
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. IO. NO. I. JANUARY 1991 85

Path-Based Scheduling for Synthesis
R a d Camposano

Abstract-In the context of synthesis, scheduling assigns operations
to control steps. Operations are the atomic components used for de-
scribing behavior, for example, arithmetic and Boolean operations.
They are ordered partially by data dependencies (data-flow graph) and
by control constructs such as conditional branches and loops (control-
flow graph). A control step usually corresponds to one state, one clock
cycle, or one microprogram step. This paper presents a new, path-
based scheduling algorithm. It yields solutions with the minimum num-
ber of control steps, taking into account arbitrary constraints that limit
the amount of operations in each control step. The result is a finite state
machine that implements the control. Although the complexity of the
algorithm is proportional to the number of paths in the control-flow
graph, it is shown to be practical for large examples with thousands of
nodes.

I . INTRODUCTION
HE SCHEDULING problem arises in several contexts dur- T ing the synthesis of digital systems, for example, in the areas

of microcode compilation [11-[4] and high-level synthesis 151.
Briefly stated, scheduling consists of determining the time at
which different jobs are performed. Even quite simple schedl
uling problems are NP-complete [6]. If we restrict ourselves to
synchronous digital systems, then the “jobs” usually degen-
erate to single operations such as addition, multiplication, logic
operations, assignment, etc., and time is given in so-called con-
trol steps which correspond to a basic machine cycle, i.e., a
state in a controlling finite state machine or a microprogram
step. Control steps will be called states throughout the rest of
the paper. (If multiphase clocking is used, a finer granularity of
time may be required). The problem is then to determine in
what control state(s) each operation is executed, so that a given
cost function is minimized. In microprogram compilation, the
cost function is usually the number of microprogram steps re-
quired for a given benchmark, while in high-level synthesis the
cost function is usually a combination of the amount of hard-
ware, the cycle time, and the number of control states required.
The amount of hardware is a measure which may include func-
tional units such as ALU’s, adders and simple gates, storage
units such as memories and registers, and communication units
such as buses and multiplexers.

The classical problems in scheduling are machine scheduling
and project scheduling [6]-[10]. A typical formulation of the
machine scheduling problem is to perform n number of jobs
using m number of machines in a given (partial) order such that
the corresponding cost is minimized. The techniques developed
for this sort of problem are not used in synthesis, because jobs
take many time units as opposed to operations which usually
take only one or a few control states. Furthermore, they do not
deal with loops and conditional branches.

Manuscript received January I . 1990. This paper was recommended by

The author is with the IBM Thomas J . Watson Research Center. York-

IEEE Log Number 9039382.

Guest Editor A . Sangiovanni-Vincentelli.

town Heights, N Y 10598.

In microprogram optimization several techniques are used.
Reference [11 discusses first-come-first-served (FCFS) sched-
uling, list scheduling, scheduling the critical path first, and ex-
haustive search using branch-and-bound techniques. FCFS and
list scheduling basically schedule operations in the topological
order given by the data dependencies. List scheduling uses an
additional priority criterion to order operations, e.g. , the path
length from each operation to the end. Another method consists
of scheduling first all operations on the longest path (the critical
path according to data dependencies). The remaining operations
are then scheduled “around” the critical path. Exhaustive
search obviously guarantees the optimum but is computation-
ally too expensive. These techniques do not deal directly with
loops and with conditional branches, hence, they are often ap-
plied locally within so called basic blocks that do not contain
these constructs. Transformational techniques such as trace
scheduling [2] and percolation scheduling [3] rely on code mo-
tion and are global, i.e., not restricted to basic blocks. (These
techniques were not intended for synthesis originally). More
specialized approaches deal with pipeline scheduling of loops

These techniques give good results and many of them have
been used in high-level synthesis. For example, extensions to
list scheduling with different priority criteria are used in BUD
[12] and Elf 1131. MAHA [14] in essence uses a critical path
first schedule, scheduling operations that are not on the critical
path in order of increasing freedom (mobility). Mobility is the
difference between the earliest and latest possible schedules.

Also, transformational approaches such as trace scheduling
and percolation scheduling have inspired high-level synthesis.
For example, the CADDY/DSL system [151 and the V system
[161 rely on moving operations between control states, consid-
ering the constraints imposed by data dependencies, loops, and
conditional branches (similar to [2]) . Retiming [171 can be seen
as a special case of transformational scheduling.

Force-directed scheduling [181 allows the exploration of
global tradeoffs between the hardware and the number of con-
trol states used. This statistical method uses the probability dis-
tribution of operations being executed in each control state to
balance the amount of hardware required in each control state.

More detailed discussions of scheduling for high-level syn-
thesis can be found in 151, [181.

The approach in this paper is quite different from all of the
above. The problem addressed is scheduling for synchronous
digital systems, minimizing the number of control states under
given constraints such as timing and area. The scheduling prob-
lem is represented as a directed graph where the nodes represent
the operations and the edges the precedence relationship. This
graph may contain conditional branches (IF, CASE in a pro-
cedural language) and loops (WHILE, UNTIL in a procedural
language). The most important difference to other approaches,
such as critical path first and force-directed scheduling, is that
these deal mainly with potential concurrency, in the sense that

1413 [I l l .

0278-0070/91/0100-0085$01 .OO (C) 1991 IEEE

~

86 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. IO. NO. I . JANUARY 1991

they use a data-flow representation indicating the dependencies
that “force serialization” and schedule, taking advantage of the
freedom left to move operations among control states. In path-
based scheduling, conditional branching is emphasized instead.
Scheduling in this case ensures that each of the possible paths
generated by conditional branches is scheduled optimally (in
the minimum number of control states). This requires schedul-
ing one operation into different control states depending on the
path, a capability which no other scheduling algorithm has. In
designs with numerous conditional branches, this aspect is most
important. As will be described with more detail in Section IV
(examples), processor design and control dominated applica-
tions are of this kind.

Instead of minimizing a cost function, path-based scheduling
minimizes just the number of control states for given con-
straints. In practice, we have experienced that this is indeed
adequate: for the applications mentioned above, it is approxi-
mately known what constraints apply, e.g. , how big a chip will
be and what cycle times can be expected with a certain tech-
nology. “Design space exploration” in these cases will consist
of scheduling only a few dozen designs, changing slightly the
approximately known constraints-very much like designs that
are done in practice.

