
VaST Precursor IEEE Spectrum – Bloody Revolution Sep 2001

Engineering Systems on a Chip:

The Bloody Revolution in Tools, Methodologies
and Power

Graham R. Hellestrand

Vast Systems Technology Corporation
1230 Oakmead Pkwy, Sunnyvale, CA, USA

Abstract
Systems engineering is not a quiet backwater. It is an arena of political and economic
realignment and foment. And like any revolution in-progress it is the harbinger of great
and unpredictable change bringing with it huge opportunities hand-in-hand with equally
impressive threats. Nothing less than corporate power and bureaucratic structure are
being reordered by the new realities of engineering systems on silicon. The 30 years of
hardware dominance in silicon electronic engineering is being torn apart by the
recognition that the complexity of modern systems is determined by its multifunctionality,
adaptability and flexibility – attributes that, in an economic sense, are best realized in
software.

The genesis of this revolution has been the stunning success of the silicon engineers,
which ironically, as with the yin-yang cycle, has carried with it the seeds of its own
diminishment, at least for the half-turn of the next cycle. As silicon technological progress
marches through 0.18? minimum feature sizes to 0.15? to 0.13? in the next couple of
years, and then to sub 0.10? , the number of transistors on a chip will approach, then
exceed, one billion. The majority of these transistors will be consumed as on chip
memory devices. Memory is most useful in programmed devices and with processors
executing in excess of a billion instructions per second when implemented in 0.1? silicon
technology, programmed devices will progressively phase out many special purpose
hardware devices.

 The dismantling of the power base in the semiconductor divisions of the major
electronics companies to accommodate software engineering and systems integration
on an equal footing with hardware engineering is a battle in full flight. Like the Iliad,
where Greek’s fiercely and intermittently battled Trojans for ten long years, the outcome
of the systems engineering battle is certain. Unlike the complete destruction of the city of
Troy, the resulting realignment will be a triumvirate between – hardware, software and
mechanical designers. The sooner the battle is won the sooner the potential of the three
powerful potentates will yield novel systems and architectures to dazzle the techno-
enervated masses. Like all power-sharing structures, it is unstable but ultimately
governable by the dour and pragmatic economics of survival. Already fleet-footed start-
up companies are demonstrating the fecundity of the new godhead – carpe diem!

1. ISSUES IN SYSTEMS ENGINEERING
Systems engineering is a process [Hellestrand 1999c]. It takes requirements
specifications and generates products and product families which are realized as

2

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

an integration of electronic hardware, software and typically mechanical
subsystems. Systems level products have been built largely using circuit board
substrates in a traditional sequential engineering process being aided by distinct
tools support for hardware, software, and mechanical subsystem development.
The integration process is largely manual but with some support for debugging
the software-hardware-mechanical interfaces using in-circuit emulation (ICE)
equipment. Hardware, software and mechanical development usually follow each
other in this process rather like the phases of the moon. And unfortunately, the
iterative debugging of hardware-software-mechanical systems could readily be
counted in units of lunar cycles (LC) – usually 3-5 LCs for products of medium
complexity.

With the advent of system products being integrated on monolithic silicon
substrate the tools support and development methodology games change forever
[Hellestrand 1999a]. Systems on silicon products require systems engineering
tools which enable the concurrent design, modeling, verification and integration
of hardware and software and mechanical subsystems prior to fabrication. This is
a radical change which is causing the complete reorganization and reorientation
of systems engineering teams and processes – in short a revolution.

The economics of silicon systems manufacturing have always dictated that
silicon products are to be consumed by mass markets or can command very high
premiums in niche markets, in order to cover development and manufacturing
costs. The technological capabilities of the dawning 21st century are driving
successful niche silicon products to being components (common intellectual
property) incorporated into generic silicon systems destined for consumption in
mass markets.

1.1 Systems Engineering as a Process
The fundamental activities involved in hardware-software systems design, as
shown in Figure 1, are: requirements derivation, specification, architectural
assessment and quantification, design, verification, and realization, with the usual
levels of iteration to support the vagaries of human problem solving. The process
steps making up each activity are largely different, but by traversing them from
specification to realization a top-down methodology flows; by reversing the
traverse direction a bottom-up methodology is evinced. The first three processes
(Specification &Architectural Engineering Assessment, CoDesign and
CoVerification) are the newest to be addressed by tools. Tools to support
systems engineering encompass specification and architectural assessment, co-
design and co-verification and feed into the established synthesis and realization
tools flow.

