
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 6 ,  JUNE 1989 66 1 

Force-Directed Scheduling for the Behavioral 
Synthesis of ASIC’s 

Abstract-The HAL system described performs behavior synthesis 
using a global scheduling and allocation scheme that proceeds by step- 
wise refinement. The force-directed scheduling algorithm at the heart 
of this scheme reduces the number of functional units, storage units, 
and buses required by balancing the concurrency of operations as- 
signed to them. The algorithm supports a comprehensive set of con- 
straint types and scheduling modes. These include: 

multicycle and chained operations; 
mutually exclusive operations; 
scheduling under j x e d  global timing constraints with: 

minimization of functional unit costs, 
minimization of register costs, 
minimization of global interconnect requirements: 

scheduling with local time constraints (on operation pairs): 
scheduling under fixed hardware resource constraints; 
functional pipelining; 
structural pipelining (use of pipelined functional units). 

Examples from current literature, one of which was chosen as a 
benchmark for the 1988 High-Level Synthesis Workshop, are used to 
illustrate the effectiveness of the approach. 

I. INTRODUCTION 
S LOGIC and RTL-level synthesis tools gain a stable A foothold in industry, the automatic synthesis of a dig- 

ita1 system from a behavioral description-behavioral or 
high-level synthesis-is the next step on the ladder of the 
design automation hierarchy. As demonstrated by the re- 
cent flurry of activity in this area [11-[71, [91, [ l l l ,  [131- 
[15], [17]-[33], [35]-1471, behavioral synthesis is be- 
coming an increasingly popular research topic. The inter- 
est is a natural consequence of the shift of the IC design- 
er’s involvement away from device-level considerations 
and toward architectural ones 

Behavioral synthesis is commonly achieved by dividing 
the task into a data path design and a control path design. 
Scheduling data path operations into the best control steps 
is a task whose importance has been recognized in many 
systems [1]-[4], [7], [22], 1251, [41]. According to Gaj- 
ski [ l ] ,  it is “perhaps the most important step during the 
architecture synthesis.” 
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Operation scheduling determines the serial/parallel 
trade-offs of the design, which approximately determines 
the cost-speed trade-offs [5]. If the design is subjected to 
a speed constraint, the scheduling algorithm will attempt 
to make sufficient operations run in parallel to meet the 
constraint. Conversely, if there is a limit on chip area, the 
scheduler can be asked to serialize operations to give the 
maximum speed consistent with the constraint. 

The major purpose of this paper is to present a general 
scheduling methodology that can be integrated into spe- 
cialized or general-purpose high-level synthesis systems. 
In [7], we presented an initial version of the force-di- 
rected scheduling algorithm at the heart of this method- 
ology. This algorithm has been taken up and reimple- 
mented by other research groups, both in academia [8], 
[9] and in industry [lo]. In this paper, we will present the 
latest implementation of the algorithm, which includes a 
more computationally efficient formulation of the force 
metric and supports the following new scheduling prob- 
lems: 

minimization of global storage and interconnect re- 

scheduling under fixed hardware resource con- 

two forms of pipeline scheduling. 

We will start by describing the scheduling task in the 
wider context of behavior synthesis. This will be followed 
by a review of existing scheduling techniques. We will 
then present the force-directed scheduling algorithm, 
which is the main emphasis of this paper. We will show 
how the scheduling can be optimized for either a speed 
constraint or a constraint on hardware resources. Exten- 
sions for two simple forms of pipelining will also be de- 
scribed. Finally, we present experimental results for de- 
sign examples taken from current literature. 

quirements; 

straints; 

11. SCHEDULING IN THE CONTEXT OF BEHAVIORAL 
SYNTHESIS 

There are several major tasks in the automatic synthesis 
of digital systems [6]. The first is the definition of the 
circuit function in a high-level hardware description lan- 
guage (HDL). Fig. l(a) depicts a simple behavioral de- 
scription that will be used to illustrate the synthesis pro- 
cess. This step is usually followed by a translation to a 
graph-based representation derived from the control and 
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data flow (the control-data flow graph, or CDFG) as 
shown in Fig. l(b). 

The next step (Fig. l(c)) is the operation scheduling, 
where operations are assigned a propagation delay value 
and partitioned into specific control steps (c-steps). This 
step can be preceded by, followed by, or performed 
simultaneously with the allocation of hardware modules. 
The latter consists of allocating functional units (FU’s) to 
execute the operations (nodes) of the CDFG and storage 
units (registers, memories) to store the values (edges). The 
number of each type of unit is determined, but they are 
not yet bound to a specific node or edge in the CDFG. 
Although scheduling and allocation can be performed 
separately, many systems attempt to link them in order to 
improve the overall process [2], [4], [7], [26], [28]. 

The next step is the data path synthesis, where the al- 
located functional units and storage units are bound to 
specific operations. These structural units are then inter- 
connected by using the data transfer information derived 
from the CDFG. The synthesis process usually includes 
an optimization phase which improves the register and in- 
terconnect bindings. 

The final realization of the data path is done either by 
assigning the high-level modules to predesigned tem- 
plates that represent their gate-level structure or by syn- 
thesizing them directly with module generators. 

The schedule and the list of data path operations are 
used to create a state graph which specifies the required 
control signals in each control step. This state graph can 
be used in turn to generate a controller for the circuit. This 
controller is often microprogrammed or is a PLA-based 
finite state machine. 

A possible register-transfer circuit for the example is 
shown in Fig. l(d). Here, it is assumed that the values A ,  
B ,  C, D, and E must be preserved and, therefore, the cor- 
responding registers cannot be shared. 

111. RELATED SCHEDULING APPROACHES FOR SYNTHESIS 

In this section, we describe the scheduling used in many 
recent synthesis systems. The intention is only to give an 
overview of the different approaches, not to be exhaus- 
tive. Furthermore, space does not permit a review of 
scheduling algorithms for other areas. These are covered 
in an excellent survey by Lawler et al. [12]. 

The simplest way to perform scheduling is to relegate 
the task to the user. This is the approach favored by the 
Silc system [ 131 under the assumption that the user should 
explicitly define the parallelism of the design. 

A .  Independent Scheduling/Allocation Schemes 
The following systems have been classified as indepen- 

dent scheduling and allocation schemes; strictly speaking, 
however, there is usually some form of interaction. For 
example, many of them derive estimates for the operation 
propagation delays based on the most probable allocation 
of functional units. 

The first and simplest scheme is to schedule operations 
“as soon as possible” (ASAP), as is done in Carnegie 
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Fig. 1. Synthesis subtasks for a simple example. (a)  HDL description. (b) 

Control data flow graph (CDFG). (c) Scheduled CDFG. (d) RTL archi- 
tecture. 

Mellon University’s (CMU) Emerald/Facet system [ 141 
and in the CATREE system [15] from the University of 
Waterloo. An example of ASAP scheduling is given in 
Fig. 3, which will be discussed in Section IV. This tech- 
nique has proved useful in the past for near-optimal mi- 
crocode compaction [ 161. 

A refinement of this concept is ASAP scheduling with 
conditional postponement of operations. In the MIMOLA 
system [ 171, postponement occurs whenever the operation 
concurrency is higher than the number of available func- 
tional units. The Flame1 system [l8], developed at Stan- 
ford and AT&T, uses the same idea. The scheme used in 
the book by Kung, Whitehouse, and Kailath on digital 
signal processing [ 191 is similar, except that an operation 
is postponed when it blocks a later one with a lower as 
late as possible (ALAP) level. Fig. 4 illustrates the mean- 
ing of ASAP and ALAP. 

The next, more complex class of algorithms, makes use 
of the list scheduling techniques described in [16]. The 
EMUCS system, developed at CMU by Hitchcock and 
Thomas [20] ; the behavior synthesis of interfaces (BSI) 
system, developed by Nestor and Thomas, again at CMU 
[21]; Pangrle and Gajski’s SLICER system, developed at 
the University of Illinois [22]; and IMEC’s Cathedral-I1 
system [23], [24], [25] all use this type of scheduling al- 
gorithm. 

In list scheduling, operations are sorted in topological 
order (top to bottom) using the precedences dictated by 
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data and control dependencies in the CDFG. The sorted 
operations are then iteratively scheduled into control 
steps. When a resource conflict occurs due to insufficient 
hardware, one or more operations are deferred by one 
control step. The selection of the deferred operation(s) is 
determined by a local priority function that is applied to 
all operations that could be scheduled in the current con- 
trol step. 

In the BSI system, the priority function reflects whether 
placing the operation in the current step will violate a 
minimum time constraint and whether placing an opera- 
tion in a later step will violate a maximum time con- 
straint. In the SLICER system, the priority function is 
based on operation mobilities. The mobility of an opera- 
tion is defined as the difference between its ASAP time 
and ALAP time. Operations on the critical path should 
therefore be scheduled first. The Atomics scheduler [25] 
of the Cathedral-I1 system uses a similar priority function 
and also includes a heuristic method for scheduling loops 
in a CDFG. 

B. Interdependent SchedulinglAllocation Schemes 
In the next two systems, the operation scheduling is 

done concurrently with the function1 unit allocation. Elf 
[2] uses a variation of the list scheduling algorithm 
adapted to fixed timing constraints. Its priority function is 
based on operation weights and urgencies. An operation’s 
weight is the number of control steps needed to execute 
the operation, plus the sum of the weights of all its suc- 
cessor nodes along the “heaviest” path ending in a timing 
constraint. An operation’s urgency is the ratio of its weight 
divided by the number of control steps left until its latest 
completion time. When an operation is delayed, its ur- 
gency increases, which raises its priority for scheduling 
in the next control step. 