The constraints considered are of two types. Intrinsic con-
straints arise from the fact that, in synchronous systems, hard-
ware can be used only once in each control state, e.g., a register
can receive only one new value, a port can transmit or receive
only one value. Extemal constraints, such as the available
amount of hardware, must be specified by the designer.

The scheduling algorithm proceeds as follows. Each possible
path is scheduled independently in an optimal fashion, in the
sense that the minimum number of control states for the given
constraints is found. Then the schedules for each path are
overlapped, again in an optimal way. Loops and conditional
branches are handled as an integral part of the problem. We call
this as-fast-as-possible (AFAP) scheduling. The technique is an
exact solution to the scheduling problem formulated in the
Yorktown Silicon Compiler (YSC) 1191. In the YSC it was
solved heuristically, scheduling paths individually using back-
tracking, and overlapping them in a greedy fashion. Although
the worst-case complexity of AFAP scheduling is N P , we have
exercised i t for large real designs with thousands of operations.
Faster heuristics that yield suboptimal results are also sug-
gested.

There are two other approaches known to the author that also
deal with conditional branching explicitly. Bridge [20] uses a
Boolean condition to identify when operations are activated.
Operations in mutually exclusive conditional branches can be
identified by these conditions and scheduled (heuristically) in
the same state sharing hardware. A more systematic approach
also based on such conditions extends list scheduling to take
into account mutually exclusive operations 1211. Both ap-
proaches do reduce the number of states required for a schedule,
but they do not schedule operations in more than one state nor
do they minimize the path length globally. Some comparisons
in Section V will clarify this.

The paper is structured as follows. The next section states the
scheduling problem formally. The scheduling algorithm is pre-
sented in Section 111, including the representation of con-
straints. The main issues introduced are the treatment of loops
and conditional branches, and scheduling in the minimum num-
ber of control states. Heuristics to speedup processing are also
suggested. Section IV gives results for several examples. Sec-

tion V compares results to other scheduling techniques. The pa-
per ends with conclusions and an outlook.

11. DEFINITION OF THE AFAP SCHEDULING PROBLEM

A behavioral description of the problem to schedule is given
by the controllpow directed graph B = (V , E). The nodes
v E V represent operations to be scheduled, and the edges give
theprecedence relation, i.e., (v i , U]) E E iff U , is an immediate
predecessor (called just predecessor) of P,. U, is called an im-
mediate successor (or just successor) of U , . The interpretation
of B is imperative: an operation is executed after one of its pred-
ecessors is executed.

If a node v has more than one successor, 21 is said to be a
conditional branch. Only one of the successors will be exe-
cuted. The decision of which successor is chosen is taken ac-
cording to a condition predicate cond(21, U;) attached to the
corresponding edge. If cond(1 1 , D!) is true, then 2); is executed
after U . The conditions on outgoing edges from conditional
branches must be all mutually exclusive. Conditions are arbi-
trary Boolean functions that can be directly derived from con-
ditional constructs such as IF, CASE, WHILE, and UNTIL in
procedural languages.

Notice that mapping of procedural (imperative) languages,
such as C or Pascal, onto this graph is trivial using the order of
operations given in the program. Fig. 1 gives an example. The
VHDL program corresponds to the control-flow graph. The node
numbers are indicated as a comment (starting with “--”) in the
program. Nodes 1 and 2 correspond to signal assignments; in
our example corresponding to output ports (declared in the en-
tity statement). Nodes 4 and 7 are conditional branches, their
outgoing edges are labeled with the corresponding conditions.
Nodes 5, 8, and 10 are variable assignments. Nodes 3 and 9 are
additions (merged with a signalhariable assignment, respec-
tively). Node 6, finally, is a dummy node corresponding to the
“end i f” statement. The program is assumed to loop endlessly,
i.e., node 1 executes after node IO.

The control-flow graph has a unique first operation v , at
which execution starts; in the example this is node I . It should
be possible to reach all other operations from Z J , , otherwise there
are dead operations in B that can never be executed.

A longest path through the control-flow graph is a path start-
ing at U , and ending at an operation with no successors. Repe-
tition of operations are not considered, i.e.. cycles in the graph
are traversed just once for longest path computation. The set of
all longest paths is denoted as { p/ } . It represents all different
operation sequences (again, excluding repetition of cycles) that
the specified behavior allows. As an example, consider a pro-
cessor: each longest path corresponds to the execution of an
instruction (if we ignore exceptions).

The AFAP scheduling problem is then formulated as follows.
Given B = (V , E) and a set of constraints, schedule all oper-
ations ZJ E V such that all possible longest paths { p I } execute
in the minimum number of control states and all constraints are
met.

Several comments are necessary at this point. The exact rep-
resentation of constraints will be introduced in the next section.
In the absence of any external constraints on area (the amount
of hardware) and time (the maximal delay that is allowed within
one control state), no more data than the precedence relation of
the operations and their data dependencies are needed to derive
intrinsic constraints such as writing a register only once per
control state. If there are constraints on area and time, then an

CAMPOSANO PATH-BASED SCHEDULING FOR SYNTHESIS 87

ent i ty prefetch is
port (bronchpc. ibus : in b i t32;

branch. ire : in bit;
ppc. popc, obus: out b i t32) ;

end prefetch:

architecture behavior of prefetch is
begin

process
variable pc.oldpc : b i t 3 2 :- 0;

begin
PPC <- Pc; - - 1
popc c= oldpc; - -2
obus c- ibus + 4: - -3
if (branch = '1') - -4
then
pc := branchpc; - -5

end if; - -6
woit until (ire = '1'); - -7
oldpc := pc; --a
pc :- pc + 4: --9.10

end process;
end behovior;

Fig. I . Behavioral description example.

operator library that contains the delay and the area used by
each operation is required. Notice that i t is difficult to estimate
these numbers accurately at this level.

Without loss of generality, we may assume that each opera-
tion can be executed in one control state. If this is not the case,
the operation has to be split into several operations, which may
be done automatically in the presence of a time constraint.

