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Abstract- We present a Petri net theoretic approach to the software 
synthesis problem that can synthesize ordinary C programs from process- 
based concurrent specifications without the need for a run-time multi- 
thrending environment. The synthesized C programs can be readily retar- 
geted to different processors using available optimizing C compilers. Our 
compiler can also generate sequential Java programs as output, which can 
also be readily mapped to a target processor without the need for a multi- 
threading environment. Initial results demonstrate significant potentials for 
improvements over current run-time solutions. 

I. INTRODUCTION 

OFTWARE is playing an increasingly important role in embedded S systems. While high-level language compilers exist for implement- 
ing sequential programs on embedded processors [17]. e.g. starting 
from C [lo], many embedded software applications are more naturally 
expressed as concurrent programs, specified in terms of communicat- 
ing processes. This is because typically actual system applications are 
composed of multiple tasks. 

Currently, the most widely deployed solution is to use an embed- 
ded operating system to manage the run-time scheduling of processes 
and to handle the inter-process communication. However, this solution 
tends to add significant overhead in program size, run-time memory 
requirements, and execution time. 

Several altemative high-level approaches have been proposed. Static 
data-flow solutions [2], successfully used to design DSP-oriented sys- 
tems, achieve compile-time scheduling at the expense of disallow- 
ing conditional and non-deterministic execution. Other researchers 
have considered hybrid approaches [7], [ 181 that generate application- 
specific run-time schedulers to handle the multi-tasking of conditional 
and non-deterministic computations. Reactive approaches, e.g. Es- 
terel [I], rely on a strong synchrony hypothesis that makes two fun- 
damental assumptions: the existence of a global clock abstraction to 
discretize computation over instances, and computation takes no time 
within each instance. This hypothesis is difficult to satisfy for dis- 
tributed implementations and may not match naturally to many appli- 
cations from a specification standpoint. 

In contrast, our work is based on a model of asynchrony where the 
concurrent parts can evolve independently and only synchronize where 
specified. Recently, we introduced a new Petri net theoretic software 
synthesis method based on a new Petri net theoretic technique that can 
synthesize efficient embedded software implementations from asyn- 
chronous process-based specifications without the need for a run-time 
scheduler [ll]. This approach has been implemented in a system under 
development called Picasso. In this paper, we further develop on our 
approach. We also briefly describe a new Java-based implementation, 
in addition to our earlier C-based implementation. 

The remainder of this paper is organized as follows: Our specifica- 
tion model is introduced in Section II. The Perri net intermediate rep- 
resentation is introduced in Section III. The software synthesis method 
is detailed in Section IV. Initial results from an encryption example are 
presented in Section V. 

11. SPECIFICATION 

Our programs are hierarchically composed of processes that com- 
municate through synchronizing channels. The semantics is based on 
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the CSP formalism [9], but the syntax is similar to C. Consider the fol- 
lowing simple example composed of two processes called ping and 
p o w .  

1 ping (input chan(int) a, output chan(int) b) { 
2 int x; 
3 f o r  ( ; ; )  { 
4 x = <-a; / *  receive * /  
5 if(x < 100) x = 10 - x; 
6 else x = 10 t x; 
7 b <-= x; / *  send * /  
8 1 1  

9 pong (input chan(int) c, output chan(int) d) { 
10 int y, z = 0; 
11 for (;;) { 
12 d <-= lo;/* send * /  
13 y = <-c; / *  receive * /  
14 z = ( z  t y) % 345; / *  send * /  
1 5  11 
16 system ( ) { 
17 chan(int) cl, c 2 ;  
18 par { 
19 ping (c2, cl); 

Channels are declared using the chan statement, as exemplified in 
Line I. The unary receive operator, <-, receives data on the channel 
specified as its right operand. The received value may then be manipu- 
lated by other operators, e.g. it can be assigned to a variable, as exem- 
plified in Line 4. The send operator, <-=, transmits the result of the 
expression provided as its right operand on the channel specified as its 
left operand, as exemplified in Line 7. Basic control-flow constructs, 
like if-then-else, for-loops, and while-loops, and basic arith- 
metic and relational operators, like t, -, *, %, and >, >=, ==, ! =, are the 
same as in C. There is also an alt construct [9], not used here, that pro- 
vides a mechanism for non-deterministic execution. Finally, processes 
can be hierarchically composed to form larger systems, as exemplified 
by the process system. The par statement executes the statements 
in its body in parallel and joins the threads of execution at the end by 
waiting for all processes to terminate before proceeding. 