The scheme used in the MAHA system [4], from the 
University of Southern California, relies on critical path 
determination and the concept of freedom to guide sched- 
uling. The freedom of an operation is identical to the mo- 
bility calculated in the SLICER system; in this case, how- 
ever, list scheduling is not used. The MAHA system first 
invokes the clocking scheme synthesis package (CSSP), 
written by Park [3]. Here, the critical path is determined 
and divided optimally into n steps, one per clock cycle. 
MAHA then allocates functional units for the critical path 
in a first-come first-served fashion. The notion of freedom 
is used to guide the scheduling of nodes not on the critical 
path. The node with the smallest freedom is chosen for 
allocation. 

C. SchedulinglAllocation by Stepwise Rejinement 
The BUD-DAA system [26], [27], from AT&T, uses a 

stepwise refinement approach to the scheduling task. In 
this system, operations are first partitioned into clusters, 
using a metric that takes into account potential functional 
unit sharing, interconnect, and parallelism. The func- 
tional units are then assigned to each cluster and the 
scheduling is done. BUD uses a list scheduling algorithm 

with a priori function that is similar to the one used in 
the SLICER system. 

Camposano’s work [28] on the IBM Yorktown Silicon 
Compiler (YSC) separates scheduling into two steps. In 
the first step, scheduling is performed by assigning the 
minimum number of control steps possible. Therefore, 
single states are created for loops, for module calls, and 
as required to avoid conflicts over register and memory 
usage. An initial design is then produced using logic syn- 
thesis tools to obtain speed and area estimates. Following 
this, state splitting is used to reduce the cycle time by 
splitting long control steps. This also allows increased 
sharing of hardware resources to minimize area. 

The HAL system described in this paper also makes use 
of a stepwise refinement approach, as depicted in Fig. 2. 
The system does a preliminary allocation and uses that 
information to establish a schedule estimate. The alloca- 
tion is repeated using the schedule to perform a much more 
detailed analysis and an improved selection of FU’s based 
on operation concurrency. The scheduler is then rein- 
voked and the final schedule is established by optimizing 
the use of the preselected FU’s. Details are given in [7]. 

The force-directed scheduling algorithm at the heart of 
this scheme allows specific information, such as the area 
and speed of a functional unit, to be fed back to optimize 
the scheduling process. 

This algorithm is different in several ways from the ones 
described earlier: 

It is a more global approach that considers the side 
effects of control-step (c-step) assignments on three 
types of operations: 

1) arithmetic and logic operations executed by 

2) storage operations realized by registers; 
3) data transfer operations realized by muxes and 

Unscheduled operations also contribute to the deter- 
mination of the operation concurrency; however their 
contribution is probabilistic rather than determinis- 
tic. 
Finally, tradeoffs in functional unit, register, and in- 
terconnect requirements are resolved using a built-in 
cost-weighing mechanism. Using this mechanism, 
operation scheduling priorities are set according to 
their associated hardware area costs. 

functional units; 

buses. 

D. Pipeline Scheduling 
The optimized scheduling of pipelined behavioral de- 

scriptions is a recent development in the field of behav- 
ioral synthesis. Two simple types of pipelining have been 
attempted: structural pipelining [22] and functional 
pipelining [29], [30]. 

In functional pipelining, the algorithm description is 
subdivided into sequences of operation stages that will be 
performed concurrently. Successive stages are streamed 
into the pipe so that different algorithm instances are ex- 
ecuted in an overlapping fashion on a single data path. 
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Fig. 2 .  Scheduling and allocation by stepwise refinement 

This is illustrated in Fig. 12, where two algorithm in- 
stances are depicted. 

Park and Parker's Sehwa system is one of the first syn- 
thesis programs described in the available literature to 
perform functional pipelining [29]. This system makes use 
of two polynomial-time pipeline scheduling algorithms: 

1) Feasible scheduling: Schedule with constraints on 
the total implementation cost. 

2) Maximal scheduling: Schedule for maximum per- 
formance, that is assuming there is no cost con- 
straint. 

Sehwa also incorporates an exhaustive algorithm for 
optimal scheduling. Here the search time is reduced by 
using the feasible or maximal schedule as an upper bound. 
The algorithms are invoked iteratively, and each sched- 
uling cycle is guided by the performance and cost esti- 
mation for the previous schedule. 

Pipeline scheduling has also been demonstrated in the 
current version of the Elf system [30], developed at Au- 
desyn Inc. Here, loop winding is used to realize an alter- 
nate form of functional pipelining. Loop winding parti- 
tions each loop iteration according to path length and then 
winds these in parallel to form a shorter loop executing at 
a higher frequency. User-supplied throughput and latency 
constraints are used to determine the length of the shorter 

Scheduling is performed by partitioning the critical path 
operations into equal length stages. The operation weights 
described earlier are used to assign noncritical operations 
to these stages. This is followed by a refinement phase, 
where load balancing [ 1 I]  is used to reduce the concur- 
rency of similar operations. 

In structural pipelining, temporal parallelism is ob- 
tained through the use of pipelined functional units, e.g., 
a two-stage pipelined multiplier. In this case, the opera- 
tion instances are executed in an overlapping fashion. 

The Slicer system [22], mentioned in the previous sub- 
section, was one of the first systems to perform schedul- 
ing optimizations with pipelined functional units. As in 
regular scheduling, the Slicer systems uses mobilities to 
guide the pipeline scheduling process. 

Functional and structural pipeline scheduling are sup- 
ported in HAL using simple modifications of the force- 
directed scheduling algorithm that will be described in 
Section VII. 

loop. 

E. Summary of Scheduling Approaches 

lows: 
The scheduling approaches can be summarized as fol- 

Independent scheduling/allocation: 
ASAP scheduling approaches: 

Direct (Facet-Emerald, CATREE). 
Conditional deferment (MIMOLA, Flamel, 

~ 9 1 ) .  
List scheduling approaches: 

Priority function: time constraints (BSI). 
Priority function: mobility (Slicer). 

Interdependent scheduling/allocation: 
User-defined schedule (Silc). 
List scheduling, priority function: urgency (Elf). 
Freedom and critical path scheduling (MAHA). 

.List scheduling after design partitioning (BUD- 

State splitting after initial logic synthesis (YSC). 
Force-directed scheduling (HAL). 

Stepwise refinement approaches: 

DAA) . 

The pipeline scheduling approaches can be distin- 

Functional pipelining: 

guished using the following classification: 

Feasible, maximal or exhaustive scheduling 

Loop winding using operation weights (Elf). 
Modified force-directed scheduling (HAL). 

List scheduling using mobilities (Slicer). 
Modified force-directed scheduling (HAL). 

(Sehwa). 

Structural pipelining: 

IV. BASIC FORCE-DIRECTED SCHEDULING ALGORITHM 
The intent of the force-directed scheduling algorithm is 

to reduce the number of functional units, registers, and 
buses required by balancing the concurrency of the op- 
erations assigned to them but without lengthening the to- 
tal execution time. Concurrency balancing helps to 
achieve high utilization-or low idle time-of structural 
units, which in turn minimizes the number of units re- 
quired. The algorithm is iterative, with one operation 
scheduled in each iteration. The selection of the control 
step in which it will be placed is based on achieving a 
balanced distribution of operations in each control step. 

In this section, we will describe a simplified version of 
the algorithm that attempts to balance the concurrency of 
arithmetic and logic operations only. Furthermore, we will 
temporarily assume that all operations execute in one con- 
trol step (we will use the term c-step from now on). 
Chaining (placing two data-dependent operations in the 
same c-step) and multiple c-step operations are not con- 
sidered. The complete algorithm, which does not have 
these restrictions, will be presented in Section V. 

A. Determination of Time Frames 
The first step involves the determination of both an 

ASAP (as soon as possible) schedule and an ALAP (as 



PAULIN AND KNIGHT: FORCE-DIRECTED SCHEDULING 665 

late as possible) schedule. Combining results for both 
schedules will determine the time frame of each opera- 
tion. 

To illustrate this, we will use the example first pre- 
sented in [ l l ]  and subsequently used in [15], [22], [311, 
and [32]. The algorithmic description and the correspond- 
ing control data flow graph (CDFG) for this example are 
given in Fig. 3. 

The raw CDFG would not have operations scheduled 
in time (control steps). Fig. 3 shows ASAP scheduling. 
ASAP versus ALAP scheduling are shown in simplified 
form in Fig. 4(a) and (b) respectively. 

By noting that an operation can be assigned to any 
c-step between its ASAP and ALAP c-steps, one can draw 
a time frame diagram as shown in Fig. 5 .  Here, the width 
of the box containing a particular operation represents the 
probability that the operation will eventually be placed in 
a given time slot. A useful heuristic is to assume uniform 
probability of assigning an operation to any feasible 
c-step. The area assigned to each operation is always one, 
but it is stretched along its time frame. 