3

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

Co-Design
Process

Co-Verification
Process

Specification &
Architectural
Engineering
Assessment

Candidate Product
Specification & Plan

Detailed H/W & S/W
Systems Design

Product

Verified System
Design

Engineering
History

Market
History

Realization

Top Level Product
Development Model

Figure 1: The System Development Process

1.2 Specification and Architectural Engineering Assessment
Figure 2 represents the true front-end of the systems engineering process. This
process balances the market and the engineering input to new product and
product iteration development. The ordering and iteration between these often
diverging inputs is complex but fundamental to balancing the views brought back
from the market by sales and marketing activities and the internal views
accumulated though engineering and product histories in determining which a
new products or product improvements to pursue. The results of the iterative
contemplation of marketing, engineering and finance within a company yields a
Marketing Product Requirement Specification. This is the document by which the
engineering architecture selection process is driven and effectively charts the
business goals and objectives and the engineering requirements of the product.

The gods of specification and architectural engineering are the system architects.
Their role change is dictated by the bloody revolution. The new architects are

4

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

imbued with power through the new systems engineering tools and will need to
eschew their old roles as harmless cogitators and mentors and adopt the new as
political priests of the architectural covenant, the drivers of the model, and the
checkers of design and implementation conformity. In this role they directly
challenge the dominance of the hardware engineers. They need to bend the will
of the hardware engineers to support the company and the product even while
removing them from final arbitration power. As with all priests, part of this new
role is to defend and modify the covenant in the face of the skeptics; unlike
traditional priests, their role is to admit change and encourage skeptical attacks
while building sufficient barriers to dissuade adventitious change. From the
lessons of history, the transition of this priestly processes to a religion must be
ruthlessly guarded against by company management. The Balkanization of the
design process is not an attractive outcome.

The heart of this process are the Architectural and Engineering Assessment and
Quantitative Evaluation of Architecture steps. The connection between these two
steps is the Technical Specification and Plan for the product which enables
quantitative evaluation. The overall process yields a Candidate Product
Specification and Plan which drives the CoDesign process (Figure 1). The
Specification and Architectural Engineering Assessment process is highly
iterative and at its interaction between marketing and engineering qualitative in
nature. However, as soon as is feasible in the process of human problem solving
the process makes a transition to a quantitative mode. At the back-end,
verification and realization of the selected architecture occurs.

Architectural and Engineering Assessment (Figures 3 and 2) process should,
after two qualitative sieve steps, produce a Technical Specification and Plan for
each candidate architecture of the likely bewildering number which are thought
up early in a product design cycle in response to the myriad what-if questions.
The questions Can it be done? and Will it be useful? are the preliminary scan
questions for architectural candidates. The question How can it be done?
constitutes the technical feasibility assessment. Of course there is nothing new
here. This process just embodies the why, when and how questions of qualitative
analysis; the final implicit question where? determines whether the development
occurs in-house or is out-sourced.

Quantitative Evaluation (Figure 2).To turn qualitative assessment into
quantitative requires specifications to be in an analytical form so that modeling of
the target system which yields numeric function, resource usage and
performance data is enabled. This is the domain and intent of the unified systems
description languages. Such tools may provide specification capabilities,
transformation capabilities to help explore the design space, and partitioning
support for determining whether particular objects should be realized in hardware
or software. The outcome of this phase of the process is a product specification
and design plan for a candidate architecture. It is this specification and plan that
drives the concurrent hardware-software (co-)design process.

5

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

Figure 2: Specification and Architectural Engineering

The lack of a systems specification notation does not obviate the need for this
step of the process. The existence of an executable specification written in
C/C++ and Verilog/VHDL is sufficient for modeling and codesign but not for
automatic partitioning. As yet, automatic partitioning fails the pragmatic tool test
and until mathematically based hardware-software system specification notations
are available automatic partitioning should not be on the engineering agenda.

1.3 Codesign
Codesign (Figure 1) tools support the design phase of the systems engineering
process. The objectives of codesign are the concurrent design and modeling of
systems involving electronics hardware, software and mechanical components.
The design process for modern systems requires the support of languages used
by engineers, together with environments in which evolving hardware can be
tested with the software intended to run on the system, evolving software can be
tested on the target hardware, and evolving mechanical subsystems can be tried