111. INTERMEDIATE REPRESENTATION 

A. Petri nets 
Let G = (P, T, F, mo) be a Petri net [ 141, where P is a set of places, 

T is a set of transitions, F E ( P  x T) U (T x P) is the flow relation, 
and mo : P + N is the initial marking, where N is the set of natural 
numbers. The symbols et and t o  define, respectively, the set of input 
places and the set of output places of transition t. Similarly, ep and 
po define, respectively, the set of input transitions and the set of output 
transitions of place p .  A place p is called a confIictplace if it has more 
than one output transition. Two transitions, ti and t j  are said to be in 
conflicr if and only if .ti f l  ot j  # 8. A state, or marking, m : P + N ,  
is an assignment of a non-negative number to each place. m(p) denotes 
the number of tokens in the place p .  A transition t can Ere at marking 
ml if all its input places contain at least one token. The firing of t 
removes one token from each of its input places and adds a new token 
to each of its output places, leading to a new marking m2. This firing 
is denoted by mi 4 m2. Given a Petri net G, the reachability set of 
G is the set of all m a r h g s  reachable in G from the initial marking 
mo via the reflexive transitive closure of the above firing relation. The 
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corresponding graphical representation is called a reachability graph. B. Expansions 
A Petri net G is said to be live if \ft E T, 3m reachable from theinitial 
marking mo such that t is enabled. It is said to be safe if in every 
reachable marking, there is at mo:;t one token in any place. In this case, 
we can simply represent each mrirking m : P -+ (0,l) as a binary 
assignment. 

IRI (Expansion) An expansion is an acyclic Petri net 
with the following properties: . There is one or more places without input transitions. 

There is one or more places without output transitions. 
There are no transitions without at least one input place or one 

B. Intermediate construction output place. 
The places without input transitions are called initialplaces. The places 
without output transitions are called cut-offplmes. 

Definirion 1x2 ( ~ a x i ~ a l  expansion) Let G be a pebri net and let 
be a 

In [4], [19], a process algebra v m  developed for constructing apetri 
net model from a program of cominunication processes. Consider again 
the example presented in Section II. The derived Petri net models for 
processes ping and pong shown in Fig. l(a> and Fig. I@), respec- 
tively, along with their initial markings. 

of G. ne malmal expansion of G with respect to m, E, 
is an acyclic Petri net with the following properties: 

(Cl 

(a) (b) (C) 
c2: x=<-a c2: d<-=:LO c2: x=10 
b: (x<O) cl: Y=<-c: b: (x<O) 
C: x=lO-X f: Z = ( Z . ’ - y ) % 3 4 5  C: X=lO-X 
d: x=lO+x d: x=lO+x 
cl: b<-=x cl: y=x; 

f : z= (zty) 8 3 4 5  

Fig. 1 .  (a) ping (b) pong (c) system = ping 11 pong 

Concurrent processes can be composed via parallel composition. In 
parallel composition, communicat:Lon actions in fact form synchroniza- 
tion points and are joined together at their common transitions. This is 
illustrated in Fig. l(c). 

The initial places correspond to m. 
The cut-off places correspond to the set of places encountered 
when a cycle has been reached. 
E is transitively closed: for each t E E or p E E, all preceding 
places and transitions reachable from m are also in E. 

m is referred to as the initial marking. 
Intuitively, the maximal expansion of G with respect to a marking 

m corresponds to the largest unrolling of G from m before a cycle has 
been encountered. Consider the example shown in Fig. 2(a). The corre- 
sponding maximal expansion with m = (pl,p2) is shown in Fig. 2(b). 

t? P3 b 

I I  

g: :g 
, P3 

Iv. SOFTWARE s YNTHESIS METHOD 
4. Classes of Petri nets 

P : lop1 = 1 = /pol. MGs cannot model conficts. 

2’ : lot1 = 1 = It.[. SMs cannot niodel concurrency. 

dt1t2 E T,tl # t2 : et1 fl o t : ~  # 0 + Iotll = 1 I= IotzI, or 

A Marked Graph (MG) is a net G = (P, T, F, mo) such that Vp E 

A State Machine (SM) is a net G = (P, T, F, mo) such that Vt E 

A Free-Choice Net (FC-net) is a net G = (P, T, F, mo) such that 
k l  (dl 

dplp2 E p,pl # p2 : pl. np2. z 0 3 lpl.i = 1 = lp2.1* 
MG and SM is a FC-net. For FC-nets, all conflicts can be decided 
rocally. 