Scheduling has been formalized using a given precedence re-
lation of operations. This precedence relation may be derived
partly from the data flow, ordering only such operations that
have data dependencies. However, the precedence relation al-
ways contains procedural (imperative) elements such as condi-
tional branches and loops which are difficult to represent as pure
data flow. They are represented naturally in the control flow.
Operations that can be executed in parallel may be clustered in
one node or ordered arbitarily. If they are clustered in one node,
they will be always scheduled in one control state (they will be
treated as one larger operation). If they are ordered, they may
be scheduled in one or more control states; if they are scheduled
in more than one control state, the given order will be main-
tained. So E may reflect a given ordering of operations chosen
by the designer, or may be obtained from the data dependen-
cies, keeping only the necessary orderings.

The output of AFAP scheduling is the exact specification of
a finite state machine that implements the control of E .

111. ALGORITHM

In this section, the algorithm for AFAP scheduling is given.
It involves keeping all paths in the control-flow graph and sev-
eral NP-complete steps. At the end, substantial simplifications
are suggested. The algorithm consists of four main steps.

1) Transforming the contol-flow graph E into a directed
acyclic graph (DAG) and keeping lists for the loops.

2) All paths in the DAG are scheduled AFAP independently,
according to the data-flow constraints in each path.

3) The schedules of step 2) are overlapped in a way that min-
imizes the number of control states.
4) The finite state machine for control is built.

A. Loops
Let i l l . be the first operation in a loop body and I ! , the last

one. Each loop L is "broken." removing the feedback edge
(z J , , v b) , and storing i J t , i ' / and the condition c of the feedback
edge (Z J ~ , zlb) (Fig. 2) .

x vr Store

c 6
0 V L 6vl
C

Fig 2 Transformations for loops

branch 4 br mnch

Store
7, 7, 6
1, 10, 1

g
Fig. 3 . Prefetch example after loop elimination

The result is a DAG, and a list of removed feedback edges
with their conditions. The intention is to allow the execution of
a loop body only once. If the loop body has to be repeated,
execution gets trapped in LJ,., since c is false. We will schedule
this problem optimally and then add transitions in the control
finite state machine to repeat loops an arbitrary number of times.
Any kind of loop unfolding or optimization must be done prior
to scheduling; we do not deal with pipeline scheduling of loops
such as in [I l l , [2 2] .

The transformation given above applies to loops that have the
exit condition at the end (UNTIL loops). A similar transfor-
mation applies to loops with the exit condition at the beginning
(WHILE loops).

Fig. 3 gives the result of eliminating loops for the example
of Fig. 1. For the loop at node 7, node 7 represents uF and U/,.
For the endless outer loop, node I O represents z!~. and node
1 represents z j F . The conditions on the feedback edges are ire
and 1.

Notice that loops are detected easily during syntax analysis
of structured languages so that the control-flow graph can be
marked accordingly. Thus in practice. loop detection presents
no problems. For a general graph, finding the minimum set of
edges that will break all cycles is NP-hard. This can be done
using Johnson's algorithm 1231.

B. AFAP Scheduling of Single Paths
The idea is to schedule each path AFAP independently. Paths

arise from the conditional branches in B. A path corresponds to
one possible execution sequence, so the number of different
paths is a measure of how many different functions a design can
perform. Although the number of paths in a graph can grow
worse than exponentially, in practice we have found on the or-
der of IO' paths for the execution unit of a microprocessor.

We first compute all paths. then the constraints for each path,
and finally an AFAP schedule for each path.

1) All longest paths in B are computed, i.e., paths that start

88 IEEE TRANSACTIONS ON COMPUTER-AIDED DFSIGN. VOL IO. NO I. JANUARY I V Y 1

at the first node or at nodes i l F . and end with nodes with no
successors. Efficient algorithms for path computation use the
depth-first search construction of the transitive closure [24]. Re-
member that a path represents a possible sequence of opera-
tions, hence, paths which start at loop beginnings vF must also
be considered (loop bodies may be repeated, so there is a se-
quence that starts at the first operation of the loop body 1 1 ~) . In
the Prefetch example, there are 3 paths: path1 = { I , 2, 3, 4,
5, 6, 7, 8, 9, I O } , path2 = { I , 2. 3, 4, 6, 7, 8, 9, I O } , and
path 3 = { 7 , 8, 9, I O } .

2) For each path, all constraints are computed. Constraints
are the following

Variables can be assigned only once in one control state.
Notice that variables may have been disambiguated using global
data-flow analysis (replicating them so that they are assigned
only once) [25]. In this case, no constraints will be generated.
Variables explicitly meant to be registers should not be disam-
biguated, thus allowing them to generate constraints.

IO ports can be read or written only once in one control
state.

Functional units can be used only once in a control state.
This constraint is only relevant if the amount of hardware is
constrained. In this case, the operations that can be scheduled
in one control state are limited by the available hardware.

The maximal delay within one control state limits the
number of operations that can be chained (that feed data to each
other and are executed in the same control state).

The amount of storage (registers and memories) and com-
munication (buses, multiplexers) is not constrained presently.
Notice that the amount of storage and communication cannot be
influenced significantly by the schedule, e.g. , [26] reports ran-
domly distributed changes from 13 to 16 registers for schedules
varying from 17 to 3 1 states for the filter from I271 and similar
results for two other examples. Obviously, storage and com-
munication can be optimized during allocation.

The constraints are kept as sets of operations { ZI } , so that if
any v E { 1 1 } is the first operation in the next state, the constraint
is met. For one path, the nodes are totally ordered. Thus each
constraint (set of nodes) can be interpreted as an interval. Fig.
4 illustrates the above concepts for path I of the Prefetch ex-
ample. Constraint I , for instance, is generated due to the fact
the variable pc is written twice (we assume that pc is not to be
replicated). The constraint indicates, that path 1 has to be “cut”
between operations 6 and I O , so that the two assignments to pc
are not in the same control state.

It is easy to see that a constraint on the amount of hardware
(or on the maximum cycle time) just generates a series of in-
tervals obtained by adding sizes (times) along the path, starting
at each operation, until the constraint is violated. In the exam-
ple Prefetch. if the maximum functional unit area is limited to
100 cells and the incrementer necessary for the ‘ ’ +4” incre-
ment uses 80 cells (so only one incrementer can be used), then
constraint 2 is generated (Fig. 4). I t states that operations 3 and
9 must be scheduled in different control states.