Technology
Drivers

Marketing
Drivers

Engineering
History

Engineering
Insights &
Assessment

Marketing/
Sales

Insights

Market
History

Architectural
& Engineering

Assessment
Process

Technical Specifications
and Plan Quantitative

Evaluation of
Architecture

Candidate Product
Specification & Plan

Qualified
Ideas

Qualified
Ideas

Marketing Product
Requirements Specification

ROI

Risk/Payoff

Features

Futures

S/W Shell

H/W Shell

A
rc

hi
te

ct
ur

al
 A

ss
es

sm
en

t

Modification
& Failure
Notices

Modification
& Failure
Notices

R
eq

ui
re

m
en

ts
 S

pe
ci

fi
ca

tio
n

constraints

6

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

within their control environments. A proper framework for concurrent engineering
requires supporting higher level languages than assembly and RTL, and
providing greater modeling speed and as much precision as existing
coverification tools (see below). In the event that a candidate design has been
specified in an executable notation, co-design tools must work with this
specification model together with the engineering languages, current C/C++ for
software and Verilog and VHDL for hardware. Direct support for partitioning in the
codesign process is unnecessary since it occurs as part of architectural
specification and assessment.

Figure 3: Architectural and Engineering Assessment

Trial product specs

Architectural & Engineering
Assessment Process
Model

Can it be
done?

How can it
be done?

Will it be
useful?

Technical Requirements
for Product

Product Requirement
Specifications

? Resources
? Tools

Methodologies

? Requirements
? Cost
? Risk
? Competition
? Future products

Market
History

Modification
Notices

Failure
Notices

Marketing Product
Requirements

Technical Specifications
and Plan

7

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

 Modeling support for codesign brings with it many requirements. The
development style used by software engineers is to perform many rapid
reanalysis-redesign-edit-compile-execute-debug cycles. In the codesign
environment, execution and debugging must take place on the target system –
the virtual system prototype (VSP). Software tools support for the hardware
engineering process, together with the near universal adoption of hardware
description languages (HDLs) in digital hardware design and the requirement to
test the developing hardware using target driver, operating system and
applications code, has driven the hardware engineers to adopt the software
engineering style. Specification and modeling tools support for mechanical
subsystem design is in its infancy, but the development style will inevitably be a
variant of software engineering.

The historic constraint on virtual systems prototype modeling has been the
performance-precision tradeoff of the CPU models interpreting software and
mediating interactions between the software and the hardware. To be useful
VSPs need to have high performance and to be able to model timing and function
accurately. This requires attention to be paid to HDL simulation and to CPU
modeling.

HDL simulation using the two popular HDLs, Verilog and VHDL, is glacially slow
due to the number of events generated and processed during the simulation of
even modest models. The advent of the higher-level system specification
notations may address this problem in hardware modeling but, in the large
interim, accepted engineering practice is to use a mixture of HDL skeletons to
model concurrency and timing and C/C++ language descriptions within the
modules of the skeleton to produce function. The C/C++ descriptions do not
directly generate events. Reported hardware simulation speed up is factors
between 10 to 2,000.

The modeling of CPUs dominates co-simulation. Modern systems increasingly
incorporate large amounts of software – operating systems, middleware and
applications code. It is not unusual to execute millions of instructions during the
routing of packets on a communications controller and the VSP for such a
controller must do the same. CPU models come in a variety of flavors: very low
speed (1/10th – 100 instructions per second), high complexity, yet high precision
models specified using HDLs; low to medium performance models (1,000 to
50,000 instructions per second) with reasonable function and timing accuracy but
limited flexibility implemented using the instruction set simulation (ISS) where
both function and sequencing of the CPU is mimicked in software; and high
performance (100+ million instructions per second), reasonable function but zero
timing precision host software models where application code is run on the
development processor (rather than the target) and linked to the HDL described
hardware models. These CPU models limit the number of software cycles which
can be properly verified running on a hardware-software modeling system to a
few thousand per second whereas real systems execute 50 - 500 million

8

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

instructions per second. A disparity of 10,000 to 100,000 in performance -
requiring from 3 to 30 hours of simulation to model 1 second of real-time
performance.

Recently, new technologies have been developed for modeling processors. One
such technology, the Virtual Processor Model (VPM) [Hellestrand 1999x] is
capable of simulating software at speeds in excess of 150 million instructions per
second, maintaining timing accuracy, and of trading detail for simulation
performance. This model has been constructed to support software engineer,
hardware engineering and/or hardware-software engineering.

1.4 Coverification
Coverification (Figure 1) has been the work-horse of hardware-software
technologies; the initiator of and developer of a young and vigorously growing
market. Coverification tools have required modeling precision across the
hardware-software boundary and the ability to run limited sequences of software
to verify software device drivers interacting with hardware controllers. The range
of coverification technologies is large and includes: in-circuit emulation, hardware
emulation (usually FPGA based), melanges of CPU models, software and
hardware simulation models.