Fig. 2. (a) Petri net example. (b) Its maximal expansion. (c) A cut-off marking. 
(d) Another cut-off 

Let G’ be a subset of a net G ,generated by a non-empty set X 
P U T.  G’ is aMG-Component of G if at U to 
md G’ is a strongly connected MCi. 

P U T .  G‘ is a SM- Component of G if op U po X for every p E X, 
md G’ is a strongly connected SM. 

G is said to be covered by a set of MG-Components if every transi- 
ion of the net belongs to some MG-Component. G is said to be covered 
iy a set of SM-Components if every place of the net belongs to some 
SM-Component. Hack [SI proved ha t  a live safe FC-net can always be 
:overed by a set of MG-Components or a set of SM-Components. 

X for every t E X ,  

Let G’ be a subset of a net G (generated by a non-empty set X 

Definition N3 (Cut-off markings) Let G be a Petri net, and let E 
be a maximal expansion of G with respect to the initial marking m. A 
marking nzc is said to be a cut-offmarking if it is reachable from rh and 
no transitions are enabled to fire. The set of cut-off markings is denoted 
by CM(E) .  

For the example shown in Fig. 2, there are two possible cut-off mark- 
ings mcl = (pl’,p2’) and m,, = (p3’,p4), shown respectively in 
Fig. 2(c) and Fig. 2(d). 
Our synthesis procedure works by generating code from a maximal 

expansion segment E obtained by using the initial marking mo as the 
initial marking for the expansion. Then from each cut-off marking 
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m: P 
A 

I., D )  

Fig. 3. (a) Maximal expansion. (b) Cut-off marking. 

mci E CM(E),  a new maximal expansion segment E; is generated 
using mcG as the initial marking. This iteration terminates when all 
cut-off markings have already been visited. The pseudo-code for the 
overall algorithm is shown below. 

soft-spt (G, m a )  { 
E M  = {mo); 
push (mo) ;  
while ( ( m  = POP()) # a )  { 

E = maximal-expansion (G, m )  ; 
static-scheduling (E, m)  ; 
foreach mc E C M ( E )  { 

if m, $Z E M  { 
E M  = E M U m , ;  
push (m,) ;  

) ) I )  
The static-scheduling step is applied to each expansion segment 
to produce the actual code. 

In the example shown in Fig. 2, only two expansion segments are 
needed. From the initial marking m = (pl, p 2 ) ,  the only cut-off mark- 
ings reachable are m, = (pl,p2) and mc = (p3,p4). However, from 
m = (p3,p4), the only cut-off marking reachable is m, = (p3,p4) 
itself, as shown in Fig. 3. 

However, in the example shown in in Fig. 1, only one expansion 
segment is needed since the only cut-off marking reachable from the 
initial marking is the initial marking itself (i.e. m = (pl,p2))'. 

C. Properties 
The expansion procedure described in Section IV-B is guaranteed to 

converge since the number of possible markings in a Petri net is finite. 
Hence, the number of expansions or iterahons is also finite. Typically, 
very few expansions are required. 

For certain classes of Petri nets, the convergence property is even 
stronger. In the case of a strongly connected live safe MG, the number 
of expansions is exactly one. This is because in the case of a strongly 
connected live safe MG, the initial marking mo forms a minimal feed- 
back arc set. The number of tokens along any directed cycle in the MG 
in the initial marking is exactly one. Thus, according to Definition IV2, 
the maximal expansion of a MG G with respect to its initial marking 
mo is exactly defined as the acyclic Petri net E where both the initial 
places and the cut-off places correspond exactly to the places marked 
by mo.  Thus, the set of cut-off markings for E contains only the initial 
marking mo. 

In the case of a strongly connected live safe FC-net G that can cov- 
ered by a set of strongly connected live safe MG components GI . . . G, 
such that the initial marking mo of G restricted to G; is also a live safe 
initial marking for the MG component Gi, the number of expansions is 
also exactly one. The argument follows a similar line as the argument 

lHere, we do not distinguish between p i  and p'i because they simply denote 
different instances of the same place. 

for the MG case. That is, the initial marking mo corresponds to both 
the initial places and cut-off places if we maximally expand G with re- 
spect to m ~ .  Thus, convergence is guaranteed after one expansion since 
the set of cut-off markings contains only mo. 

