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Path-Based Scheduling for Synthesis 
R a d  Camposano 

Abstract-In the context of synthesis, scheduling assigns operations 
to control steps. Operations are the atomic components used for de- 
scribing behavior, for example, arithmetic and Boolean operations. 
They are ordered partially by data dependencies (data-flow graph) and 
by control constructs such as conditional branches and loops (control- 
flow graph). A control step usually corresponds to one state, one clock 
cycle, or one microprogram step. This paper presents a new, path- 
based scheduling algorithm. It yields solutions with the minimum num- 
ber of control steps, taking into account arbitrary constraints that limit 
the amount of operations in each control step. The result is a finite state 
machine that implements the control. Although the complexity of the 
algorithm is proportional to the number of paths in the control-flow 
graph, it is shown to be practical for large examples with thousands of 
nodes. 

I .  INTRODUCTION 
HE SCHEDULING problem arises in several contexts dur- T ing the synthesis of digital systems, for example, in the areas 

of microcode compilation [ 11-[4] and high-level synthesis 151. 
Briefly stated, scheduling consists of determining the time at 
which different jobs are performed. Even quite simple schedl 
uling problems are NP-complete [6]. If we restrict ourselves to 
synchronous digital systems, then the “jobs” usually degen- 
erate to single operations such as addition, multiplication, logic 
operations, assignment, etc., and time is given in so-called con- 
trol steps which correspond to a basic machine cycle, i.e., a 
state in a controlling finite state machine or a microprogram 
step. Control steps will be called states throughout the rest of 
the paper. (If multiphase clocking is used, a finer granularity of 
time may be required). The problem is then to determine in 
what control state(s) each operation is executed, so that a given 
cost function is minimized. In microprogram compilation, the 
cost function is usually the number of microprogram steps re- 
quired for a given benchmark, while in high-level synthesis the 
cost function is usually a combination of the amount of hard- 
ware, the cycle time, and the number of control states required. 
The amount of hardware is a measure which may include func- 
tional units such as ALU’s, adders and simple gates, storage 
units such as memories and registers, and communication units 
such as buses and multiplexers. 

The classical problems in scheduling are machine scheduling 
and project scheduling [6]-[10]. A typical formulation of the 
machine scheduling problem is to perform n number of jobs 
using m number of machines in a given (partial) order such that 
the corresponding cost is minimized. The techniques developed 
for this sort of problem are not used in synthesis, because jobs 
take many time units as opposed to operations which usually 
take only one or a few control states. Furthermore, they do not 
deal with loops and conditional branches. 
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In microprogram optimization several techniques are used. 
Reference [ 11 discusses first-come-first-served (FCFS) sched- 
uling, list scheduling, scheduling the critical path first, and ex- 
haustive search using branch-and-bound techniques. FCFS and 
list scheduling basically schedule operations in the topological 
order given by the data dependencies. List scheduling uses an 
additional priority criterion to order operations, e.g. ,  the path 
length from each operation to the end. Another method consists 
of scheduling first all operations on the longest path (the critical 
path according to data dependencies). The remaining operations 
are then scheduled “around” the critical path. Exhaustive 
search obviously guarantees the optimum but is computation- 
ally too expensive. These techniques do not deal directly with 
loops and with conditional branches, hence, they are often ap- 
plied locally within so called basic blocks that do not contain 
these constructs. Transformational techniques such as trace 
scheduling [2] and percolation scheduling [3] rely on code mo- 
tion and are global, i.e., not restricted to basic blocks. (These 
techniques were not intended for synthesis originally). More 
specialized approaches deal with pipeline scheduling of loops 

These techniques give good results and many of them have 
been used in high-level synthesis. For example, extensions to 
list scheduling with different priority criteria are used in BUD 
[12] and Elf 1131. MAHA [14] in essence uses a critical path 
first schedule, scheduling operations that are not on the critical 
path in order of increasing freedom (mobility). Mobility is the 
difference between the earliest and latest possible schedules. 

Also, transformational approaches such as trace scheduling 
and percolation scheduling have inspired high-level synthesis. 
For example, the CADDY/DSL system [ 151 and the V system 
[ 161 rely on moving operations between control states, consid- 
ering the constraints imposed by data dependencies, loops, and 
conditional branches (similar to [ 2 ] ) .  Retiming [ 171 can be seen 
as a special case of transformational scheduling. 

Force-directed scheduling [ 181 allows the exploration of 
global tradeoffs between the hardware and the number of con- 
trol states used. This statistical method uses the probability dis- 
tribution of operations being executed in each control state to 
balance the amount of hardware required in each control state. 

More detailed discussions of scheduling for high-level syn- 
thesis can be found in 151, [ 181. 