In reality, coverification is a step in the codesign process. With the coming
availability of competent codesign and architectural assessment tools the limited
tools of the coverification process should fade as honored ghosts into history. It is
probably true that the in-circuit emulator (ICE) and physical prototypes will persist
as part of a distinct coverification process for years, partly due to history and
partly as a result of the need for engineers to have a tangible system as the
ultimate proof of concept. The question which has dangled from the dawn of
simulation dangles still: Is simulation as good as the real thing?.

The demise of coverification will not be a bloodless revolution. There are
companies battling in the marketplace, big and small, who will fight to live another
day. It is not always the best technologies that prevail, but it is just as sure that
inadequate technologies will decline and disappear.

2. STATE OF THE INDUSTRY AND UNDERLYING RESEARCH
Systems engineering holds different meanings in industry and academe. Industry
is largely driven by the realization that systems involving complex hardware and
software need to be fabricated in silicon and that verification dominates this
activity. In research, the interesting problem is how to classify system tasks as
hardware, software, and (possibly) mechanical.

2.1 A View from Research

9

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

2.1.1 Co-Simulation
Co-simulation is the connected, concurrent simulation of systems built using
more than one technology. This is typically, digital hardware being simulated with
software executing on some processor model. However, the co-simulation of
abstract subsystems with other hardware and software subsystems, or
DSP/mechanical subsystems with hardware and software subsystems is covered
by this topic.

2.1.2 Co-Verification
Co-verification has come to mean, in the vernacular, the verification of digital
hardware systems incorporating a processor running a couple of hundred
assembler instructions to check that hardware operates correctly. The practical
rational for this limited use of the term has been that since the digital simulator
(Verilog or VHDL) completely dominates the simulation, running more than a few
instructions per simulation is impractical.

More meaningfully, co-verification means the ability to tun a complete software
system (GUI, application code, middleware, operating system, device drivers) on
a processor model connected into a large amount of digital hardware, which itself
might be connected to DSP and mechanical subsystems. Now the billions of
cycles needed to run the software systems tends to completely dominate the
simulation when using typical instruction set simulator (ISS) models of
processors. With the advent of fast and cycle accurate processor models (Virtual
Processor Models), the co-verification of a complete product is now a reality. This
is true co-verification.

2.1.3 Automatic Partitioning
The recent work on automatic partitioning of systems has a focus on hardware-
software partitioning. This has been the meaning of co-design research for more
than a decade. This problem is regarded as an emerging issue in the systems-
on-a-chip (SoC) engineering community. For the past twenty years, following the
wide availability of cheap microprocessors, the partitioning of tasks into hardware
or software has followed the old recipe that largely software is for control and
hardware does the heavy lifting.

The advent of 20 mm2
 processor cores embedded in a sea of 300 mm2 silicon

and capable of running at 100MHz today and 400MHz in 4 years time has
changed the game irrevocably. Now there is real choice between implementing
sophisticated algorithms in hardware or software and the tradeoff is usually
unclear – technically, economically and managerially.

The partitioning of systems is not as narrowly defined as the hardware-software
partitioning research might imply. In a modern SoC system, there may be as
many as 12 partitioning boundaries that can potentially have much more impact
on system performance than the hardware-software interface. For example, the
bi-directional interface between the I/O subsystem of a real-time operating

10

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

system and its Device Drivers is likely to have a significant impact on overall
system performance.

2.1.4 System Level Description

2.2 A View from the EDA Vendors
A snapshot of the coverification/codesign electronic design automation (EDA)
industry was obtained recently from a paper/panel session held at the 1999
International Symposium on Circuits and Systems. Here 5 spokespersons for the
leading companies in the industry delivered papers and interacted in an open
forum panel. As may be imagined there are a number of common issues,
expressed with different emphases. Four quotations neatly capture the state of
the industry and the urgent problems that need to be solved.

2.2.1 Virtual Prototyping – A Requirement
 [Bunza 1999] (Eaglei, Synopsys) expresses the need for virtual prototyping:
Virtual prototypes facilitated by fast hardware/software co-simulation tools offer
the best hope for control, visibility, debugging, and integration in ever more
complex embedded systems. Effective use of co-simulation tools has repeatedly
delivered twenty to thirty percent (20-30%) reductions in development schedules,
by eliminating ASIC re-spins and facilitating parallel, early hardware/software
integration. Dramatic successes in product quality and time to market are
evident, but these dramatic results need the support of methodology, process
and management changes to yield the best returns.

