f : z= (zty) 8 3 4 5

Fig. 1 . (a) ping (b) pong (c) system = ping 11 pong

Concurrent processes can be composed via parallel composition. In
parallel composition, communicat:Lon actions in fact form synchroniza-
tion points and are joined together at their common transitions. This is
illustrated in Fig. l(c).

The initial places correspond to m.
The cut-off places correspond to the set of places encountered
when a cycle has been reached.
E is transitively closed: for each t E E or p E E, all preceding
places and transitions reachable from m are also in E.

m is referred to as the initial marking.
Intuitively, the maximal expansion of G with respect to a marking

m corresponds to the largest unrolling of G from m before a cycle has
been encountered. Consider the example shown in Fig. 2(a). The corre-
sponding maximal expansion with m = (pl,p2) is shown in Fig. 2(b).

t? P3 b

I I

g: :g
, P3

Iv. SOFTWARE s YNTHESIS METHOD
4. Classes of Petri nets

P : lop1 = 1 = /pol. MGs cannot model conficts.

2’ : lot1 = 1 = It.[. SMs cannot niodel concurrency.

dt1t2 E T,tl # t2 : et1 fl o t : ~ # 0 + Iotll = 1 I= IotzI, or

A Marked Graph (MG) is a net G = (P, T, F, mo) such that Vp E

A State Machine (SM) is a net G = (P, T, F, mo) such that Vt E

A Free-Choice Net (FC-net) is a net G = (P, T, F, mo) such that
k l (dl

dplp2 E p,pl # p2 : pl. np2. z 0 3 lpl.i = 1 = lp2.1*
MG and SM is a FC-net. For FC-nets, all conflicts can be decided
rocally.

Fig. 2. (a) Petri net example. (b) Its maximal expansion. (c) A cut-off marking.
(d) Another cut-off

Let G’ be a subset of a net G ,generated by a non-empty set X
P U T. G’ is aMG-Component of G if at U to
md G’ is a strongly connected MCi.

P U T . G‘ is a SM- Component of G if op U po X for every p E X,
md G’ is a strongly connected SM.

G is said to be covered by a set of MG-Components if every transi-
ion of the net belongs to some MG-Component. G is said to be covered
iy a set of SM-Components if every place of the net belongs to some
SM-Component. Hack [SI proved ha t a live safe FC-net can always be
:overed by a set of MG-Components or a set of SM-Components.

X for every t E X ,

Let G’ be a subset of a net G (generated by a non-empty set X

Definition N3 (Cut-off markings) Let G be a Petri net, and let E
be a maximal expansion of G with respect to the initial marking m. A
marking nzc is said to be a cut-offmarking if it is reachable from rh and
no transitions are enabled to fire. The set of cut-off markings is denoted
by CM(E) .

For the example shown in Fig. 2, there are two possible cut-off mark-
ings mcl = (pl’,p2’) and m,, = (p3’,p4), shown respectively in
Fig. 2(c) and Fig. 2(d).
Our synthesis procedure works by generating code from a maximal

expansion segment E obtained by using the initial marking mo as the
initial marking for the expansion. Then from each cut-off marking

51 3 3

m: P
A

I., D)

Fig. 3. (a) Maximal expansion. (b) Cut-off marking.

mci E CM(E), a new maximal expansion segment E; is generated
using mcG as the initial marking. This iteration terminates when all
cut-off markings have already been visited. The pseudo-code for the
overall algorithm is shown below.

soft-spt (G, m a) {
E M = {mo);
push (mo) ;
while ((m = POP()) # a) {

E = maximal-expansion (G, m) ;
static-scheduling (E, m) ;
foreach mc E C M (E) {

if m, $Z E M {
E M = E M U m , ;
push (m,) ;

)) I)
The static-scheduling step is applied to each expansion segment
to produce the actual code.

In the example shown in Fig. 2, only two expansion segments are
needed. From the initial marking m = (pl, p 2) , the only cut-off mark-
ings reachable are m, = (pl,p2) and mc = (p3,p4). However, from
m = (p3,p4), the only cut-off marking reachable is m, = (p3,p4)
itself, as shown in Fig. 3.

However, in the example shown in in Fig. 1, only one expansion
segment is needed since the only cut-off marking reachable from the
initial marking is the initial marking itself (i.e. m = (pl,p2))'.

C. Properties
The expansion procedure described in Section IV-B is guaranteed to

converge since the number of possible markings in a Petri net is finite.
Hence, the number of expansions or iterahons is also finite. Typically,
very few expansions are required.