The approach in this paper is quite different from all of the 
above. The problem addressed is scheduling for synchronous 
digital systems, minimizing the number of control states under 
given constraints such as timing and area. The scheduling prob- 
lem is represented as a directed graph where the nodes represent 
the operations and the edges the precedence relationship. This 
graph may contain conditional branches (IF, CASE in a pro- 
cedural language) and loops (WHILE, UNTIL in a procedural 
language). The most important difference to other approaches, 
such as critical path first and force-directed scheduling, is that 
these deal mainly with potential concurrency, in the sense that 
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they use a data-flow representation indicating the dependencies 
that “force serialization” and schedule, taking advantage of the 
freedom left to move operations among control states. In path- 
based scheduling, conditional branching is emphasized instead. 
Scheduling in this case ensures that each of the possible paths 
generated by conditional branches is scheduled optimally (in 
the minimum number of control states). This requires schedul- 
ing one operation into different control states depending on the 
path, a capability which no other scheduling algorithm has. In 
designs with numerous conditional branches, this aspect is most 
important. As will be described with more detail in Section IV 
(examples), processor design and control dominated applica- 
tions are of this kind. 

Instead of minimizing a cost function, path-based scheduling 
minimizes just the number of control states for given con- 
straints. In practice, we have experienced that this is indeed 
adequate: for the applications mentioned above, it is approxi- 
mately known what constraints apply, e.g. ,  how big a chip will 
be and what cycle times can be expected with a certain tech- 
nology. “Design space exploration” in these cases will consist 
of scheduling only a few dozen designs, changing slightly the 
approximately known constraints-very much like designs that 
are done in practice. 

The constraints considered are of two types. Intrinsic con- 
straints arise from the fact that, in synchronous systems, hard- 
ware can be used only once in each control state, e.g., a register 
can receive only one new value, a port can transmit or receive 
only one value. Extemal constraints, such as the available 
amount of hardware, must be specified by the designer. 

The scheduling algorithm proceeds as follows. Each possible 
path is scheduled independently in an optimal fashion, in the 
sense that the minimum number of control states for the given 
constraints is found. Then the schedules for each path are 
overlapped, again in an optimal way. Loops and conditional 
branches are handled as an integral part of the problem. We call 
this as-fast-as-possible (AFAP) scheduling. The technique is an 
exact solution to the scheduling problem formulated in the 
Yorktown Silicon Compiler (YSC) 1191. In the YSC it was 
solved heuristically, scheduling paths individually using back- 
tracking, and overlapping them in a greedy fashion. Although 
the worst-case complexity of AFAP scheduling is N P ,  we have 
exercised i t  for large real designs with thousands of operations. 
Faster heuristics that yield suboptimal results are also sug- 
gested. 

There are two other approaches known to the author that also 
deal with conditional branching explicitly. Bridge [20] uses a 
Boolean condition to identify when operations are activated. 
Operations in mutually exclusive conditional branches can be 
identified by these conditions and scheduled (heuristically) in 
the same state sharing hardware. A more systematic approach 
also based on such conditions extends list scheduling to take 
into account mutually exclusive operations 1211. Both ap- 
proaches do reduce the number of states required for a schedule, 
but they do not schedule operations in more than one state nor 
do they minimize the path length globally. Some comparisons 
in Section V will clarify this. 

The paper is structured as follows. The next section states the 
scheduling problem formally. The scheduling algorithm is pre- 
sented in Section 111, including the representation of con- 
straints. The main issues introduced are the treatment of loops 
and conditional branches, and scheduling in the minimum num- 
ber of control states. Heuristics to speedup processing are also 
suggested. Section IV gives results for several examples. Sec- 

tion V compares results to other scheduling techniques. The pa- 
per ends with conclusions and an outlook. 

11. DEFINITION OF THE AFAP SCHEDULING PROBLEM 

A behavioral description of the problem to schedule is given 
by the controllpow directed graph B = ( V ,  E ). The nodes 
v E V represent operations to be scheduled, and the edges give 
theprecedence relation, i.e., ( v i ,  U ] )  E E iff U ,  is an immediate 
predecessor (called just predecessor) of P,. U, is called an im- 
mediate successor (or just successor) of U , .  The interpretation 
of B is imperative: an operation is executed after one of its pred- 
ecessors is executed. 

If a node v has more than one successor, 21 is said to be a 
conditional branch. Only one of the successors will be exe- 
cuted. The decision of which successor is chosen is taken ac- 
cording to a condition predicate cond( 21, U;) attached to the 
corresponding edge. If cond( 1 1 ,  D!) is true, then 2); is executed 
after U .  The conditions on outgoing edges from conditional 
branches must be all mutually exclusive. Conditions are arbi- 
trary Boolean functions that can be directly derived from con- 
ditional constructs such as IF, CASE, WHILE, and UNTIL in 
procedural languages. 