This method of assigning probabilities is identical to 
the one used in Nagle’s attraction algorithm [33]. The 
resemblance ends there, however, as the attraction algo- 
rithm is used for a very different application, i.e., the syn- 
thesis of a control path for a predefined data path. As we 
will see in the next subsections, probabilities are used in 
the HAL system in a different way and for a different pur- 
pose-namely the minimization of data path costs. 

B. Creation of Distribution Graphs 
The next step is to take the summation of the probabil- 

ities of each type of operation for each c-step of the 
CDFG. The resulting distribution graphs (DG’s) indicate 
the concurrency of similar operations. For each DG, the 
distribution in c-step i is given by 

DG(1’) = c Prob(Opn, i )  (1) 
Opn type 

where the sum is taken over all operations of a single type. 
Prob (Opn,  i ) is the probability of an operation in c-step 
i. The distribution graphs derived from Fig. 5 are shown 
in Fig. 6 .  

The first graph represents the distribution of the multi- 
ply operations, and the next one combines the distribu- 
tions of the add, subtract, and compare operations. The 
latter three operations are actually assigned to separate 
DG’s but are grouped here for brevity. Each horizontal 
bar of the DG’s corresponds to a distinct c-step. The boxed 
c-steps delineate the time frames where operations can oc- 
cur. The unboxed c-steps in the Multiply DG indicate that 
multiply operations could never take place in the fourth 
c-step without extending the critical path of the CDFG. 

I )  Conditional Statements: If-then-else and case state- 
ments cause forks in the CDFG as shown in Fig. 7. Op- 
erations in the different branches of a fork are mutually 
exclusive. When operations in different branches can be 
executed on the same type of FU, they can be scheduled 

y”+3xy’+3y=O : 

while (x .c a) repeat: 
xl=x+dx; 
UI = U - (3  x U dx) - (3 y dx) ; 
yl = y + (U dx) ; 
x=xI; u=uI;  y=yl;  

end ; 

C-step 1 

C-step 2 

C-step 3 

C-step 4 

Fig. 3.  Control data flow graph (CDFG) for first example. 

(a) (b) 
Fig. 4. (a) ASAP and (b) ALAP schedules. 

C-step 1 

C-step 2 

C-step 3 

C-step 4 

P 
u u  

Fig. 5 .  Time frames of operations (initial state). 

I DG for Multiply I I DG for Add, Sub, Compare 
0 1 2 3 4  0 1 2 3 4  

I I I I I I I I I  I 1m. I I I I I I I I I  

Fig. 6. Distribution graphs (initial state). 

into the same c-step without increasing the required num- 
ber of FU’s. The same FU is simply shared by those op- 
erations as they will never execute concurrently. 
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DG for Add 

~ 

(a) (b) (C) 

DFG). (b) Time frames. (c) DG. 
Fig. 7. Distribution evaluation for CDFG with conditional statement. (a) 

We use the following strategy to take advantage of this 
observation. For each c-step in which the time frames of 
the mutually exclusive operations intersect, the probabil- 
ity of only one of these is added to the corresponding DG. 
The operation selected is the one with the highest proba- 
bility. This is illustrated for the CDFG fragment of Fig. 
7. 

Without special treatment of the mutually exclusive ad- 
ditions, the total distribution would be 1.5 in both c-steps. 
The unscheduled addition would then have an equal prob- 
ability of being assigned to either c-step. It is obviously 
preferable to schedule it in the first c-step, as in this case 
only one adder will be required. That is exactly what will 
happen using the strategy just described due to the re- 
duced distribution in the first c-step. 

2) Trace Scheduling Transformations: In [34], Fisher 
described a series of transformations used in trace sched- 
uling. These transformations involve the displacement of 
operations in and out of control blocks to improve per- 
formance. For example, an operation that is not explicitly 
defined as part of a block may still be scheduled in the 
same c-step as an operation in the block. This may be 
done to shorten the critical path. In this case, the opera- 
tion is implicitly duplicated in all branches of the case 
statement and becomes part of these blocks. 

This is illustrated in Fig. 7, where the add and subtract 
operations are implicitly duplicated in both branches of 
the case construct. In the HAL system, if-then else and 
case control blocks do not have rigid boundaries so that 
operations can be freely moved in and out of them (as 
long as data dependencies are still respected). The side 
effects of these moves are taken into account by selective 
addition of the operation probabilities to the DG as de- 
scribed above. Further details are given in [35]. 

C. Calculation of “Self” Forces 
Each operation of the CDFG will have a selfforce as- 

sociated with each c-step i of its time frame. This is a 
quantity which reflects the effect of an attempted control 
step assignment on the overall operation concurrency. It 
is positive if the assignment causes an increase of opera- 
tion concurrency, and is negative for a decrease. 

The force is much like that exerted by a spring that 
obeys Hooke’s law: F = Kx. K represents the spring’s 
constant (rigidity), x the displacement, and F the force 
that caused the displacement. 

More precisely, each DG can be represented as a series 
of springs (one for each c-step) that will exert forces on 

all operations. The constant of each spring K is given by 
the value of DG( i ), where i is the c-step number for 
which the force is calculated. The displacement of the 
spring x is given by the increase (or decrease) of the prob- 
ability of the operation in the c-step due to a rescheduling 
of the operation. For a given operation whose initial time 
frame spans c-steps t to b ( t  I b ) ,  the force in c-step i is 
given by 

Force(i) = DG(i)  * x ( i )  (2a) 

where D G ( i )  is the current distribution value (i.e., the 
spring’s constant) and x ( i )  is the change in the opera- 
tion’s probability (i.e., the spring’s displacement). 

The total self force associated with the assignment of 
an operation to c-stepj ( t  I j I b )  is simply 

b 

self Force(j)  = [Force(i)] (2b) 
1 = t  

We will illustrate this equation by using the partial time 
frame diagram of Fig. 8. The constant of each of the three 
springs corresponds to the value of the multiplication DG 
given in Fig. 6 for the first three c-steps. We will attempt 
to schedule the circled multiply operation in c-step 1 as 
depicted in Fig. 8(b). The probability of the operation will 
change from 1 /2  to 1 in c-step 1 and from 1/2  to 0 in 
c-step 2. These probability shifts correspond to the dis- 
placement x of each of the springs. The resulting force 
associated with the assignment to c-step 1 is the sum of 
forces caused by the spring displacement in both c-steps 
of the time frame and is given by 

self Force( 1 )  = Force( 1 )  + Force( 2) 

= (DG(1) * x(1))  + (DG(2) * x(2)).  

Using the values from Figs. 6 and 8, we obtain 

self Force( 1 )  = (2.833 * + O S )  + (2.333 * -0.5) 

= +0.25. 

The force is positive, as expected, because the concur- 
rency in c-step 1 is higher than in c-step 2. Scheduling 
the multiplication in that c-step will have an adverse effect 
on the overall distribution. 

Alternative Interpretation of Force: An alternative 
interpretation of the meaning of force follows from the 
evaluation of (2b). The total selfforce associated with the 
assignment of an operation to c-stepj is simply 

selfForce(j)  = D G ( j )  * x ( j )  + ,E [DG(i )  * x ( i ) ] .  
b 

I = t  
I fJ 

(2c)  

Evaluating the displacements x ( j ) and x ( i ) yields 

~ ( j )  = ( h  - l ) / h  

and 

x ( i )  = - l / h  
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- 
C-step 

1 - 
C-step 

2 
- 

C-step 
3 - 

Fig. 8 .  Time frame modifications for force calculations. 

where 

h =  ( b  - t + 1) 

is the time frame height. After rearrangements, we obtain 

selfForce(j)  = D G ( j )  - c [ D G ( i ) / h ] .  (2d) 
b 

i = f  

In other words, the force associated with the tentative 
assignment of an operation to c-stepj is equal to the dif- 
ference between the distribution value in that c-step and 
the average of the distribution values for the c-steps 
bounded by the operation’s initial time frame. In Fig. 
8(b), the use of equation (2d) yields 

’ 
self Force( 1 )  = DG( 1 )  - [ D G ( i ) / 2 ]  i =  1 

= 2.833 - (2.833 + 2.333)/2 = +0.25 

which of course is identical to the result obtained earlier. 
For the more general case, namely the force associated 

with the reduction of an initial time frame (bounded by 
c-step t and b)  to a new time frame (bounded by c-steps 
nt and n b ) ,  we may use the following equation: 

nb 

Force(nt, nb)  = [ D G ( i ) / ( n b  - nt + l ) ]  

- c [ D G ( i ) / ( b  - t + l ) ] .  

i = nt 

b 

(2e) 
i = r  

Each sum represents the average of the distribution val- 
ues for the c-steps bounded by the time frame. The force 
is therefore equal to the difference between the average 
distribution for the c-steps bounded by the new time frame 
and the average for the c-steps of the initial one. 

This formulation of the force equation is more compu- 
tationally efficient for two reasons. The first is that the 
initial average distribution need be calculated only once 
when evaluating the force associated with all c-steps for 
the time frame. The second is that it involves mostly sub- 
tractions. On the other hand, due to its more intuitive 
physical interpretation, we will use the former equations 
((2a) and (2b)) in the remainder of the text. 

D. Calculation of Predecessor and Successor Forces 
Assigning an operation to a specific c-step will often 

affect the time frames of linked operations in the CDFG. 
This is because scheduling an operation is equivalent to 
reducing its time frame to one c-step. This modification 
will be propagated to the time frames of the predecessor 
and/or successor operations. In turn, this will create ad- 
ditional forces that can reduce or even counter the origi- 
nally intended improvement, so it is imperative that they 
be accounted for. 