2.2.2 Assessing Coverification/Codesign Tools
[Kenney 1999] (Seamless, Mentor Graphics) comments on the requirements for
assessing coverification tools in the context of engineering real products: When
evaluating co-verification solutions, make a careful assessment of what functions
of your design are supported by the tool and it’s associated CPU model. At what
level of hardware detail can these functions be simulated? What is required to
shift between detailed hardware simulation and high-speed software execution?
Will you be required to make changes to your embedded hardware or software?
You want to co-verify your design, not some distant derivative of it.

These factors as well as how well the tool fits with your current design
environment will determine how much value you derive from the adoption of co-
verification.

Incurring the risk of introducing a new processor into your project should be
accompanied by an appropriate level of risk mitigation. Co-verification has
proven to be an effective approach to comprehensive system simulation. Design
teams faced with the prospect of incorporating a new processor should seriously
think about incorporating this powerful tool into their embedded system design
flow.

11

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

2.2.3 The Importance of Simulation Speed in Coverification
[Jain 1999] comments on the requirement for simulation speed: SOC (systems
on a Chip) design verification requires that the design is simulated under various
non-deterministic external behaviors to gain high confidence in the design. Each
of these simulations require millions of cycles of simulation. HDL simulators take
weeks to complete each simulation. Although each of these non-deterministic
behaviors can be executed in parallel, this requires multiple simulator licenses,
increasing the cost of verification. The low speed and high cost of HDL simulators
also limit design optimization and do not allow design error detection before
manufacturing, increasing the cost of fixing an error, and delaying product
introduction. An improved methodology and supporting tools are needed to
improve verification quality. This methodology must provide enough simulation
speed to let designers try out many alternative architectures, run the necessary
iterations to analyze them, and be affordable.

2.2.4 Some Requirements for Tools Supporting Systems Engineering
Finally, [Kroliloski 1999] (Felix, Cadence) expresses eloquently the need for a
paradigm shift in the tools to support systems engineering: Recently there has
been a rapid increase in the integration level of embedded systems for use in
communications and multimedia products. This higher level of integration has
focussed attention on significant gaps in the methodology and the technology for
design of complex system-chips and chipsets including problems with design
environments.

The design of consumer products, e.g., in the communications and multimedia
domains, is rapidly changing. Significant changes in the marketplace are
demanding commensurate changes in design methodologies and tool sets:
? System-level decisions made very early in the design cycle determine the

cost, performance and viability of the product.
? Creating a “virtual prototype” of the product is vital to guarantee acceptance at

type approval or product qualification
? Engineers must evaluate, combine, integrate and verify pre-designed virtual

components in order to meet design deadlines. Virtual components are
needed in both the software and hardware domain.

? Effective HW-SW partitioning and implementation decisions require explicit
definitions of system function and architectural realization, and the exploration
and analysis of a number of alternative mappings between the two domains.

3. TOOLS ARCHITECTURES AND FLOWS

3.1 Tools Flows
In this Section, we will examine the architecture and flows for one of the new
breed of systems engineering tool sets. Architectural quantification and
codesign/coverification must fit into existing tool flows which take designs through
synthesis and realization. The flow of the new engineering process, as depicted

12

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

in Figure 1, embodies physical realization. From this view, synthesis is a
preliminary phase of the realization process.

Currently, logic synthesis tools take in low-level specifications of systems and
produce equivalent gate-level descriptions of the hardware and C/C++ or
assembly code of the software. The hardware and software tools are typically
separate as is the synthesis and realization activity for hardware and software.
Mechanical system modeling and synthesis is not on the radar screen of most
tools companies, but remains an ever present problem to the designers of
products.

The key to integration into the existing engineering tools flow is the languages
used in the modeling and specification of products. In the near term, the new
systems engineering tools must deal with existing languages C/C++ and
Verilog/VHDL both for importing existing component designs into new products
and for integration into existing tool flows.

3.2 System Level Modeling Tool Architecture
Even though we will use a particular tool, CoMET, to describe the architecture of
a systems engineering modeling system, the intent of the coverification tools
mentioned in Section 2 is similar enough to be subsumed by this discussion (for
further elaboration see [Goering 1999]). The differentiation is in the models used
to mediate the execution of software and the interactions between software and
hardware – the CPU, the modeling of time and causality, and the ability to trade-
off architectural detail for simulation performance.

In order to maintain compatibility with existing hardware design systems and
expected hardware design and simulation environments, the systems level tools
incorporate one of the many commercially available Verilog or VHDL
compilers/simulators. This simulator now needs to be linked to the CPU model
which executes software and mediates hardware/software interactions. These
models differ widely as discussed in Section 1.3.