For certain classes of Petri nets, the convergence property is even
stronger. In the case of a strongly connected live safe MG, the number
of expansions is exactly one. This is because in the case of a strongly
connected live safe MG, the initial marking mo forms a minimal feed-
back arc set. The number of tokens along any directed cycle in the MG
in the initial marking is exactly one. Thus, according to Definition IV2,
the maximal expansion of a MG G with respect to its initial marking
mo is exactly defined as the acyclic Petri net E where both the initial
places and the cut-off places correspond exactly to the places marked
by mo. Thus, the set of cut-off markings for E contains only the initial
marking mo.

In the case of a strongly connected live safe FC-net G that can cov-
ered by a set of strongly connected live safe MG components GI . . . G,
such that the initial marking mo of G restricted to G; is also a live safe
initial marking for the MG component Gi, the number of expansions is
also exactly one. The argument follows a similar line as the argument

lHere, we do not distinguish between p i and p'i because they simply denote
different instances of the same place.

for the MG case. That is, the initial marking mo corresponds to both
the initial places and cut-off places if we maximally expand G with re-
spect to m ~ . Thus, convergence is guaranteed after one expansion since
the set of cut-off markings contains only mo.

D. Static scheduling

Give an expansion segment E, represented as an acyclic Petri net
fragment, our software synthesis method performs a static scheduling
of the operations2 in that segment. During scheduling, a sfep assigned
to every operation in E . More formally, static scheduling is defined as
follows :

Definition IV4 (Static scheduling) Let E be an expansion segment.
ti is said to precede t j in E, denoted as t i < t j , if there is a directed
path from ti to t j . Let 7r : T N , be a schedule function that assigns
a non-negative integer n(t) E N to every t G E. A schedule is said to
be valid iff it satisfies the following condition: Vt;, t j E E, if ti 4 t j ,
then n(t5) < n(tj).

To illustrate this process, consider the expansion segment shown in
Fig. 4(a) (corresponding to the example depicted in Fig. 4). Two valid
schedules are shown in Fig. 4(b) and Fig. 4(c). It is not the intention of
this paper to discuss in details the different possible scheduling heuris-
tics. The interested reader can refer to [3], [5] for a survey of example
techniques.

O PI n*O

_ _ =e&&--

I I, 4-

(b)

Fig. 4. (a) An expansion segment. (b) A valid static schedule. (c) Another valid
static schedule.

Given a schedule n, a control-flow-graph fragment is constructed.
In contrast to the traditional scheduling problem, where typically only
datu-flow blocks are considered, the control-flow-graph mapping step
is much less straightforward. This is because we can have complex
concurrent conditionals where thefiring of a transition is dependent on
the concurrent conflow flow and must obey Petri net firing rules. Es-
sentially, the control-flow-graph generation step is based on a traveral
of E, but we modify the Petri net firing rules so that we proceed in ac-
cordance to the levels defined by n. For example, the schedule shown
in Fig. 4(b) will result in the control-flow-graph fragment depicted in

2Previously called pre-ordering [l 11.

504

Fig. 5(a). Similarly, Fig. 5(b) shows the resulting control-flow-graph
for the schedule shown in Fig. 4(c:i.

(b)

3 g . 5 (a) Control-flow-graph fragment. (b) Another control-flow-graph frag-
ment.

T. Code generation

Once the overall control-flow-graph has been generated, it can be
iyntactically translated into plain C or sequential Java code for im-
dementation. This last code generation step can leverage upon well-
itudied standard code optimization techniques [171.

v. IMPLEMENTATION AND RESULTS
i. Implementation

The synthesis method presented in this paper has been implemented
n a system called Picusso. The compiler is implemented as a pre-
rocessor that generates either plain C [lo] or Java [6]. Both solutions
Ire highly portable.

In the case of the C output, any available optimizing C compiler
:an be used to produce the target machine code. For comparisons, we
lave also implemented a multi-threading approach that uses the Solaris
hread library to implement the processes. In principle, any real-time
nulti-threading packages may be used.

In the case of the Java output, the Java produced by our synthe-
is method is sequential in that it does not make use of any multi-
treading feature in Java. Thus, ii much lighter weight Java Virtual
dachine without multi-threading siipport may be used. Also, any Just-
n-Time compiler or Java-To-C translator (e.g. [12], [15]) can be used to
iroduce native executables, again without the need for multi-threading
upport. For comparisons, we have also implemented a multi-threading
pproach in Java by mapping processes to Java threads.