If the cycle time is constrained to T. then the execution times
of the operations are added along the path starting at operation
I , according to the data dependencies. At some operation 1 1 this
addition will be larger than T, and a constraint must be gener-
ated covering the interval from operation 2 to operation I) ,

meaning that the path has to be cut at one of these points to
meet the cycle time T. The process is then repeated, starting the
addition at operation 2, 3, etc. All these constraints must ob-

PA1 t i 1 CUT,,
I

A CONSTRAINTS

L m

1 N T E RVA L
GRAPH

Fig. 4 . Constraints and interval graph for one path in the Prefetch
example.

viously be met. In the example no such constraints are gener-
ated, because the operations do not have data dependencies (i.e.,
they may all be executed in parallel). External constraints such
as protocols, that require, for example, operations to be exe-
cuted in successive cycles, are formulated as intervals with just
one operation.

3) The interval graph for the set of constraints of each path
is formed, and a minimum clique covering is computed (Figs.
4 and 5). In the interval graph each node corresponds to an
interval and edges indicate that the corresponding two intervals
overlap. A clique is a complete subgraph, with all possible
edges. A minimum clique covering is a minimal number of cli-
ques, so that each node is in one clique.

By construction, it is clear that the solution to the minimum
clique covering gives the minimum number of control states. A
“cut” corresponds to each clique. It represents the possible op-
erations at which a state starts. States are ordered along one
path. In addition, a cut for the first operation along the path is
added (the first state on the path starts with the first operation).
The cuts give the minimum number of control states to execute
this path (a state starts at a cut which corresponds to a clique,
and a minimum clique covering is generated). Since each inter-
val will be in one clique, all constraints are met.

In the example of Fig. 4 only one clique exists, and the two
intervals indeed overlap. So only two cuts are generated, cut,,
for the first operation, and cut , for the clique corresponding to
the two constraints. A more complicated example with two
cliques is given in Fig. 5. Cuts are kept as the maximal set of
overlapping operations, indicating all the possible positions for
that cut, for example, the cutl in Fig. 4 will consist of opera-
tions 6, 7, 8, 9, indicating that the next state may start at any
of them. Cut, in Fig. 5 is also an interval.

The above algorithm obtains the AFAP schedule for each path
individually. Besides the fact that the number of paths may ex-
plode, all steps can be performed efficiently. Clique covering is
in general NP-complete. but can be computed efficiently in a
single pass through the path for interval graphs 1281 (also known
as “left edge” algorithm). Notice that there are many possible
minimum clique coverings. e.g. , in Fig. 5 one clique could con-
tain only node 2 and the other one nodes I , 3 , 4 , 5. All solutions
obviously correspond to the minimum number of control states.

C. Overlapping of Paths

To find the minimum number of states for all paths. the
schedules for each path must be overlapped. Again. the obser-
vation that overlapping cuts can be merged helps to formulate
the problem formally. A graph is formed. such that the nodes
correspond to the cuts (set of nodes) defined in the previous step

CAMPOSANO: PATH-BASED SCHEDULING FOR SYNTHESIS 89

PATH C O N S T R A I N T S C U I S INTERVAL
GRAPH 8

Fig. 5 . Constraints and interval graph for a more complex example

PAlHl PAIH2 C L I Q U E ,

c.

Fig. 6. Overlapping cuts for ditferent paths

and edges join nodes corresponding to overlapping cuts (the in-
tersection of the sets of operations is # +). A minimum clique
cover of this new graph will clearly give the minimum set of
cuts that fulfills the fastest schedule for each path, and thus the
minimum number of control states (control states start at cuts).

The AFAP schedules for the three paths of the Prefetch ex-
ample are shown in Fig. 6. Cuts are subindexed with the path
number first and then with an increasing index starting at 0 .
Cut,,, and cutl I correspond to the cuts discussed in Fig. 4. Cut,,
and cut3, correspond to the initial operation in paths 2 and 3 ,
respectively. Cutzl is generated by the area constraint along path
2 and avoids the two increment operations (3 and 9) that are
scheduled in the same control state. There is the trivial clique
containing the cuts representing the first operation 1 , in the ex-
ample clique 1 . All other cuts overlap at operation 7, forming
clique 2 . This clique represents the start of the second state at
operation 7. A clique may still contain more than one overlap-
ping operation. In this case one operation is selected as “the
cut” for the construction of the control automaton. Any oper-
ation in the set of overlapping operations can be selected. Op-
erations easily related to the original specification, such as
conditional branches and joins, are a good choice.

Since this graph does not seem to have any special property,
the problem is most likely NP-complete. It is not an interval
graph due to the fact that operations in alternative branches of
a conditional branch are not ordered (this is not seen in the ex-
ample, but would be the case for an operation x between oper-
ations 4 and 6 in path 2: operation x and operation 5 would not
be ordered). Although several heuristics for the clique covering
problem exist [29], we implemented an exact solution by ex-
haustive search and have not experienced problems with exces-
sive runtimes yet (see Section IV).

Notice that minimizing the number of cuts only minimizes
the number of control states. Not solving this optimally will not
change the fact that the schedule for each path is the fastest
possible.

D. Control Finite State Machine

So far we have obtained the cut positions for all paths. The
control automaton is built by merging as many path segments
as possible into one state. We now construct a finite state ma-
chine that implements the control for the schedule.

Let the set of paths be { p , } . Let the ordered set of cutting
points for a path p , be {cur , , } . Let the ordered set of last op-
erations for control states be {ce , , } = { (U E p , 1 v =
pred(cut / , ,+ ,)) , u , ~ } , i.e., the ordered set of immediate pre-
decessors of cutting points along the path, including the last
operation uIL of the path (clearly, the last operation on a path
will also be the ‘‘last’’ operation in a control state). Let the path
interval r,,,, = [cut,,,! ce,,,,] contain operations on path p I starting
at and ending at ce,,,,. By construction, all operations in a
path interval can be scheduled in one control control state.

The intervals for the Prefetch example are shown in Fig. 7.
Path one, for instance, is divided into the path intervals r l , =
{ 1 , 2 , 3 , 4, 5 , 6) and r l I = { 7 , 8, 9, IO} (the numbers in the
set represent the operations or nodes in the graph). The cuts
(first operations) are cut,, = 1 and cu t l l = 7. The last opera-
tions are ce10 = 6 and c e l l = 10.