Notice that mapping of procedural (imperative) languages, 
such as C or Pascal, onto this graph is trivial using the order of 
operations given in the program. Fig. 1 gives an example. The 
VHDL program corresponds to the control-flow graph. The node 
numbers are indicated as a comment (starting with “--”) in the 
program. Nodes 1 and 2 correspond to signal assignments; in 
our example corresponding to output ports (declared in the en- 
tity statement). Nodes 4 and 7 are conditional branches, their 
outgoing edges are labeled with the corresponding conditions. 
Nodes 5, 8,  and 10 are variable assignments. Nodes 3 and 9 are 
additions (merged with a signalhariable assignment, respec- 
tively). Node 6, finally, is a dummy node corresponding to the 
“end i f”  statement. The program is assumed to loop endlessly, 
i.e., node 1 executes after node IO. 

The control-flow graph has a unique first operation v ,  at 
which execution starts; in the example this is node I .  It should 
be possible to reach all other operations from Z J , ,  otherwise there 
are dead operations in B that can never be executed. 

A longest path through the control-flow graph is a path start- 
ing at U ,  and ending at an operation with no successors. Repe- 
tition of operations are not considered, i.e.. cycles in the graph 
are traversed just once for longest path computation. The set of 
all longest paths is denoted as { p/ } .  It represents all different 
operation sequences (again, excluding repetition of cycles) that 
the specified behavior allows. As an example, consider a pro- 
cessor: each longest path corresponds to the execution of an 
instruction (if we ignore exceptions). 

The AFAP scheduling problem is then formulated as follows. 
Given B = ( V ,  E ) and a set of constraints, schedule all oper- 
ations ZJ E V such that all possible longest paths { p I }  execute 
in the minimum number of control states and all constraints are 
met. 

Several comments are necessary at this point. The exact rep- 
resentation of constraints will be introduced in the next section. 
In  the absence of any external constraints on area (the amount 
of hardware) and time (the maximal delay that is allowed within 
one control state), no more data than the precedence relation of 
the operations and their data dependencies are needed to derive 
intrinsic constraints such as writing a register only once per 
control state. If  there are constraints on area and time, then an 
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ent i ty  prefetch is 
port  (bronchpc. ibus : in b i t32;  

branch. ire : in bit; 
ppc. popc, obus: out b i t32) ;  

end prefetch: 

architecture behavior of prefetch is 
begin 

process 
variable pc.oldpc : b i t 3 2  :- 0; 

begin 
PPC <- Pc; - - 1  
popc c= oldpc; - -2  
obus c- ibus + 4: - -3 
if (branch = '1') - -4  
then 
pc := branchpc; - -5  

end if; - -6  
woit until (ire = '1'); - -7  
oldpc := pc; --a 
pc :- pc + 4: --9.10 

end process; 
end behovior; 

Fig. I .  Behavioral description example. 

operator library that contains the delay and the area used by 
each operation is required. Notice that i t  is difficult to estimate 
these numbers accurately at this level. 

Without loss of generality, we may assume that each opera- 
tion can be executed in one control state. If this is not the case, 
the operation has to be split into several operations, which may 
be done automatically in the presence of a time constraint. 

Scheduling has been formalized using a given precedence re- 
lation of operations. This precedence relation may be derived 
partly from the data flow, ordering only such operations that 
have data dependencies. However, the precedence relation al- 
ways contains procedural (imperative) elements such as condi- 
tional branches and loops which are difficult to represent as pure 
data flow. They are represented naturally in the control flow. 
Operations that can be executed in parallel may be clustered in 
one node or ordered arbitarily. If they are clustered in one node, 
they will be always scheduled in one control state (they will be 
treated as one larger operation). If they are ordered, they may 
be scheduled in one or more control states; if they are scheduled 
in more than one control state, the given order will be main- 
tained. So E may reflect a given ordering of operations chosen 
by the designer, or may be obtained from the data dependen- 
cies, keeping only the necessary orderings. 

The output of AFAP scheduling is the exact specification of 
a finite state machine that implements the control of E .  

111. ALGORITHM 

In  this section, the algorithm for AFAP scheduling is given. 
It  involves keeping all paths in the control-flow graph and sev- 
eral NP-complete steps. At the end, substantial simplifications 
are suggested. The algorithm consists of four main steps. 

1) Transforming the contol-flow graph E into a directed 
acyclic graph (DAG) and keeping lists for the loops. 

2 )  All paths in the DAG are scheduled AFAP independently, 
according to the data-flow constraints in each path. 