3.2.1 A New Fast and Accurate Processor Model
The model used in CoMET is the so called Virtual Processor Model (VPM)
[Hellestrand 1999d] which is composed of two parts. In the first, which models
the instruction execution behavior, an analyzer builds a custom virtual processor
model (VPM) based on all or some elective subset of the architectural elements
required in the processor, from the target code. This static analysis is analogous
to ‘static timing analysis’ in circuit simulation and the resulting model runs very
fast. The code executed by a VPM may be HLL C/C++ code or assembly/object
level code.

The second part models the dynamic parts of the processor, those portions those
function cannot be determined prior to simulation. This includes the I/O parts of

13

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

the processor that communicate with the hardware: cache, virtual memory,
interrupts, bus signals, and the like. For obvious reasons, the simulation speed
on this portion is limited by the level of detail modeled, and, where
communication with hardware occurs, the speed of the hardware simulator during
that communication. A comparision of VPM, HDL, ISS and host-software based
processor models may be found in [Hellestrand 1999b].

With a VPM, it is also possible to select the architectural elements and the level
of detail modeled in both the dynamic and static portions of the design. In this
way, processors can be customized for a particular use, or modeled as cores or
selectable catalog components. This feature is especially helpful given the
differing concerns of engineers. Software engineers on a typical project do not
care about the details of bus transactions when building application code, but
they do want to know if control bits have been set correctly in device and status
registers. Hardware engineers come with a different perspective altogether.
They are rarely interested in running billions of instructions, but they do want to
ensure that devices plugged into the bus behave as designed and communicate
and synchronize using proper bus protocols.

A VPM allows modeling flexibility for hardware, software and architectural
engineers, providing accuracy where it is needed, and trading detail for
simulation speed at the election of the design engineers. A VPM with virtual port
(memory mapped) input-output typically executes 150 million instructions per
second on a 400MHz host, without sacrificing accuracy in function or timing. The
VPM is fast, accurate, and malleable and as such effectively addresses the
requirement in the concurrent engineering process to execute software at
sufficiently high speed and precision to enable VSPs to stand in stead of
physical prototypes.

3.2.2 The CoMET Simulation Framework
In CoMET (Figure 4), many VPMs are supported and a single HDL simulator is
executing. The hardware and VPM modeling domains are clear in the diagram.
The back-plane kernel mediates the maintenance of causality between the
domains (VPMs and HDL simulator) that define their own relative frames of
space and time. Models describing subsystems implemented in various
technologies may be included in this open-ended system, including: mechanics
and continuous processing (such as in chemical engineering).

14

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

E m b e d d e d S y s t e m K e r n e l
 (m e s s a g e p a s s in g)

T a s k # 1

T a s k # 2

T a s k # 3 T a s k # k
.

i n t e r - t a s k a n d
k e r n e l

m e s s a g e s

S im u la t i o n
 m e s s a g e s

V I R T U A L P R O C E S S O R M O D E L

E m b e d d e d S y s t e m K e r n e l
 (m e s s a g e p a s s in g)

T a s k # 1

T a s k # 2

T a s k # 3 T a s k # k
.

i n t e r - t a s k a n d
k e r n e l

m e s s a g e s

S im u la t i o n
 m e s s a g e s

V I R T U A L P R O C E S S O R M O D E L

A p p l ic a t i o n
S p e c i f ic

H a r d w a r e
(a r c h i t e c t u r e o f
w h o l e h / w -s /w

s y s t e m)

H a r d w a r e
S im u la t o r

(M a in t a in s a b s o l u t e
s y s t e m s im u la t i o n

t i m e)

T i m e &
V a l u e

M e s s a g e s

B
A
C
K
-
B
O
N
E

S
Y
S
T
E
M

K
E
R
N
E
L

Figure 4. A Hardware-Software System Simulator Model

15

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

4. MODELING HARDWARE, SOFTWARE AND PROCESSORS
The complexity of systems increases algebraically with the number of component
type layers present. In a modern system there are 8 types of layers: mechanical
hardware, analog electronics, digital electronics, processors, device drivers,
operating system/kernels, middleware, and application software. It has been
estimated that in determining system components, methodologies and tools
some 100,000 discrete choices are available [Hellestrand 1999c].

One key to building efficacious VSPs lies in the capability of the CPU model.
Another key is the maintenance of causality and relative time across simulation
domains – digital hardware, CPU model, software - where the expected time
relationship between systems elements, at any particular instant, may not
maintained but causality must be. A final key is the modeling of signals (or more
generally symbols) and symbol transitions across domain boundaries. Effective
modeling requires the ability to model failure and this triggers the requirement for
sub-symbol interpretation. The proliferation of symbols representing values of
signals, is anathema to fast simulation but is a requirement to accurately model
failure.