This is achieved by calculating the extra forces due to 
the implicit modifications of the time frames of linked op- 
erations. They shall then be added to the selfforce. There 
will be two extra force contributions: the predecessor 
forces and the successor forces. 

For example, if the circled multiply operation in Fig. 
8(a) was tentatively assigned to c-step two, as in Fig. 8(c), 
the succeeding multiply operation would implicitly be as- 
signed to c-step 3. The time frames of the other operations 
would not be affected. The resulting force associated with 
that assignment would then be the sum of the two indi- 
vidual forces. The self force of the first multiply would 
be given by: 

self Force(2) = ( D G ( 1 )  * x(1) )  + ( D G ( 2 )  * x ( 2 ) )  

= (2.833 * -0.5) + (2.333 * + 0.5) 

= -0.25. 

The successor force due to the implicit assignment of 
the second multiplication to c-step 3 would be given by 

succ Force(3) = ( D G ( 2 )  * x ( 2 ) )  + ( D G ( 3 )  * x ( 3 ) )  

= (2.333 * -0.5) + (0.833 * +0.5) 

= -0.75. 

The resulting force due to the c-step assignment is 

Total Force (2 )  = self Force ( 2 )  + succ Force ( 3 )  

= -1. 

This c-step assignment is more effective than the one at- 
tempted earlier, and this is reflected clearly by the force 
calculations. 

Algorithm Summary: The previous steps can be sum- 
marized as follows: 

Repeat until (all operations scheduled): 

1.1. Find ASAP schedule. 
1.2. Find ALAP schedule. 

Step 1:  Evaluate time frames: 

Step 2: Update distribution graphs, using equation 

Step 3: Calculate self Forces for every feasible con- 

Step 4: Add predecessor and successor forces to self 

Step 5 :  Schedule operation with lowest force; set its 

(1). 

trol-step, using equation (2). 

forces. 

time frame equal to the selected c-step. 
End Repeat. 
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E. Look-Ahead 
Look-ahead is a useful but sometimes costly method of 

improving an algorithm’s effectiveness. In the case of 
force-directed scheduling, the extra computing costs could 
not be justified by the small improvements obtained using 
even a simple one-stage look-ahead. However, the simple 
modification presented here can be applied to approximate 
a simple look-ahead scheme, without increasing the al- 
gorithm’s complexity. This modification has proved to be 
extremely important as it has improved the algorithm’s 
efectiveness considerably. 

The selfforce calculation (2a) given earlier can be mod- 
ified to partially reflect the effect of an assignment on the 
future value of the DG. The idea is to temporarily modify 
the spring constant DG( i ) so that it takes on a value 
somewhere between the current one and the value that 
would be obtained afer the current iteration. Applying 
this reasoning, the following improved force calculation 
was obtained after extensive experimentation: 

Force(i) = temp-DG(i) * x ( i )  

= (DG( i )  + x ( i ) / 3 )  * x ( i )  (2a‘) 
which replaces (2a) presented earlier. The force calcula- 
tion for the example of Fig. 8(b) is now given by 

Total Force ( 1 ) 

= self Force( 1) 

self Force( 1 ) 

= Force( 1) + Force(2) 

= temp-DG( 1 )  * x( 1 )  + temp-DG(2) * x ( 2 )  

= (DG( I )  + x(  1)/3) * x( 1)  + (DG(2) 

+ X ( W 3 )  * - 4 2 )  
= (2.833 + 0.5/3) * +0.5 

+ (2.333 - 0.5/3) * -0.5 

= +0.41667 (the previous value was + 0.25). 

This higher value will further reduce the likelihood that 
the circled multiply operation will be scheduled in c-step 
1. 

Fig. 9 depicts the final schedule and the distributions 
obtained for the example. It is easily seen that the oper- 
ation distributions are optimal. The result was obtained in 
just three iterations, although there were twice as many 
operations to schedule. This is due to the global nature of 
the algorithm and the use of the look-ahead factor, which 
acts much like overrelaxation in the iterative solution of 
linear equations. 

F. Complexity Considerations 
The algorithm described above is O (  cn3) when imple- 

mented in a straightforward fashion. Here, c is the time 
constraint expressed in c-steps, and n is the total number 
of operations. This complexity can be derived as follows: 

0 1 2 3 4  
I I I I I I I I I  

1- 
2- 
3- [I 4- 

I DG for Multiply 1 1 DG for Add, Sub, Compare I 

I I 1  I 

Fig. 9 .  Final time frames and DG’s. 

1)  Each iteration of the algorithm schedules at least one 
operation. This implies there can be at most n iter- 
ations. However, in most iterations many other op- 
erations are scheduled implicitly, so that can be con- 
sidered a very conservative upper bound. 

2) Within each iteration, there are n operations for 
which forces must be calculated. 

3) For each of these operations, the force must be cal- 
culated for h control steps, where h is the height of 
the operation’s time frame. In the worst case, where 
all operations are totally independent, the maximum 
possible time frame height is equal to c, the global 
time constraint. Typically, though, operations are 
interdependent so that the average time frame height 
is a fraction of c. 

4) Finally, for each tentative operation to c-step as- 
signment, there may be at most n - 1 predecessor1 
successor operations affected, and their force must 
also be calculated. 

The combined effect of these four considerations yields 
the O (  cn3) complexity stated above. 

Reducing the Complexity: Fortunately, we can apply 
two methods to reduce the complexity substantially. The 
first is to perform a preliminary reduction of all time 
frames which exceed a constant maximum allowable 
height H (for example, H = 10 c-steps). Forces are cal- 
culated in the usual fashion, and all long time frames are 
reduced simply by removing from the time frame the 
c-steps with the highest forces. The time frame reduction 
step is O(cn) and the scheduling phase that follows is 
now reduced to U (  Hn 3) ,  where H is a predefined con- 
stant. 

The second method is to evaluate the forces of prede- 
cessor and successor operations differently. In this 
method, the sew, predecessor, and successor forces are 
calculated in three separate phases. The first phase con- 
sists of calculating and storing the self force of all oper- 
ations. In the second phase, the graph is traversed from 
bottom to top and each operation “queries” its immediate 
successors for their stored force. In turn, their stored force 
is made equal to the sum of their own self force and the 
stored force of their immediate successors. We are effec- 
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tively performing a running sum of all the successor forces 
in linear time. In the third and final phase, the process is 
repeated by traversing the graph from top to bottom and 
performing a running sum of the predecessor forces. 

This second method reduces the complexity to 0 ( cn ). 
Therefore, for problems in which scheduling with a max- 
imum H is feasible, one obtains a complexity of O ( n  ’). 
These methods and the complexity calculations are de- 
scribed in further detail in [35]. 

V. REFINED SCHEDULING ALGORITHM 
The basic algorithm just presented is a powerful means 

of solving a relatively narrow class of problems. To make 
it usable for the wide range of constraints that a good syn- 
thesis tool should address, it was necessary to incorporate 
a few important refinements. However, we will see that 
the basic framework was extended in a straightforward 
fashion to include every refinement presented here. The 
refinements can be divided into four broad classes: 

1 )  Refinements that extend the algorithm’s scope: 
minimization of bus costs, 
minimization of register costs, 
local timing constraints, 
loops. 

2) Refinements that ease the inclusion of allocation 
information into the scheduling process: 

incorporation of structural unit area costs, 
multiclass DG’s (for ALU’s), 
chained and multicycle operations. 

3) Refinements to allow scheduling under fixed area 
constraints. 

4) Refinements for pipeline scheduling: 
Extension for functional pipelining, 
Extension for structural pipelining. 

This section will deal with the first two classes, while 
the area constraints and pipeline extensions will be pre- 
sented in Sections VI and VII. 

A .  Minimization of Bus Costs 
As we mentioned earlier, scheduling has an effect on 

the interconnect cost of the final circuit. For example, the 
minimum number of buses required is directly related to 
the number of concurrent data transfers in a given c-step. 
Scheduling an operation implies that at least two transfers 
will occur in the c-step to which it is assigned. The first 
transfer is from the output of the FU to the register storing 
the result of the operation it performed. The others are 
from the registers that supply the FU with its operands. 
The minimum number of buses required for a given 
schedule can be found by taking the maximum over all 
c-step of the number of simultaneous data transfers. 

To minimize the number of concurrent transfers and the 

of distinct’ inputs and outputs: 

Trans DG ( i  ) 

OPn fype 
= c [Prob (Opn, i )  * Opn-No-InOuts] ( 3 )  

where Prob ( Opn, i ) is the probability of an operation in 
c-step i ,  and Opn-No-InOuts is the combined number of 
distinct inputs and outputs for Opn. The additional forces 
due to these new DG’s will be calculated in the same man- 
ner as for the regular operations. 

B. Minimization of Register Costs 
The minimum number of registers required for the im- 

plementation of a scheduled CDFG is given by the largest 
number of data arcs traversing a control step boundary. 
For a CDFG in which many or all of the operations are 
unscheduled, it is more difficult to establish this lower 
bound. 

In this subsection, we will present a technique that re- 
duces register costs and also determines a lower bound on 
the register costs, at any stage of the scheduling process. 