Let a state be denoted by s,. The set of all operations that are
(conditionally) executed in s, is said to be scheduled in s,. A
state transition is denoted s, -+ s, (cond,, = Boolean expres-
s ion) , with cnnd,, being the condition that enables this state
transition given as a Boolean expression.

The control automaton is constructed in 3 steps.
I) Overlapping of intervals to form states: All intervals

starting with the same operation cut,, can be merged into one
state and their operations are all scheduled in this state. Let the
necessary states be s,, k = I , 2 , 3 Intervals with the same
first operation are trivial to identify. Conditional branches within
one state are handled by combinational logic (the enable sig-
nals). In the Prefetch example there will be two states neces-
sary, s, starting with operation 1 and s2 starting with operation
7 (Fig. 7).

2) Construction of the state transitions: For each pair of
states s,, s, such that si is “previous” to s k , i.e., for some ce,,,,
scheduled in s i , curln scheduled in s A , ce/,,, = pred(cut l ,) , one
state transition is added:

S, -+ S I (cond,,!) .

Also, state transitions to allow the repetition of loops must be
added: s, -+ sA(cond, ,) , where the last loop operation U,, is
scheduled in s, and the corresponding first loop operation z j F is
the first operation scheduled in s,. Conditions are constructed
in the next step.

In Fig. 7, there is a state transition s I + s2 because operation
6 (the last in s,) is a predecessor of operation 7 (the first in s2).
The loops add transitions s2 -+ s2 and s2 -+ s I .

3) Construction of state transition conditions: An operation
in the control-flow graph is executed, if the previous operation
was executed and the condition on the incoming edge is true.
Thus along a path, an operation is executed, if all previous con-
ditions were true, i.e., the A N D of these conditions is true. If
an operation has more than one predecessor, the conditions
along those paths must be oRed. A state transition s, -+ S I takes
place, if a last operation ce,,,, scheduled in s, is executed, such
that cutln = succ(ce, , , ,) is the first operation scheduled in s,?
and the condition on the edge (ce,,, , , cut,,) is true. Hence, the
condition is

cond,, = V cond(ce, ,,,, cutln) A cond(I ’ / , ,,,, z’, , + I ,,,,#)
I,,! I

90 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL IO. NO I . JANUARY I Y Y I

INIERVALS
CONTROL
FSM

Fig. 7. Building the control finite state machine for the Prefetch example.

CON I ROL
FSM

INTERVALS

Fig. 8. Building the control finite state machine for Prefetch with no area
constraints.

with lm ranging over all intervals r/,,! scheduled in s,, a n d j rang-
ing over all operations of the interval except for the last.

In Fig. 7, for example

cond,2 = brunch V branch = I ,

condz, = ire,

cond,, = ire
-

The proof that the above algorithm indeed yields a control au-
tomaton that implements the behavior of the original control-
flow graph is straight forward (by construction) and is omitted
here. The proof that all transformations used are behavior pre-
serving can be found in [30].

Notice that conditional branches can be scheduled completely
in one state (e.g., operations 4, 5, and 6 in Fig 7). This is usu-
ally desirable, if the delay in the data path is larger than in the
control. However, if a new state for each conditional branch is
desired, it can be easily accomplished by adding constraints that
force new states.

The execution of operations must be controlled by combina-
tional logic. For this, an enable signal e,. is defined for each
operation U. This signal is used to enable register loading, to
select appropriate multiplexer inputs, to enable bus drivers, etc.
Reasoning in the same way than deriving the state transition
conditions, the enable signal is defined as

where sA is used as a Boolean variable that is “ I ” if the control
automaton is in state sA and “0” otherwise, k ranges over all
states into which if is scheduled, Im ranges over all intervals r,,,,
scheduled in sA, a n d j ranges over all operations along the in-
terval that are previous to 1 1 .

In Fig. 7 for example, operation 5 has the condition e, =
brunch A s,. indicating that the operation (loading of pc, see

Fig. I) is to be executed in state 1 if branch is true. Operations
8-10 have an enable equal to ire A s2. The Boolean expressions
for enable signals should be minimized on the fly, taking ad-
vantage of the structure of the control-flow graph, e.g., condi-
tions of a particular conditional branch simplify to “ I ” after
closing the branch.

Since each path is scheduled independently for speed, one
operation may be scheduled in more than one state. Since states
are mutually exclusive, this does not create problems. Con-
sider, for example, Prefetch without the area constraint (Fig.
8). In this case there is no constraint along path 2 and all the
operations along this path can be scheduled in a single state s I .
A second state is needed for operations 7, 8, 9, 10 which are
on a second path; these operations are thus scheduled in both
states. It is easy to see that the given FSM is indeed the optimal
control for this case. If branch is false and ire is true, only one
cycle is needed for the complete execution! The enable signal
for operations 8, 9, I O (which are scheduled in two states) is
equal to (s , V s 2) A ire.

AFAP scheduling is complex and computationally intensive.
A simpler heuristic is to examine one path at a time, and to cut
the complete graph just according to this one path. Cutting the
complete graph consists of removing one edge in the path under
consideration; all other paths containing this edge are cut as
well, thus reducing considerably the effort for computing cuts
and making the overlapping of paths unnecessary. This tech-
nique, combined with a greedy cutting criteria for a path that
cuts whenever one constraint is violated, was implemented in
the YSC. An even simpler method consists of traversing the
graph only once doing a depth-first search, and cutting the graph
whenever a constraint is found.

IV. RESULTS
The examples used in this section are benchmarks from the

1989 Workshop on High-Level Synthesis [31], with the excep-
tion of EXE. COUNTER is a 4-b counter. GCD is a greatest
common divisor calculation. PREFETCH is an instruction fetch
unit for a microprocessor (different from the example used in
the previous figures). TLC is a traffic light controller excluding
the necessary timer (the timer is called). OTPT writes data onto
a bus with a handshake which is used in KALMAN. KALMAN
is a Kalman filter without the bus interface. TX8251 is the
transmitter part of an Intel 8251 UART chip; HUNT imple-
ments the hunt mode of the Intel 825 I . EXE is the execution
unit for a streamlined microprocessor with over 100 instructions
(not given in the benchmark). The examples were written in
VHDL [32], V [161, and ISPS [33]. The graphs were generated
using the V compiler, examples in VHDL and ISPS were man-
ually translated to V.