4.1 Modeling Single Processor VSPs
How is a system modeled? Figure 5 shows the various parts of a typical system
incorporating a single processor. Modeling requires yet further choices. On the
hardware side there is the intellectual property (IP) (purchased or in-house
created) required: to model hardware components (processors, controllers,
memories, I/O devices, FPGAs, custom chips and ASICs); to institute effective
design methodologies; to describe designs at a high level using hardware
description languages (Verilog, VHDL, C); and to analyze, verify and realize the
design with tools. On the software side the Operating System (OS), device
drivers and middleware (such as TCP/IP stacks) are likely to be purchased but
occasionally custom developed. The remaining software infrastructure to support
modeling is a combination of design methodologies; programming languages (C,
C++, Java); tools (editors, compilers, debuggers, software synthesis) and
whatever applications software (accounting and costing, etc.) might be built or
bought.

The VSP modeled using these software and hardware elements, needs to
simulate software at millions of instructions per second and hardware 10-1,000
times faster than existing HDL based simulations. Currently these requirements
can be satisfied using VPM technology and the extensive incorporation of C/C++
functional hardware descriptions within the HDL skeletons describing systems.

16

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

Figure 5. Components of a Typical System

4.2 Modeling Multiple Processor VSPs
Modern systems are likely to incorporate multiple CPUs whether general purpose
processors or Digital Signal Processors (DSPs). The system model is
commensurately more complex, as shown in Figure 6.

With the base of a comprehensive single processor model, multiple processor
modeling presents issues of scalability and separability. The use of different
operating systems, middleware and applications code on each of the interacting
processors is a challenge for concurrent systems development, debugging and
simulation. The incorporation of DSP processing elements adds requirements for
handling data sizes and types which are potentially incompatible with related
structures (such as type size and representation) on general purpose processor
processors. The solutions to such problems are similar in modeling as in
realizingf physical systems.

System Model

TCP/IP, etc - Available software.

Models - Available software

Models - Buy IP or build IP

Models - IP
Synthesis
Languages
Methods - Spec, design, maintenance, version

Models - IP
Synthesis
Languages
Methods - Spec, design, maintenance, version

Software

Middleware

Operating System

Bus

Driver

Hardware

M
I
C
R
O
P
R
O
C
E
S
S
O
R

17

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

The advantage of modeling, rather than physical prototyping systems, some of
which are amongst the most complex systems devised by human beings, lies in
the observability, manipulability, early availability, speed and accuracy of the
VSP. This is especially so for multiple processor systems destined to be realised
on silicon, where extensive debugging and iterative fixing of problems, requiring
the respinning of silicon, simply pushes time to market and cost beyond practical
business limits.

Figure 6. Multi-processor System Model

Middleware

Operating System

Driver

M
I
C
R
O
P
R
O
C
E
S
S
O
R

Middleware

Operating System

Driver

Hardware

M
I
C
R
O
P
R
O
C
E
S
S
O
R

Signal Processing
Application

Middleware

Operating System

Driver

D
S
P

P
R
O
C
E
S
S
O
R

Bus Bus Bus

Bus

Application

Task 1 Task k

Application

Task 1 Task k

Modeling a Multi-Processor System

18

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

5. THE BRILLIANT FUTURE
The many facets of systems and models described above form a basis for
developments in systems modeling that will transpire over the next decade. The
first requirement for advancement in systems engineering tools support is the
existence of a comprehensive development framework which supports fast,
accurate virtual prototyping of hardware, software and mechanical subsystems.
As described above, this became feasible in late 1998 with the advent of the
VPM processor model. Such frameworks will be the basis of future engineering
workbenches, upon which will be built higher layers of modeling tools.

The next big advance in the quest for improving the productivity, efficiency and
effectiveness of the systems engineering process will be the specification and
adoption of mathematically based system description notations to specify and
model digital hardware, software and mechanical systems [Hellestrand 1994].
Such notations must have synthesis paths, to appropriate target realization
technologies, which are observable, predictable and controllable. This will
constitute a radical departure from current practice in the use of behavioral/RT
level Verilog or VHDL for hardware engineers and will contribute further to the
blood to be shed in completing the systems engineering revolution. These
attributes imply that mathematically well formed, explicit syntactic and semantic
constructors for concurrent and sequential control and data flows will be the
foundation for such languages. Since the notion of time is inherently embedded
in concurrent and sequential constructors, synchronization control constructors
will be built from the more fundamental constructors. These languages are likely
to be based on the higher order functional mathematics, which will constitute a
major departure in engineering practice for both software and hardware
engineers.