To achieve register minimization, we must create a new 
class of operations that we call storage Operations. A 
storage operation is created at the output of every source 
operation that transfers a value to one or more destination 
operations in a later control step. We will also need an- 
other special DG that will be referred to as a storage DG. 

When both the source and the destinations of a storage 
operation are scheduled, then the storage operation’s dis- 
tribution coincides with its lifetime. In other words, the 
distribution is bounded by the c-step of the source oper- 
ation and the c-step of the last destination operation. The 
distribution value is equal to one, indicating that it must 
exist with probability one for the entire lifetime. 

If one or more of the source or destination operations 
are not scheduled, then we have to determine probabilistic 
distributions. This can be done in much the same way as 
for regular operations. The only complication is that, as 
opposed to regular operations, the length of the storage 
operation, i.e., the length of its lifetime, is dependent on 
the final schedule. 

For example, in the simple data flow graph of Fig. 10 
there are three possible lifetimes for storage operation S, 
as depicted in parts (a), (b), and (c) of the figure. This 
operation stores the value of the source operation s and 
transfers it to the destination operation d. 

The following simple but effective heuristic can be used 
to quickly estimate the resulting storage distribution. The 
first step is to determine the lifetimes associated with the 
ASAP and ALAP schedules (ASAP life and ALAP life) as 
well as the longest possible lifetime (max life).  An esti- 
mate of the average length of all possible lifetimes is given 

associated bus Costs, we Create a Special DG that contains 
the distributions of the data transfers. We will refer to this 

‘The word distinct is emphasized here because several operations may 
have common inputs. When this occurs, each common input should be 

as the transfer DG. since transfers are directly related to counted only once. For example, in the first c-step of Fig. 3 there are only 
five distinct inputs (i.e., U ,  x, y ,  dx,  and 3) for the five operations. A corn- 
mon inout should Dreferablv be linked to the operation with the highest operations, the transfer DG is the Of every 

- r  

operation distribution multiplied by the combined number probability. 
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(d) 
Fig. 10. Storage lifetimes for all schedules. (a) ASAP lifetime. (b) 

Maximum lifetime. ( c )  ALAP lifetime. (d) Storage distribution (for stor- 
age S ) .  

by 

[ASAP life] + [ ALAP life] + [ max life] 
3 

[avg life] = 

(4)  
where 

[ ASAP-life] = length of lifetime for ASAP schedule 

[ ALAP-life] = length of lifetime for ALAP schedule 

[ max-life] = length of the longest possible lifetime 

= ( ASAP-life-begin 

- ALAP-life-end + 1 ) .  

For our example (Fig. lo), the ASAP, ALAP, and max- 
imum lifetimes of the storage operation S are 

ASAP-life = ( 2 ,  3 )  =$ [ ASAP-life] = 2 

ALAP-life = ( 3 ,  4 )  * [ALAP-life] = 2 

max-life = ( 2 ,  3 ,  4 )  * [max-life] = 3 .  

Therefore, (4) yields 

[avg life] = ( 2  + 2 + 3 ) / 3  = 7 / 3 .  

At this point, there are two possible situations. The first 
and simplest is when there is no overlap between the 
ASAP and ALAP lifetimes. In this case the storage dis- 
tribution in c-step i is given by 

[ avg life] 
[ max life] 

storage D G ( i )  = 

where 

The second situation is when the ASAP and ALAP life- 
times overlap. This is the case in Fig. 10, where 

overlap = ( 3 ,  3 )  =) [overlap] = 1 .  

The overlap represents the c-steps where it is certain that 
a storage operation will be required. Therefore, for each 
c-step of the overlap, the distribution must be set equal to 
one. These overlaps can be determined at any intermedi- 
ate stage of the scheduling process. This is extremely use- 
ful as they can also be used to set a lower bound on the 
number of registers required to implement the CDFG, 
even if any or all of the operations have not been sched- 
uled. 

When taking overlaps into account, the storage distri- 
bution in c-step i is now given by 

[ avg life] - [overlap] 
[ max life] - [overlap] 

storage D G ( i )  = 

( i  outside of overlap) 
or 

storage D G ( i )  = 1 (for i inside overlap). ( 6 )  

For our example, using the lifetimes and the overlap 
calculated earlier, (6) yields 

7 / 3  - 1 
storage D G ( 2 )  = ~ = 2 / 3  

3 - 1  

storage DG( 3 )  = 1 (due to overlap) 

storage D G ( 4 )  = 2 / 3 .  
The resulting storage distribution is depicted in Fig. 10(d). 

This process is repeated for all storage operations and 
the separate distributions are added to a single storage 
DG. Using the scheduling process described in Section 
IV, the additional force exerted by these new DG’s can 
be calculated in much the same way as that presented for 
regular forces, using (2). This force is added to an oper- 
ation’s selfforce by applying a mechanism similar to the 
one used for predecessor and successor forces. 

In Fig. 11, we compare the register requirements for 
our differential equation example using a simple ASAP 
schedule and the force-directed schedule. For the ASAP 
scheduling at least seven registers are required as there 
are seven values to be stored at the end of c-step one. For 
the force-directed schedule, this number is reduced to five. 

The final assignment of storage operations to registers 
is performed separately. The HAL system makes use of 
the approach described in [35 ]  and [36 ] .  Alternative ap- 
proaches [ 3 7 ] ,  [38 ]  could also be used. 

C. Local Timing Constraints 
In certain classes of applications, it is useful to specify 

minimum and/or maximum timing constraints between 
operation pairs. This has been shown to be particularly 
useful in the behavioral synthesis of interfaces [21 ] .  

This is implemented in the HAL system as a dummy 
timing operation that links two operations via control 

( ASAP-life-begin I i I ALAP-life-end). edges similar to the ones used in case and loop constructs. 
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ASAP schedule Force-directed schedule 

-- 
Min. no. of registers = 7 Min. no. of registers = 5 

Fig. 11. Register requirements for ASAP and force-directed schedules. 

These timing operations can be inserted between any two 
regular operations; they specify that one must be sched- 
uled before, after, or concurrently with the other. A pair 
of minimum and/or maximum timing constraints can be 
associated with each timing operation. They are taken into 
account during the time frame determination phase of the 
scheduling algorithm 

D. Scheduling with Loops 
Whenever a loop is specified in a behavioral descrip- 

tion, the user must also specify a constraint on the loop 
iteration time or alternatively, a constraint on the number 
of structural units available. A loop timing constraint is 
implemented in the CDFG by asserting a local maximum 
timing constraint between the Begin and End operations 
that delimit the loop. The operations bounded by the loop 
are scheduled within the constraint using the regular force- 
directed algorithm. 

Rather than specifying a time constraint, the user may 
instead specify a constraint on the number of structural 
units available. In this case, the scheduling extension de- 
scribed further in Section VI will be exploited to generate 
a schedule, restricted to the given number of structural 
units, with a minimal delay through the loop body. 

For multiple embedded loops, the operations of the in- 
nermost loop are scheduled first, relative to the local time 
constraint (or hardware constraint). When this is done, 
the entire loop is treated as a single operation with an 
execution time that is equal to the loop’s local time con- 
straint. Operations external to the loop cannot be sched- 
uled concurrently with loop operations. This process is 
repeated for all loops until the outermost loop is sched- 
uled. 

To force pipelining, the user can place a local time con- 
straint on a loop which is shorter than the total execution 
time of the operations on the longest path through the 
loop. When this occurs, the scheduling is done using the 
extension that will be described in Section VII. Here, the 
latency is set equal to the time constraint. In other words, 
any operation that is scheduled into a c-step that is greater 
than the latency will actually be performed concurrently 
with some of the operations in the next iteration. 

This entails that operations from the current iteration 
will affect the time frames of those in the next one. This 
is taken into account in the time frame determination pro- 
cess. This form of pipelining is similar to loop winding 
as presented by Girczyc [30] as part of the current version 
of the Elf system. 

E. Incorporation of Structural Unit Area Costs 
Different structural units have different realization costs. 

Operation types associated with high-cost units should be 
given a higher priority in the scheduling process. An easy 
way to do this is to multiply the constant of the spring 
associated with the DG by a cost factor that reflects the 
unit’s area. For example, the cost factor of the multipli- 
cation DG would be roughly2 equal to the allocated mul- 
tiplier area, while that of the storage DG is equal to the 
register area. This is a very simple mechanism that allows 
the algorithm to automatically perform trade-offs between 
structural units of different costs. This capability is par- 
ticularly useful in the early evaluation phase of a design. 

F. Multiclass DGS 
In many cases we want to make effective use of multi- 

function units (e.g., ALU’s). To deal with this, the con- 
cept of distribution graphs (DG’s) was extended so that 
the distribution of one or more operation types can be 
stored in a single DG. For example, if the allocator as- 
signs additions and subtractions to an ALU, then a two- 
class DG will be created in lieu of the two single-class 
ones. Therefore, these two types of operations will tend 
to be scheduled in different c-steps to make best use of 
the ALU. 

For each multiclass DG, the distribution in c-step i is 
given by 

Multi DG( i )  = type c Opn c Prob (Opn, i )  ( 7 )  

where the sum is taken over all operations of all specified 
types and where Prob (Opn,  i ) is the probability of an 
operation in c-step i .  For example, if an ALU were allo- 
cated to perform the add, subtract, and compare opera- 
tions of our previous example, then we would obtain the 
multiple DG shown earlier in Fig. 6 of the previous sec- 
tion. 