1. Results

We have applied our C implementation to an example derived from
he RC5 encryption algorithm. RC5 is widely used by RSA Data Se-
urity in a range of Intemet security products [16]. A novel feature of
kC5 is the heavy use of data-dependent rotations. The top-level view of
he example is shown in Fig. 6. It consists of two encryptioddecryption
hains that are merged together by a monitor process.

We chose this example because it contains both data-dependent
3ops as well as non-deterministic choices. Table I compares the re-
ults of our method with a multi-threading library approach. The table
ompares the execution times of both approaches on different size input
treams. The first row corresponds I O a 40K bytes input file, the second
DW corresponds to a 400K byte input file, and the third row corre-
ponds to a 4M byte input file. The CPU-times are reported in seconds

core

cto
PtO

I [monitor)

Fig. 6. RC5 encryption chain example.

I size I threads I synthesis 1

256.6 3.30

1 rate 1 15.4KB/s I 1.21MB/s J
TABLE I

COMPARATIVE RESULTS ON A SUN/SOLARIS ULTRA-1.

on a Sun Ultra-1 workstation running Solaris. The row labeled “rate”
summarizes the execution of the two solutions in terms of bytes per
second. Comparing CPU-times, the Solaris thread based implementa-
tion is significantly slower than our software code synthesis approach,
due to the significant overhead introduced by Solaris threads.

REFERENCES

[l] G. Berry et al. “The synchronous approach to reactive and real-time sys-
tems”, ZEEE Pniceedings, 1991.

[2] J. T. Buck et al. “Ptolemy: A framework for simulating and prototyping
heterogeneous systems”, International Journal on Computer Simulation,
January 1994.

[3] R. Camposano and W. Wolf (editors), Trends in High-Level Synthesis,
Kluwer Academic Publishers, 1993.

[4] G. de Jong, B. Lin. “A communicating Petri net model for the design of
concurrent asynchronous modules”, ACWZEEE Design Autrimtirin Con-
ference, 1994.

[5] H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. Van Meerbergen,
S. Note, J.A. Huisken, “Architecture-driven synthesis techniques for VLSI
implementation of DSP algorithms”, Priiceedings r.f ZEEE, vo1.72, 110.2.
pp.319-335, February 1990.

[6] J. Gosling, B. Joy. and G. Steele. The Java Language Specification,
Addison-Wesley, 1996.

[7] R. K. Gupta. “Hardware-software cosynthesis of microcontrollers”, Proc.
Ciides/CASHK, 1996.

[8] M. Hack. Analysis r#pmductirin schemata hy Petri nets. M.S. Thesis, MIT,
February 1972.

[9] C. A. R. Hoare. Communicating Seyuential Processes. Prentice-Hall, 1985.
[lo] B. W. Kemighan, D. M. Ritchie. The C Programming Language, Prentice-

Hall, Englewwd Cliffs, New Jersey, 1978.
[111 B. Lin. ‘‘Efficient compilation of process-based concurrent programs with-

[12] B. Morgan. K s w l J++ Unleashed. Sams.Net, 1996.
[13] J. Morse, S. Hargrave. “The increasing importance of software”. Elec-

triinic Design, vol. 44, no. I, Jan. 1996.
[I41 J.L. Peterson. Petri net Theor3; m d Modeling r,f.System, Prentice Hall,

1981.
[15] T. A. Proebsing, G. Townsend, P. Bridges, J. H. Hartma, T. Newshan, S.

A. Watterson. Toba: Java for applications, a way ahead of’ time (WAT)
compiler”, &:/& cs. ariziina. ed~sumntra/report/trib~pd~

[16] R. L. Rivest. “The RC5 Encryption Algorithm”, Proceedings of the 1994
Leuven Workshop on Algorithms, Springer-Verslag, 1994.

[17] R. M. Stallman, Using andporting GNU CC, Free Software Foundation,
June 1993.

[IS] F. Thoen et al. “Real-time multi-tasking in software synthesis for informa-
tion processing systems”, Proc. (.flSSS’95, 1995.

[19] S. Vercauteren et al. “Derivation of formal representations from process-
based specification and implementation models”, Prrx. r.fZSSS’97, Septem-
ber 1997.

out run-time scheduling”, Proc. ofDATE’98, February 1998.

505

http://Sams.Net