AFAP scheduling was implemented in APL and APL2. All
examples were run on an IBM 3090/200 machine under CMS
VM/SP 4.2. APL is interpreted, which accounts partly for long
runtimes. All examples could be executed with less than
7Mbytes of memory.

Table I gives the execution times for different steps in the
algorithm. The compile phase is included for informative pur-
poses only. Compiling includes the conversion into the internal
representation, global data-flow analysis to disambiguate vari-
ables (replicating them until single assignment is obtained) and
grouping bit arrays into fields that are always used together (and
can be treated as units). Detection of loops is syntax driven and
correspondingly very fast. Computation of constraints con-
structs intervals. Notice that constraints can be computed before

CAMPOSANO: PATH-BASED SCHEDULING FOR SYNTHESIS

~

91

TABLE I
E X E C ~ T I O N TIMES I N CPU SECONDS FOR S ~ V E R A L EXAMPLES

Design Compile Loops Constr. P u t h Cuts Clique5 Control

COUNTER
GCD
PREFETCH
TLC
OTPT
KALMAN
HUNT
TX825 I
EXE

0.74
0.95
1.12
0.64
0.45
6.6
2.7
5.3

146

0.01
0.03
0.02
0.02
0.02
0.1
0.03
0. I
0.2

0.04
0.05
0.04
0.04
0.02
0.3
0. I
0.2
5.9

0.02 0.01
0.05 0.01
0.06 0.02
0.05 0.06
0.02 0.01
2.5 8. I
0.2 0.02
9.2 55.1

53.6 0

0 0.07
0 0.15
0.01 0.32
0.05 0.42
0.01 0. I3
4.7 11.8
0 0.94

0 10.5
I77 I I6

TABLE I1
RESULTS FOR SEVERAL EXAMPLES

Design Nodes Edges Loops Constr. Puths Cuts Cliques Stores Exec.

COUNTER
GCD
PREFETCH
TLC
OTPT
KALMAN
HUNT
TX825 I
EXE

12/21
15/24
18/32
14/25
9/16

100/ I68
40/67
92/141

808/l I62

14/19
18/21

16/18
11 /8

46/64

950/ 1936

22/25

I I 1 / 192

1 I I / 144

I
3
3
3
3

1 1
6

10
I

0
0
1
4
2

19
2

15
0

~

3
7
9

19
5

258
28

I594
I596

3 0
7 0

I I 1
34 3

7 1
839 7

28 0
6319 I I
1596 0

1 / 1 1 / 1
2/4 1/2
4/9 1/3
8/18 2/6
2/4 1 /2

6 /25 1/6
22/112 2/18

23/115 1/17

1 / 1 1 / 1

all paths are computed-they are later projected on the paths by
simply determining if all operations of a constraint are on a
particular path. Constraint computation is fast and is by no
means a bottleneck. Paths computation can be slow for large
graphs (e.g., EXE). Then all curs on all paths are computed,
which corresponds to finding the cliques on the interval graphs.
These cuts are then overlapped, and the cliques are computed
using exhaustive search. This is also quite fast, because the
graphs tend to have few edges and thus a large number of trivial
cliques containing only one or a few nodes (Fig. 4). Finally,
the finite state machine for conrrol is built. This tends to be one
of the slowest steps due to the necessary bookkeeping and the
construction of conditions. Some Boolean optimization capa-
bilities were built into the algorithm, to keep expressions for
conditions small.

Runtimes are reasonably short, even for large examples. Im-
plementing the algorithm in a compiled, lower level language
such as C would result in a significant speed-up.

The results in Table I1 again show the different steps of the
algorithm. The nodes and edges columns give the size of the
problem, giving both the control-flow and the data-flow graphs
(control-flow/data-flow). The amount of loops usually includes
one external infinite loop. The number of constraints (Consrr.)
does not include external constraints; the examples were not
limited to a certain size or cycle delay. The total number of
paths is given next. Curs include the obvious cut at the first
operation (see Section 111). The number of cliques does not in-
clude trivial cliques with only one operation.

The column states gives the number of states followed by the
number of state transitions of the finite state machine con-
structed for control. The examples KALMAN, TX8251, and
EXE are hierarchical and contain calls to other modules which
may generate the need for additional states. This paper does not
discuss hierarchical design issues, the reader is referred to [191,
1301.

The last column labeled Exec. gives the nun.,er of cycles to
execute the behavior without repeating loops. The first number
gives the shortest sequence that returns to the initial state. The
second number gives the longest sequence that returns to the
initial state, without repeating states. This gives an idea of the
performance. e.g. , the number of cycles for the longest and
shortest instructions in a microprocessor. Notice that the short-
est sequence is often of length one, due to the fact that loop
bodies are scheduled in the same state as the following opera-
tions, so that they can be conditionally executed in the same
state if the exit condition is met.

We also compared these results with the YSC heuristic men-
tioned at the end of the previous section. In many cases the
same results were reached. The exceptions were KALMAN
scheduled in 30 states, TX8251 scheduled in 29 states, and
HUNT scheduled in 8 states. Execution times for heuristic 1
and AFAP scheduling cannot be compared in a meaningful way,
since they were implemented in different environments.

V . COMPARISONS
The comparison of AFAP scheduling to other scheduling

techniques, such as force directed scheduling [181 or critical
path first scheduling [141, is difficult because the objectives of
these techniques are different. As already stated, AFAP sched-
uling deals mainly with applications with many conditional
branches and loops that emphasize fast schedules. Such appli-
cations are common in processor design (as our experience tells
us), in control dominated applications [34] and whenever short
schedules are important. “Classical” scheduling in high-level
synthesis, however, emphasizes much more applications where
potential parallelism is high and the resulting schedules are rel-
atively long to obtain a reasonably sized data path. Some com-
parisons summarized in Table Ill may clarify these points
further, In Table 111, Adds is the number of adders, Subs is the

92 IEEE T R A N S A C T I O N S O N C O M P U T E R - A I D E D D E S I G N . VOL IO. N O I. J A N U A R Y 1991

TABLE I11
COMPARISONS W I T H FORCE DIRECTED A N D CRITICAL PATH FIRST

SCHEDULING

Design Method Adds Subs Muls States Paths Chain

Filter Path
Force

Filter Path
Force

Diffeq Path

mahal Path
Crit

mahal Path
Crit

Force

2 - 1 13
2 - I 19

3 - I 9

I I 2 4
1 1 2 4

2 3 - 4
2 3 - 4

1 I - 9

3 - I i n

I 1 - n

13/13
19

9 /9
i n

4/ 1

3/1

5 / 2 n

4

4

3
1

3
1

I
I

5
3

2
2

number of subtracters, Muls is the number of multipliers, States
is the number of states, Paths is the longest/shortest path (in
number of states) to execute the behavior without repeating
loops, and Chain is the maximum number of operations chained.