G. Chained Operations 
The possibility of scheduling consecutive data-depen- 

dent operations in a single c-step (chaining) has also been 
incorporated into the system. This feature is implemented 
in a straightforward fashion by extending the time frames 
of fast combinatorial operations into the previous and/or 
next c-steps (when the total propagation delay in those c- 
steps is less than the clock cycle). 

*In [35], an alternate cost factor is used for FU’5. This cost factor 15 

also a function of the associated mux, bus, and interconnect area. For ex- 
ample, simple logical operations (AND, OR. etc.) that make use of low-area 
FU’s (relative to interconnect) will have a near-zero cost factor. Therefore, 
their scheduling priority will be nearly nil. 
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To determine if operations can be chained, a propaga- 
tion delay value must be stored with each one. When es- 
tablishing the ASAP schedule, this value represents the 
running sum of propagation delay values of all the pred- 
ecessor operations that may be scheduled in the same 
c-step. Conversely, for the ALAP schedule it represents 
the sum of delays for all the successor operations in the 
same c-step. 

H. Multiple Control Step Operations 
Operations that require multiple c-steps for execution 

are also supported. They are implemented with a simple 
extension of the single c-step methodology. This exten- 
sion takes into account the effect on the time frames eval- 
uation, and requires a new method for calculating the dis- 
tributions of multiple c-step operations. 

I )  Determination of Time Frames: The time frame de- 
termination is modified in a straightforward fashion by 
extending the approach used for chained operations. For 
example, let us assume a multiply operation (with a prop- 
agation delay of 120 ns) that is linked to an addition (40 
ns) in a CDFG where the clock cycle is 100 ns and latch 
delays are 10 ns. If the multiply operation is scheduled in 
c-step 1, then the addition cannot be chained in c-step 1. 
Furthermore, it can only be scheduled in c-step 2 if the 
sum of the combined propagation delays plus one latch 
delay is less than two clock cycles (200 ns). Here this sum 
is equal to 170 ns so the time frame of the addition will 
start in c-step 2. 

2) Evaluation of Operation Distributions: The distri- 
butions of multiple c-step operations must be calculated 
differently since each c-step (or stage) of the operation 
must be taken into account. For example, if a two c-step 
multiply operation is scheduled in c-step 1, its distribu- 
tion (or probability) is equal to one in both c-step 1 and 
c-step 2. 

On the other hand, if the multiplication is not scheduled 
and may begin in either c-step 1 or c-step 2 (i.e., its time 
frame is equal to two), then the distribution contribution 
of the operation’s first stage is equal to one half in each 
of those two c-steps. Following the same reasoning, the 
contribution of the second stage is equal to one half in 
both c-step 2 and c-step 3 .  The combined distribution of 
both stages of the operation is therefore equal to 1 /2, 1, 
and 1/2 in c-steps 1, 2, and 3 respectively. The value 1 
in the second c-step indicates that one of the two stages 
must be scheduled in that c-step. 

VI. SCHEDULING UNDER FIXED HARDWARE 
CONSTRAINTS 

The scheduling approach just described supports the 
synthesis of near-minimum cost data paths under fixed 
timing constraints. The force-directed list scheduling 
(FDLS) algorithm [36] summarized here solves the dual 
problem: the determination of a schedule with a near-min- 
imal number of c-steps, given fixed hardware constraints. 
It is based on the well-known list scheduling (LS) algo- 

rithm [I61 as well as on the force-directed scheduling 
(FDS) algorithm presented in the two previous sections. 

Recall that in list scheduling, operations are sorted in 
topological order by using control and data dependencies. 
The set of operations that may be placed in a c-step may 
then be evaluated; we call these the ready operations. If 
the number of ready operations of a single type exceeds 
the number of hardware modules available to perform 
them, then one or more operations must be deferred. In 
previous list scheduling algorithms, the selection of the 
deferred operations is determined by a local priority func- 
tion such as urgency [2] or mobility [22]. 

In force-directed list scheduling, the approach is similar 
except that force is used as the priority function. More 
precisely, whenever a hardware constraint is exceeded in 
the course of regular scheduling, force calculations are 
used to select the best operation(s) to defer. Here, a def- 
feral does not necessarily mean that the operation will be 
scheduled in the next c-step; only that its time frame has 
been reduced so that it excludes the current c-step. The 
deferral that produces the lowest force, namely, the best 
balancing of concurrency in the graph, is chosen. This is 
repeated until the hardware constraint is met. 

Forces are calculated using the method described in the 
previous sections. However, as these calculations depend 
on the existence of time frames, a global time constraint 
must be temporarily specified. Here, it is simply set to the 
length of the current critical path. This length is increased 
when the only way of resolving a resource conflict is to 
defer a critical operation. The FDLS algorithm can be 
summarized as follows: 

1) Initialize time constraint to length of critical path. 
2) for c-step from 1 to time constraint do: 

2.1) Determine time frames. 
2.2) Determine ready operations in c-step 

(i.e. opns. whose time frame intersects the 
current c-step). 

2.3) while (no. of ready opns. > no. of FU’s) 
do: 

if all opns. on critical path then 
extend time constraint by 1 c-step, 
reevaluate time frames. 

Calculate forces for possible deferrals. 
Defer operation with lowest force. 
Remove it from ready opns. 

end; 

c-step. 
2.4) Schedule remaining ready opns. in current 

end; 
Using this approach, the advantages of both types of 

1 )  High utilization of functional units, as this feature 
is intrinsic to list scheduling. 

2) Low computational complexity; the FDLS algo- 
rithm has a worst case complexity of O(n2)-as op- 
posed to O ( c n 2 )  for the regular FDS algorithm- 
and typically exhibits linear behavior. 

scheduling are maintained: 
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3) Global evaluation of all the side effects of an at- 
tempted operation to c-step assignment. This char- 
acteristic is the basis of force-directed scheduling. 

A New Design Space Exploration Technique 
Taken alone, the new FDLS algorithm allows the user 

to partially specify a target architecture by setting the 
number and type of functional units, as well as limits on 
the total register and bus counts [36] .  This flexibility, 
added to the algorithm's effectiveness, justifies the rela- 
tively small effort required to implement it. 

However, from these and other experiments, we have 
found that the most powerful method of exploring the de- 
sign space is by making use of both the FDS and FDLS 
algorithms. In a first phase, the designer sets a maximum 
time constraint and uses the FDS algorithm to arrive at a 
near-optimal allocation. This makes it possible to take ad- 
vantage of the fact that the FDS algorithm automatically 
performs trade-offs between functional units of different 
types and costs by assigning scheduling priorities, as de- 
scribed in Section V-E. 

In a second phase, the designer can then focus on that 
area of the design space by using the FDLS algorithm 
with the resulting allocation to determine if a faster 
schedule can be obtained. The reason for this improve- 
ment lies in the fact that the scheduler starts out with more 
information about the design. 

Regardless of the method chosen, we have given the 
designer an added level of flexibility with an integrated 
scheduling methodology that makes it possible to explore 
the design space from two dimensions: area or time. This 
also fulfills our original intention: to devise general al- 
gorithms that can be tailored to specific applications. An- 
other advantage-from the implementer's point of view at 
least-is that most of the subroutines are common to both 
the FDS and FDLS algorithms. 

VII. EXTENSIONS FOR PIPELINE SCHEDULING 
In this section, we will address the two types of pipe- 

lining described in Section 111, namely functional and 
structural pipelining. 

A .  Extension for Functional Pipelining 
The task of scheduling a pipelined algorithm is resolved 

here with a simple and straightforward modification of the 
regular force-directed scheduling algorithm. For a given 
latency L ,  the operations scheduled into c-steps i + kL( k 
= 0 ,  1, 2, . . . ) run concurrently. So now we must bal- 
ance the distribution across all groups of concurrent 
c-steps, as opposed to the previous balancing across all 
individual c-steps. For our previous example, for a la- 
tency of two c-steps (i.e. L = 2) ,  the concurrent c-step 
groups are ( l ' ,  3) and ( 2 ' ,  4), as shown in Fig. 12. 

Our previous schedule (Fig. 9) would now require the 
allocation of at least four multipliers instead of two. The 
adder, subtractor, and comparator allocations remains un- 
changed. This simple example illustrates that the regular 
scheduling does not guarantee an even distribution of op- 
erations across groups of concurrent c-steps. 

3' 

4' 
- 
- 

DG for Add, Sub, Compare 

1 ' 3  - 1 3  - 
2',4 - 2 . 4  \- 

Fig. 12. Schedule obtained using functional pipelining extension. 

Fortunately, this can be improved by cutting the distri- 
bution graphs horizontally and superimposing the slices. 
The cut boundary is determined by the value of the la- 
tency. In the previous example, the DG would be sliced 
in the middle and both halves superimposed so that the 
DG would be reduced to two rows. The first corresponds 
to the combined distribution in c-steps 1 and 3 (as they 
are now concurrent and the second to that of c-steps 2 and 
4. By performing regular force-directed scheduling with 
these modified DG's, the operation distribution will be 
balanced while taking into account the additional level of 
parallelism due to functional pipelining. 