D. Static scheduling 

Give an expansion segment E, represented as an acyclic Petri net 
fragment, our software synthesis method performs a static scheduling 
of the operations2 in that segment. During scheduling, a sfep assigned 
to every operation in E .  More formally, static scheduling is defined as 
follows : 

Definition IV4 (Static scheduling) Let E be an expansion segment. 
ti is said to precede t j  in E, denoted as t i  < t j ,  if there is a directed 
path from ti to t j .  Let 7r : T N ,  be a schedule function that assigns 
a non-negative integer n(t) E N to every t G E. A schedule is said to 
be valid iff it satisfies the following condition: Vt;, t j  E E, if ti 4 t j ,  
then n(t5) < n(tj). 

To illustrate this process, consider the expansion segment shown in 
Fig. 4(a) (corresponding to the example depicted in Fig. 4). Two valid 
schedules are shown in Fig. 4(b) and Fig. 4(c). It is not the intention of 
this paper to discuss in details the different possible scheduling heuris- 
tics. The interested reader can refer to [3], [5] for a survey of example 
techniques. 

O PI n*O 

_ _  =e&&-- 

I I, 4- 

(b) 

Fig. 4. (a) An expansion segment. (b) A valid static schedule. (c) Another valid 
static schedule. 

Given a schedule n, a control-flow-graph fragment is constructed. 
In contrast to the traditional scheduling problem, where typically only 
datu-flow blocks are considered, the control-flow-graph mapping step 
is much less straightforward. This is because we can have complex 
concurrent conditionals where thefiring of a transition is dependent on 
the concurrent conflow flow and must obey Petri net firing rules. Es- 
sentially, the control-flow-graph generation step is based on a traveral 
of E, but we modify the Petri net firing rules so that we proceed in ac- 
cordance to the levels defined by n. For example, the schedule shown 
in Fig. 4(b) will result in the control-flow-graph fragment depicted in 

2Previously called pre-ordering [l 11. 
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Fig. 5(a). Similarly, Fig. 5(b) shows the resulting control-flow-graph 
for the schedule shown in Fig. 4(c:i. 

(b) 

3 g . 5  (a) Control-flow-graph fragment. (b) Another control-flow-graph frag- 
ment. 

T. Code generation 

Once the overall control-flow-graph has been generated, it can be 
iyntactically translated into plain C or sequential Java code for im- 
dementation. This last code generation step can leverage upon well- 
itudied standard code optimization techniques [ 171. 

v. IMPLEMENTATION AND RESULTS 
i. Implementation 

The synthesis method presented in this paper has been implemented 
n a system called Picusso. The compiler is implemented as a pre- 
rocessor that generates either plain C [lo] or Java [6]. Both solutions 
Ire highly portable. 

In the case of the C output, any available optimizing C compiler 
:an be used to produce the target machine code. For comparisons, we 
lave also implemented a multi-threading approach that uses the Solaris 
hread library to implement the processes. In principle, any real-time 
nulti-threading packages may be used. 

In the case of the Java output, the Java produced by our synthe- 
is method is sequential in that it does not make use of any multi- 
treading feature in Java. Thus, ii much lighter weight Java Virtual 
dachine without multi-threading siipport may be used. Also, any Just- 
n-Time compiler or Java-To-C translator (e.g. [12], [15]) can be used to 
iroduce native executables, again without the need for multi-threading 
upport. For comparisons, we have also implemented a multi-threading 
pproach in Java by mapping processes to Java threads. 

1. Results 

We have applied our C implementation to an example derived from 
he RC5 encryption algorithm. RC5 is widely used by RSA Data Se- 
urity in a range of Intemet security products [16]. A novel feature of 
kC5 is the heavy use of data-dependent rotations. The top-level view of 
he example is shown in Fig. 6. It consists of two encryptioddecryption 
hains that are merged together by a monitor process. 

We chose this example because it contains both data-dependent 
3ops as well as non-deterministic choices. Table I compares the re- 
ults of our method with a multi-threading library approach. The table 
ompares the execution times of both approaches on different size input 
treams. The first row corresponds I O  a 40K bytes input file, the second 
DW corresponds to a 400K byte input file, and the third row corre- 
ponds to a 4M byte input file. The CPU-times are reported in seconds 

core 

cto 
PtO 

I [ monitor ) 

Fig. 6. RC5 encryption chain example. 

I size I threads I synthesis 1 

256.6 3.30 

1 rate 1 15.4KB/s I 1.21MB/s J 
TABLE I 

COMPARATIVE RESULTS ON A SUN/SOLARIS ULTRA-1. 

on a Sun Ultra-1 workstation running Solaris. The row labeled “rate” 
summarizes the execution of the two solutions in terms of bytes per 
second. Comparing CPU-times, the Solaris thread based implementa- 
tion is significantly slower than our software code synthesis approach, 
due to the significant overhead introduced by Solaris threads. 
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