The jilter example is the well-known filter from [27]. The
problem in this case degenerates to just one path (no conditional
branches). Path directed scheduling uses less states than force
directed scheduling [181 because i t chains operations. Notice
that arithmetic operations can be chained with very little time
penalty, i.e., usually the delay necessary to compute just a I-b
operation in carry chain implementations [35] . Force-directed
scheduling uses pipelined multipliers that take 2 cycles with a
latency of 1 , while path-directed scheduling uses multipliers that
take one cycle.

The Diffeq example is the differential equation from [36] .
Force-directed scheduling and path-directed scheduling essen-
tially yield the same result. There is, however, a path that takes
only one state to complete: if the exit condition of the loop is
true at the start, the computation takes one cycle.

The third example is used in MAHA (scheduling critical path
first) [141. The description used for path-directed scheduling
assumes that all the forks are conditional branches. In this case
i t can be seen that the path-directed schedule needs less states
to complete, even though an extra state was needed for the case
with one adder and one multiplier. Again, the chained opera-
tions are all arithmetic so that the cycle time is only slightly
affected. The CPU times for all examples is negligible (below
1 s on an IBM PC/RT).

Unfortunately, little results have been reported on the bench-
marks given in Tables I and 11. Among those, the results for the
i8251 benchmark as reported in [20] are summarized in Table
IV . The description is given in three modules, the main, the
receiver, and the transmitter. Tran means number of transistors,
in the case of path-directed scheduling excluding registers. Regs
gives the number of registers (in bits). States is the total number
of states and Paths gives the longest and shortest paths. The
combinational logic in this example is rather simple containing
only a few functional units of the complexity of a 4-b subtracter
and an 8-b parity generator. It was minimized using the YLE
[37]. The execution times (C P U on a 3090/200) exclude logic
synthesis for the case of path-directed scheduling. Naturally i t
is difficult to compare these results directly since the design en-
vironments are different.

A comparison with Wakabayashi’s and Yoshimura’s example
1211 is given in Table V . Only one adder, one subtracter, and
one comparator are used. The column labeled “Paths” gives

TABLE IV
COMPARISON W I T H BRIDGE

Design Method Trail Regs States Paths CPU

main Path 488 48 10 8 / 1 8.0
Bridge 3382 21 236.3

rcvr Path 1116 38 28 20/2 22.4
Bridge 3840 19 270.3

xmtr Path 1236 18 22 18/2 351.6
Bridge 3600 31 300.2

TABLE V
COMPARISON W I T H WAKABAYASHI’S METHOD

Design Method Adds Subs Conip States Paths Chain

Waka Path I I 1 n i / 3 / 4 . 1 5 2
Waka I I 1 1 1/5/5.15 2
Path ALU ALU I 6 6/3/4.25 2

the number of states necessary to execute the longest path, the
shortest path, and the average over all paths assuming equal
probabilities of taking each branch. Path-directed scheduling
uses one extra state, but it executes the shortest path in only 3
states rather than in 5 states, and it uses one cycle less on aver-
age. An interesting case arises if, instead of the adder and the
subtracter, two ALU’s capable of both addition and subtraction
are used. Now also two additions can be chained, reducing the
length of the critical path to only 6 states and the average num-
ber of states for the execution to 4.25. In addition, overlapping
of states allows to reduce the total number to only 6 states.

VI. CONCLUSIONS A N D OUTLOOK
This paper presented a new scheduling method that combines

several unique capabilities. AFAP scheduling is path-based and
obtains the minimum number of control states for all execution
paths. To allow the optimal scheduling of all execution paths,
operations may be scheduled into several states (states overlap).
Arbitrary constraints can be taken into account. Loops and con-
ditional branches are handled as an integral part of the method.
The output is the exact specification of a control finite state ma-
chine that implements the AFAP schedule.

Although exact methods are used, including the computation
of all paths in a graph and the solution of a minimum clique
covering problem, designs of several thousand nodes (the
equivalent of a complete microprocessor) could be run. Since
the representation level for a design is arbitrarily high (opera-
tions may be Boolean or arithmetic or of any complexity), large
problems can be handled. Results and comparisons with other
scheduling methods are encouraging.

The main limitations at present are the lack of pipeline sched-
uling capabilities and the fact that the order of operations must
be chosen in advance (although ordered operations may still be
scheduled in the same control state in parallel). These are ob-
vious topics for further research.

REFERENCES

[I] S . Davidson. D . Landskov. B. D . Shriver. and P. W . Mallet,
“Some experiments in local microcode compaction for horizontal
machines,” IEEE Trurts. Cornpi., vol. C-30. July 1981.

CAMPOSANO: PATH-BASED SCHEDULING FOR SYNTHESIS 93

J. A. Fisher, “Trace scheduling: A technique for global micro-
code compaction,” IEEE Trans. Comput., vol. C-30, July 1981.
A. Nicolau, “Percolation scheduling: A parallel compilation
technique,” Ithaca, NY: Dept. of Computer Science, Come11
University, TR 85-678, May 1985.
A. K. Uht, “Requirements for optimal execution of loops with
tests,” in Proc. ACM Int. Con$ Supercomputing, July 1988.
M. C. McFarland, A. C. Parker, and R. Camposano, “The high-
level synthesis of digital systems,” Proc. IEEE, vol. 78, pp. 301-
318, Feb. 1990.
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, “Recent
developments in deterministic and stochastic scheduling: A sur-
vey,” in M. A. H. Dempster, J. K. Lenstra, A. H. G . Rinnooy
Kan, ed., Deterministic and Stochastic Scheduling. Dordrecht,
Germany: D Reidel, 1982.
A. H. G. Rinnooy Kan, Machine Scheduling Problems-Clussi-
fication, Complexiry and Computations The Hague, The Nether-
lands: Martinus Mijhoff, 1976.
M. J. Gonzalez, “Deterministic processor scheduling,” ACM
Comput. Surveys, vol. 9, no. 3, Sept. 1977.
R. Bellman, A. Esogbue, and I . Nabeshima, Mathematical As-
pects of Scheduling and Applications. New York: Pergamon
Press, 1982.
S. French, Sequencing and Scheduling. Chichester, U.K.: Ellis
Honvood Ltd., 1982.
K. Ebcioglu, “A compilation technique for software pipelining
of loops with conditional jumps,” in Proc. MICRO-20, Dec.
1987.
M. C. McFarland, “Using bottom-up design techniques in the
synthesis of digital hardware from abstract behavioral descrip-
tions,” in Proc. 23rd Design Automation Conf. Las Vegas. June