Fig. 12 illustrates the new schedule obtained by using 
this method. This solution requires three multipliers in- 
stead of four and all three are fully utilized. We therefore 
obtain a twofold increase in throughput while the number 
of multipliers is increased by a factor of only 1.5 and the 
adder, subtractor, and comparator allocations are un- 
changed. 

This technique can be used for straight-line code as well 
as for conditionals and loops. The example presented here 
is actually a loop, so we have in effect performed loop 
winding as described in [30]. Special considerations for 
conditionals will be discussed in Section VIII-B. 

B. Extension for  Structural Pipelining 
The problem of scheduling operations assigned to pipe- 

lined functional units can be solved with another very 
simple extension. This extension is based on the fact that 
once the first stage of a pipelined functional unit is empty, 
it is considered available. 

For example, let us make the realistic assumption that 
the multiplication in our previous example require two 
c-steps for execution. Furthermore, if a two-stage pipe- 
lined multiplier is selected in the allocation phase, then 
independent multiplications such as u*dx and 3*x (refer 
to Fig. 3 in Section IV) could be scheduled in successive 
c-steps, and executed by a single multiplier. On the other 
hand, data-dependent multiplications (e.g.  3*y and 
dx*( 3*y))  can ony be scheduled in nonconsecutive 
c-steps, the result of the multiplication being available 
only after two c-steps. 



674 

__ 
1 

5 

6 

7 

8 

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8. NO. 6. JUNE 1989 

DG for Multiply 
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Fig. 13. Schedule and distributions using pipelined multipliers 

These considerations translate to the following simple 
extension of the scheduling algorithm: when calculating 
distributions for pipelined operations we need to sum only 
the probability of the c-step(s) corresponding to the first 
stage. The remaining ones are given an artificial proba- 
bility of zero. The scheduler will then be effectively bal- 
ancing the distribution of the first stage only, which ac- 
counts for the fact that the functional unit is available after 
the stage is empty. The time frame calculations are un- 
changed, however, as this ensures that data-dependent 
multicycle operations are not scheduled in successive 
c-steps. 

To illustrate the algorithm extension, we will use our 
previous example with a new clock cycle of 50 ns (it was 
previously 100 ns). Multiplications, which have a prop- 
agation delay of 80 ns, now require two c-steps for exe- 
cution. The remaining operations can still be assigned to 
a single c-step. Using the modified scheduling algorithm 
and a time constraint of eight c-steps, we obtain the 
schedule shown in Fig. 13. Here, the scheduler obtained 
a perfect balancing of the first stage of the multiplications, 
so the use of a single pipelined multipler will significantly 
reduce the overall costs. The adder, subtractor, and com- 
parator allocations are the same in both cases. The data 
path resulting from this schedule is given in Fig. 16(b) in 
the next section. 

VIII. DESIGN EXAMPLES 
The examples presented in this section were used in 

some of the systems described in the literature survey. 
They were chosen to illustrate the flexibility of the HAL 
system to different constraints and to allow comparison 
with the results obtained from these systems. 

Experimental Procedure: 
For each of the examples presented, synthesis was per- 

formed using the same assumptions3 as the original ref- 
erence. They are listed at the beginning of each subsec- 
tion. They varied considerably, which put the flexibility 
of the HAL system to test. Except where explicitly stated, 

'Disclaimer: The assumptions were duplicated as accurately as possible. 
However, as it is always possible that some constraints were left unspeci- 
fied in the original references, these comparisons may or may not be ab- 
solute. 

the synthesis was always performed using the same pa- 
rameters. The results were obtained without any fine tun- 
ing of the algorithm to the examples. 

The difficulty of evaluating designs produced by high- 
level synthesis systems was discussed in [39]. The results 
presented here make use of the register-transfer level cost 
metrics suggested in [39], which include number of reg- 
isters, multiplexers, functional units, and control steps. 
Furthermore, the interconnect costs presented are ob- 
tained using the simple cost function described in [40]. 
The costs are used here to indicate cost trends, and not 
absolute cost values as these depend on layout and tech- 
nology. When applicable, we also include the number of 
mux inputs, a measure that is often used to indicate rela- 
tive interconnect costs. 

The CPU execution times given are for the scheduling 
phase only, using a Xerox 1108 Lisp machine. This is a 
single-user workstation in the medium-low performance 
range by today's standards, yet the system allows nearly 
interactive scheduling (usually under two minutes of CPU 
time). The remaining allocation and binding tasks ran typ- 
ically in a minute or less (ten minutes for the largest ex- 
ample presented). 

A. Differential Equation Example from HAL 
This example corresponds to the CDFG of Fig. 3 in 

Section IV. It was first presented in [ 111 and subsequently 
used in [15], [22 ] ,  [31], [32], and [47]. The summary of 
costs for these and the HAL system is given in Fig. 14. 
In the first four columns, the following conditions are as- 
sumed: 

The clock cycle is 100 ns. 
The maximum time constraint is 400 ns (4 cycles). 
Additions are performed by adders in 40 ns. 
Multiplications are performed by multipliers in 80 ns. 
The latch delays are 10 ns. 
Multicycle and chained operations are allowed. 
Registers are preset with their original values ( U ,  x ,  

Constants (e.g. dX, a ,  3) are implemented as direct 
and y ) .  

connections to power and ground lines. 

The first column in Fig. 14 corresponds to an early ver- 
sion of the HAL system [ 1 I]. This result was improved 
on by the Splicer [47] and CATREE [15] systems, as in- 
dicated in the second and third columns. The fourth-col- 
umn corresponds to the data path of Fig. 15 obtained using 
the current version of the HAL system. This version uses 
the new register and mux binding algorithms described in 
[35] and [36]. Interconnect, register and FU cost per- 
centages (given below the graph) are given relative to the 
initial result of the early HAL system. 

As both the CATREE and Splicer systems made use of 
the HAL schedule, the minimum FU and register require- 
ments will be the same. The only possible cost reduction 
is obtained through the register and interconnect assign- 
ments. 
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0 Differen!ial equalion example 0 Interconnect 
Registers 

0 FUs Area Cost (time = 400ns) 

200 

100 

I I I I *  

Sys,em HAL Splicer Catree HAL Splicer HAL 1 1 '86 ':: 1 'y: I 1 ':6 1 1 '87 1 ':: 1 CPU 40 s n/a nia 50 s n a  1 2 0 s  

% 100 107 

Fig. 14. Cost summary for HAL example. 

U 
Control -- 

Fig. 15. HAL data path (using regular FU's). 

One way of obtaining a more significant reduction is 
through structural pipelining. This was achieved in the 
Splicer system [32] by using a timing constraint of eight 
clock cycles, dividing the cycle time by 2, and making 
use of a two-stage pipelined multiplier. In this way, the 
original time constraint is still respected. The fifth column 
of Fig. 14 corresponds to the Splicer data path shown in 
Fig. 16(a). Note that for this data path, the constants are 
stored in registers. 

The last result, the sixth column, is for the HAL system 
where the schedule (shown in Fig. 13) was obtained with 
the structural pipelining extension described earlier. The 
data path obtained is depicted in Fig. 16(b). The use of 
force-directed scheduling, which minimizes global stor- 
age and interconnect costs, and a different approach to 
register and bus allocation are the two main reasons for 
the efficiency of the design obtained. 

B. Pipelined FIR Filter from Sehwa 
The results presented here are for the pipelined 16-point 

digital FIR filter example borrowed from [29]. In this ex- 
ample, functional pipelining is used to increase through- 
put. The following assumptions are stated: 

The maximum stage time limit is 100 ns. 

f 
I Control I 

(a) 

bus 4 
I .  . I 

(b) 
Fig. 16. Splicer and HAL data paths (using pipelined multipliers). (a) 

Splicer data path. (b) HAL data path. 

The latency is equal to 300 ns. 
Additions are performed by adders in 40 ns. 
Multiplications are performed by multipliers in 80 ns. 
The latch delays are 20 ns. 
Chained operations are allowed. 

In Fig. 17 we present the results for three scheduling 
methods : 

SEHWA: Backward feasible scheduling. 
SEHWA: Exhaustive feasible scheduling. 
HAL: Force-directed pipeline scheduling. 

These results include the algorithm complexity, the 
number of cycles, the FU allocation, and CPU time. In 
the Sehwa system, the feasible schedule is used to estab- 
lish an upper cost bound for the exhaustive scheduling 
phase that follows, thereby reducing the search time. 

The force-directed algorithm generated a schedule un- 
like the ones obtained by the feasible or exhaustive al- 
gorithms. However, the allocation cost is identical to that 
obtained by the exhaustive algorithm (i.e., an optimal 
cost). The data path realization was not given in [29]. 

We also ran the second pipeline example from the same 
article [29]. This example contained mutually exclusive 
operations that require special consideration in pipelined 
data-flow graphs. In this case, our system generated a 
schedule identical to the one obtained from Sehwa's ex- 
haustive algorithm. 
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System SEHWA HAL 

Algorithm Feasible Exhaustive Force-directed 
Complexity o (n* logn) o (cn2 ) 
No. of cycles 7 6 6 
No. of adders 6 5 5 
No. of 
multipliers 3 3 3 
CPU time nla n/a 30 sec 

Fig. 17. FIR filter results for SEHWA example. 