With the presence of competent system description notations, the ability to
transform a system specification using mathematics opens dramatic capabilities.
One such capability will be to formally construct a family of products from a
golden architectural specification by provable transformations [Cheung 1997a,
1997b, 1997c], where each member of the family can be defined by constraints
that determine performance, resource usage, power consumption and hence
cost. The members of the product family have provably the same functionality ab
initio and bypass the requirement for formal verification tools. By incorporating
predictions of improvements over time in realization technologies, such as silicon
structures, such product families can be tagged with likely lifetimes in competitive
markets.

Another benefit of systems description notations is the ability to automatically
partition designs into hardware and software components, based on some cost
function. Given the prior requirement of direct synthesis being a fundamental
requirement of the notation, together with the transform capability described

19

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

above, the support of extensive and systematic exploration of the design space is
enabled.

The final benefit, is the capability of driving physical floorplanning [Saheb-Zamani
1995] directly from such specifications. This close connection between
specification and realization can be used to huge advantage in systems-on-
silicon to optimize silicon area, power, performance and hence cost.

The future awaits the curious and bold.

6. REFERENCES
? Bunza, G.J. (1999): Towards System Integration in a Virtual Environment:

Small Steps, Big Results, and Complications to Come for Embedded Systems
Engineering in the Next Millenium. Proc. ISCAS, May 1999, Orlando, Florida.

? Cheung T.K.-Y., Hellestrand G.R. (1997a): Form: A Functional System
Specification Notation, The Fourth Asia-Pacific Conference on Hardware
Description Languages (APCHDL'97), APCHDL'97, HsinChu, Taiwan, 18-20,
August 1997, pp10-15.

? Cheung T.K.Y., Hellestrand G.R., Kanthamanon P. (1997b): System Level
Analysis of a Coprocessor Architecture for Block Matching Motion Estimation
Computation, IEEE International Symposium on Circuits and Systems. 1997, IEEE
Society, Hong Kong June 9-12, 1997.

? Cheung T.K-Y., Hellestrand G.R., Kanthamanon P. (1997c): A
Transformational Codesign Methodology, Asia and South Pacific Design
Automation Conference, ACM/SIGDA CDROM, IEEE, Chiba, Japan, 28-31,
Jan. 1997.

? Goering, R. (1999): VaST Systems releases high-level codesign tool. EE
Times, CMP Media Inc., 5 Apr 1999.

? Hellestrand, G.R. (1994): Events, Causality, Uncertainty and Control. Proc.
2nd IEEE Asia Pacific Conference on Hardware Description Languages, pp
221-227, Toyohashi, Japan, October.

? Hellestrand, G.R. (1998): The Engineering of Mixed Technology Systems.
IEEE Circuits and Systems Society Newsletter, Vol. 9, No.2, June 1999, pp 1-
9.

? Hellestrand, G.R. (1999a): Systems Engineering: It is not a luxury? Electronic
Systems Technology and Design, May 1999.

? Hellestrand, G.R. (1999b): Systems Engineering: The Era of the Virtual
Processor Model (VPM). Electronic Component News, 15 May 1999.

? Hellestrand, G.R. (1999c): Designing Systems-on-a-Chip using Systems
Engineering Tools. Proc. ISCAS, May 1999, Orlando, Florida.

? Hellestrand, G.R. (1999d): The Advent of the Virtual Processor Model. EE
Times, CMP Media Inc., 14 June 1999.

? Jain, P. (1999): Cost-effective Co-verification using RTL-accurate C Models.
Proc. ISCAS, May 1999, Orlando, Florida.

20

VaST Precursor IEEE Spectrum –Bloody Revolution Sept 2001

? Kenney, J. (1999): Co-verification as Risk Management: Minimizing the Risk
of Incorporating a New Processor in Your Next Embedded System Design.
Panel Session, ISCAS, May 1999, Orlando, Florida.

? Krolikoski, S.J, Schirrmeister, F., Salefski, B., Rowson, J. and Martin, G.
(1999): Methodology and Technology for Virtual Component Driven
Hardware/Software Co-Design on the System-Level. Proc. ISCAS, May 1999,
Orlando, Florida.

? [Saheb-Zamani 1995] Saheb-Zamani M., Hellestrand G.R. (1995): A Stepwise
Refinement Algorithm for Integrated Floorplanning, Placement and Routing
of Hierarchical Designs. IEEE International Symposium on Circuits and
Systems, IEEE, Seattle, Washington, USA, May, 1995, pp49-52.