E. F. Girczyc and J. P. Knight, “An ADA to standard cell hard-
ware compiler based on graph grammers and scheduling,” in
Proc. ICCD’84, Oct. 1984.
A. C. Parker, J. Pizarro, and M. Mlinar, “MAHA: A program
for datapath synthesis,” in Proc. 23rd Design Automation Conf.,
Las Vegas, June 1986, pp. 461-466.
R. Camposano and W. Rosenstiel, “Synthesizing circuits from
behavioral descriptions,” IEEE Trans. Computer-Aided Design,
vol. 8 , pp. 171-180, Feb. 1989.
V. Berstis, “The V Compiler: Automatic hardware design,”
IEEEDesign & Test Comput., pp. 8-17, Apr. 1989.
C. E. Leiserson, F. Rose, and J. B. Saxe, “Optimizing synchro-
nous circuitry by retiming,” in R. Bryant, ed., Third Caltech
Conference on VLSI. Rockville, MD: Computer Science, 1983.

1986, pp. 474-480.

[23] D. B. Johnson, “Finding all the elementary circuits of a directed
graph,” SIAM J. Comput., vol. 4 , no. I , pp. 77-84, Mar. 1975.

[24] Y. E. Ionnidis and R. Ramakrishnan, “Efficient transitive clo-
sure algorithms,” Computer Science Tech. Rep. #765, Univ. of
Wisconsin-Madison, Apr. 1988.

[25] A. V. Aho, R. Sethi and J. D. Ullman, Compilers.’ Principles,
Techniques and Tools. Reading, MA: Addison-Wesley, 1986.

1261 L. Stok. “Interconnect optimization during data path alloca-
tion,” in Proc. EDAC’90, Glasgow, Scotland, Mar. 1990, pp.
14 1 - 145.

[27] P. Dewilde, E. Deprettere and R. Nouta, “Parallel and pipelined
VLSI implementation of signal processing algorithms,” in S. Y.
Kung. H. J. Whitehouse, T. Kailath, ed., VLSI and Modern Sig-
nal Processing, Englewood Cliffs, NJ: Prentice Hall, 1985, pp.
258-264.

[28] S . Even, Graph Algorithms. Rockville, MD: Computer Sci-
ence, 1979.

1291 C.-J. Tseng and D. P. Siewiorek, “Automated synthesis of data
paths in digital systems, ” IEEE Trans. Computer-Aided Design,

(301 R. Camposano, “Behavior-preserving transformations for high-
level synthesis,” in Proc. Workshop on Hardware Spec$cation,
Verification, and Synthesis: Mathematical Aspects. New York:
Springer Verlag, 1989.

[3 I] Benchmarks for the Fourth International Workshop on High-Level
Synthesis, 1989.

[32] Standard VHDL Language Reference Manual. New York: The
Institute of Electrical and Electronics Engineers, Mar. 1988.

(331 M. Barbacci, G. Bames, R. Catell, and D. Siewiorek, “The ISPS
computer description language,” Rep. CMU-CS-79-137, Dep.
Comput. Sci., Camegie Mellon University, 1979.

[34] W. Wolf, “A catalog of optimizations for the behavioral synthe-
sis of control-dominated machines,” in Proc. ACMIIEEE Work-
shop on High-Level Synthesis, Kennebunkport, MA, Oct. 1989.

[35] H. DeMan, “Tutorial on high-level synthesis,” in Proc.
EDAC’90, Glasgow, Scotland, Mar. 1990.

(361 P. G . Paulin, J. P. Knight and E. F., Girzyc, “HAL: A multi-
paradigm approach to automatic data-path synthesis,” in Proc.
23rd Design Automation Conf., June, 1986, pp. 263-270.

(371 R. Brayton, “Algorithms for multi-level synthesis and optimi-
zation,” in Proc. NATO ASI, L’Aquila, Italy: Martinus Nijhoff,
1986.

vol. CAD-5, pp. 379-395, July 1986.

*
[IS] P. G. Paulin and J. P. Knight, “Force-directed scheduling for

the behavioral synthesis of ASIC’s,’’ IEEE Trans. Computer-
Aided Design, vol 8, pp. 661-679, June 1989. R a d Camposano received the diploma from

[I91 R. Camposano, “Structural synthesis in the Yorktown silicon the University of Chile in 1978 and the Ph.D.
compiler,” in C H. Sequin, ed.. VLSI’87, VLSIDesign ofDig- degree in computer science from the University
ita1 Systems. of Karlsruhe, in 1981.

[20] C. J. Tseng, R. W. Wei, S. G. Rothweiler, M. Tong, and A. K. In 1982 and 1983, respectively, he was with
Bose, “Bridge: A versatile behavioral synthesis system,” in Proc. the University of Siegen and Professor of Com-
25th ACM/IEEE Design Automation Con$, Anaheim, CA, June puter Science at the Universidad del Norte in
1988, p ~ . 415-420 Antofagasta From 1984 to 1986, he was a re-

[21] K. Wakabayashi and T. Yoshimura, “A resource sharing control searcher in the Computer Science Research
synthesis method for conditional branches,” in Proc ICCAD ’89, Laboratory at the University of Karlsruhe.
Santa Clara, CA, Nov. 1989, pp. 62-65 Since 1986, he has been at the IBM T.J. Wat-

[22] G. Goossens er a l . , “Loop optimization in register-transfer son Research Center in Yorktown Heights, NY. His research interests
scheduling for DSP systems,’’ in Proc. 26th Design Automation include design automation for digital systems and computer design
Conf., June 1989. methodology.

Vancouver. North-Holland, 1988, pp. 61-72