For this type of example, special care must be taken not 
to assign mutually exclusive operations from different 
stages to the same functional unit. Doing so could pro- 
duce a “twisted pair” 1411 and cause deadlock. In our 
system, this cannot occur since the initial distributions are 
calculated without considering the pipeline nature of the 
problem. These distributions are calculated using the 
mechanism described in subsection IV-B, where only the 
mutually exclusive operations which can be scheduled in 
the same control step can (implicitly) share a functional 
unit. Later, when the distributions graphs are folded using 
the mechanism described in subsection VII-A, all the dis- 
tributions will be added, without regard to mutual exclu- 
sion. The scheduling is then performed with these modi- 
fied DG’s, which guarantees that mutually exclusive 
operations of different pipe stages are never assigned to 
the same FU. 

C. Fifrh-Order Digital Elliptical Wave Filter 
The CDFG used in this example is borrowed from 

Kung, Whitehouse, and Kailath’s book on signal process- 
ing [ 191 and implements a fifth-order wave digital elliptic 
filter. This is a more substantial behavioral description 
that contains 43 operations (additions and multiplications) 
submitted to over 60 precedence constraints. This exam- 
ple was chosen as a benchmark for the 1988 High-Level 
Synthesis Workshop [42]. 

It is stated in [19] that multiplications require an exe- 
cution time that is twice as long as that for additions. 
Here, they were assigned two and one c-steps respec- 
tively. The critical path is therefore 17 c-steps long.4 It is 
also assumed that the filter coefficients (the left operand 
of the multiplications) are user defined and not necessarily 
equal to a multiple of 2. Therefore, shift registers are not 
used to implement multiplications. 

In the first row of Table I below, we summarize the 
adder and multiplier allocations for different timing con- 
straints as obtained from the regular force-directed sched- 
uling (FDS) algorithm. In this row, we assume nonpipe- 
lined functional units where the multipliers require two c- 
steps for execution and the adders only one. CPU times 
varied between two and six minutes. 

4Retiming makes it  possible to reduce this path to 16 c-steps. However, 
to allow easier comparison with other systems, we have not exploited this 
transformation. 

TABLE I 
WAVE FILTER FU ALLOCATIONS FOR DIFFERENT EXECUTION TIMES 

Atgorm 17 18 19 21 

I I I I 

O A d d e r  Multiplier Pipelined multiplier 

The second row was obtained by taking the FDS allo- 
cations for 17, 19, and 21 c-steps, setting these as a max- 
imum FU limit and running the force-directed list sched- 
uling (FDLS) algorithm to obtain the shortest execution 
time. For the 17 and 21 c-step allocations, the results were 
already optimal so the time could not be reduced. How- 
ever, for the 19 c-step allocation (two adders and two 
multipliers), the FDLS algorithm produced a schedule re- 
quiring one c-step less. This is also an optimal result with 
respect to functional unit cost. CPU times were signifi- 
cantly faster than those for the FDS algorithm and varied 
between one and two minutes. 

The improvement of the 19 c-step result by the FDLS 
algorithm is mostly due to the fact that we have given 
more information about the design, i.e., the number and 
type of FU’s than in the case of the FDS algorithm, where 
only a time constraint is given. The number of force cal- 
culations in FDLS is also inferior, which explains the re- 
duced CPU times. 

The optimal 18 c-step schedule was also obtained by 
researchers at the University of Eindhoven [9] and Karls- 
ruhe [43]. The former use a slightly modified version of 
the original FDS algorithm 171 where only a subset of the 
force calculations are performed. The recent scheduling 
algorithm 1441 of Karlsruhe’s CADDY system uses time 
crames and distibutions graphs as in FDS, but incorpo- 
rates a different force function. 

The third row represents the schedule obtained in [ 191 
using an as soon as possible (ASAP) algorithm. In com- 
parison with the FDS and FDLS algorithms, it required 
one extra adder and multiplier. The fourth row represents 
the result obtained from the System Architect’s Work- 
bench (SAW) at CMU [45] using a list scheduling (LS) 
algorithm. It requires one extra c-step with respect to the 
force-directed list scheduling approach. 

Finally, the fifth row represents the allocations ob- 
tained using a two-stage pipelined multiplier. The struc- 
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Fifth-order elliptic wave filter Interconnect 
Registers 

A PipedFUs 

Area Cost 0 FUs 

300 

200 

100 

0 
Cycles 17 17 17 18 19 
System Kailath HAL HAL HAL HAL 

+ 4 3 3  3 2 

4 3 2  1 1 

MUX inp. 32 31 I 3 1  I 
4min l6min 

Fig. 18. Cost summary for wave filter example. 

Fig. 19. Data path for wave filter example (time constraint = 19 c-steps) 

tural pipelining extension described in Section V is used 
to take this type of multiplier into account. The FDS and 
FDLS algorithms both obtained optimal results with re- 
spect to FU costs. As shown in [36], register and inter- 
connect costs also compare favorably with the results of 
other systems [45]-[47]. For the examples presented, the 
HAL system typically obtains 15-20 percent lower inter- 
connect costs-as expressed by the total number of mux 
inputs-than these systems, with identical register costs. 

The graph shown in Fig. 18 summarizes the FU, reg- 
ister, and allocation costs obtained from the HAL system 
for a subset of the possible constraints. The figure also 
gives the number of adders, multipliers, registers, and 
mux inputs5 that were used in each design. The first col- 
umn was obtained by using the schedule given in [ 191. 

The data path for the result of the last column is given 
in Fig. 19. The right operand of the pipelined multiplier 
is a small constant ROM that contains the filter coeffi- 
cients. This result (one pipelined multiplier and two ad- 

'This value is actually the combined number of inputs to mixes and buses, 
where a bus is considered equivalent to a mux with multiple outputs. 

ders) is a good example of a substantial area cost reduc- 
tion (approximately 50 percent) against a small loss in 
speed (close to 10 percent) as compared to the 17 c-step 
result given in [19]. 

IX. SYSTEM LIMITATIONS 
Although a large number of the scheduling problems 

encountered in behavioral synthesis can be solved using 
the force-directed algorithm, there remain some difficult 
problems which are not addressed. 

A. Control Costs 
The associated cost of the control path is largely ig- 

nored by the algorithm. This is particularly true for pipe- 
lined data paths (functional pipelining), where control 
path costs may outweight the savings realized in the data 
path. The integration in our framework of Nagle's work 
on the minimization of control path costs [33], which, as 
mentioned, has some similarities with the force-directed 
algorithm, would be a step in the right direction. 

B. Functional Unit Allocation 
Another difficult problem is the assignment of n oper- 

ations to m functional units, some of them multifunction, 
some of them not. A clique partitioning approach to al- 
location, such as the one presented in the Facet/Emerald 
system [14], could possibly be used as a starting point. 
Operations would be partitioned into different sets corre- 
sponding to a single ALU type (single or multifunction). 
Each of these sets could then be assigned to a single or 
multiclass DG. As described in subsection V-F, the forces 
exerted by operations of a set would be calculated based 
on the force associated with the assigned DG. 

C. Physical Partitioning 
The effect of scheduling on interconnect costs is an- 

other difficult issue. Balancing the concurrency of data 
transfers, thereby reducing the total number of buses re- 
quired (as described in subsection V-A), only partially 
solves the problem. The interaction of scheduling and 
floorplanning also needs to be taken into account. In the 
near future, we hope to apply the work of McFarland [26], 
Dirkes [45], and Gebotys [46] to help resolve this limi- 
tation. 

D. Heuristics 
The presence of empirical heuristics throughout the al- 

gorithm, for example the use of look-ahead and the sim- 
ple estimation of probabilities, precludes the systematic 
determination of optimal solutions. Furthermore, even 
though the force-directed algorithm is global, it is never- 
theless a greedy one. The system can therefore get caught 
in a local optimum. 

X .  CONCLUSION 
We have shown the importance of scheduling for the 

synthesis of ASICs. Ultimately, the schedule will deter- 
mine: 
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the area of the design given a speed constraint; 
the speed of the design given an area cost constraint. 

The methodology presented features a novel force-di- 
rected scheduling algorithm that is invoked in a schedul- 
ing/allocation scheme that proceeds by stepwise refine- 
ment. In spite of its relatively low complexity-O(cn2) 
for the FDS algorithm, 0 ( n  ) for FDLS-the scheduling 
algorithm at the heart of this process explores the search 
space in a global fashion and produced optimal or near- 
optimal results for all of the examples attempted to date. 

Furthermore, the flexibility of the system was high- 
lighted by the variety of constraints and requirements it 
can deal with. These include: 

chained and multicycle operations, 
mutually exclusive operations, 
functional and structural pipelining, 
scheduling under local and global time constraints, 
scheduling with limited hardware resources. 

Some of the more difficult problems still need to be solved. 
For example: 

the consideration of control costs during scheduling, 
the allocation of multifunction units, 
the interaction of scheduling and floorplanning. 

However, a reasonable subset of the typical scheduling 
problems encountered in synthesis can be solved effi- 
ciently using the force-directed scheduling approach. Fur- 
thermore, we have shown that the force and distribution 
graph framework can be cleanly and effectively applied to 
include additional cost terms. The consideration of bus 
and storage costs was achieved in this way. Two simple 
subclasses of the general- pipelining problem were also 
taken into consideration. In the near future, we hope to 
extend the approach to take control costs into considera- 
tion, particularly for pipelined applications, and to inte- 
grate physical partitioning information into the schedul- 
ing process. 
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