3) The schedules of step 2 )  are overlapped in a way that min- 
imizes the number of control states. 
4) The finite state machine for control is built. 

A.  Loops 
Let i l l .  be the first operation in a loop body and I ! ,  the last 

one. Each loop L is "broken." removing the feedback edge 
( z J , ,  v b ) ,  and storing i J t ,  i ' /  and the condition c of the feedback 
edge ( Z J ~ ,  zlb ) (Fig. 2) .  

x vr Store 

c 6  
0 V L  6vl 
C 

Fig 2 Transformations for loops 

branch 4 br mnch 

Store 
7, 7, 6 
1, 10, 1 

g 
Fig. 3 .  Prefetch example after loop elimination 

The result is a DAG, and a list of removed feedback edges 
with their conditions. The intention is to allow the execution of 
a loop body only once. If the loop body has to be repeated, 
execution gets trapped in LJ,., since c is false. We will schedule 
this problem optimally and then add transitions in the control 
finite state machine to repeat loops an arbitrary number of times. 
Any kind of loop unfolding or optimization must be done prior 
to scheduling; we do not deal with pipeline scheduling of loops 
such as in [ I l l ,  [ 2 2 ] .  

The transformation given above applies to loops that have the 
exit condition at the end (UNTIL loops). A similar transfor- 
mation applies to loops with the exit condition at the beginning 
(WHILE loops). 

Fig. 3 gives the result of eliminating loops for the example 
of Fig. 1. For the loop at node 7, node 7 represents uF and U/,. 
For the endless outer loop, node I O  represents z!~. and node 
1 represents z j F .  The conditions on the feedback edges are ire 
and 1. 

Notice that loops are detected easily during syntax analysis 
of structured languages so that the control-flow graph can be 
marked accordingly. Thus in practice. loop detection presents 
no problems. For a general graph, finding the minimum set of 
edges that will break all cycles is NP-hard. This can be done 
using Johnson's algorithm 1231. 

B. AFAP Scheduling of Single Paths 
The idea is to schedule each path AFAP independently. Paths 

arise from the conditional branches in B.  A path corresponds to 
one possible execution sequence, so the number of different 
paths is a measure of how many different functions a design can 
perform. Although the number of paths in a graph can grow 
worse than exponentially, in practice we have found on the or- 
der of IO' paths for the execution unit  of a microprocessor. 

We first compute all paths. then the constraints for each path, 
and finally an AFAP schedule for each path. 

1 )  All longest paths in B are computed, i.e., paths that start 
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at the first node or at nodes i l F .  and end with nodes with no 
successors. Efficient algorithms for path computation use the 
depth-first search construction of the transitive closure [24]. Re- 
member that a path represents a possible sequence of opera- 
tions, hence, paths which start at loop beginnings vF must also 
be considered (loop bodies may be repeated, so there is a se- 
quence that starts at the first operation of the loop body 1 1 ~ ) .  In 
the Prefetch example, there are 3 paths: path1 = { I ,  2, 3,  4,  
5, 6,  7, 8, 9, I O } ,  path2 = { I ,  2. 3,  4,  6,  7,  8, 9, I O } ,  and 
path 3 = { 7 ,  8,  9, I O } .  

2) For each path, all constraints are computed. Constraints 
are the following 

Variables can be assigned only once in one control state. 
Notice that variables may have been disambiguated using global 
data-flow analysis (replicating them so that they are assigned 
only once) [25]. In this case, no constraints will be generated. 
Variables explicitly meant to be registers should not be disam- 
biguated, thus allowing them to generate constraints. 

IO ports can be read or written only once in one control 
state. 

Functional units can be used only once in a control state. 
This constraint is only relevant if the amount of hardware is 
constrained. In this case, the operations that can be scheduled 
in one control state are limited by the available hardware. 

The maximal delay within one control state limits the 
number of operations that can be chained (that feed data to each 
other and are executed in the same control state). 

The amount of storage (registers and memories) and com- 
munication (buses, multiplexers) is not constrained presently. 
Notice that the amount of storage and communication cannot be 
influenced significantly by the schedule, e.g. ,  [26] reports ran- 
domly distributed changes from 13 to 16 registers for schedules 
varying from 17 to 3 1 states for the filter from I271 and similar 
results for two other examples. Obviously, storage and com- 
munication can be optimized during allocation. 

The constraints are kept as sets of operations { ZI } ,  so that if 
any v E { 1 1  } is the first operation in the next state, the constraint 
is met. For one path, the nodes are totally ordered. Thus each 
constraint (set of nodes) can be interpreted as an interval. Fig. 
4 illustrates the above concepts for path I of the Prefetch ex- 
ample. Constraint I ,  for instance, is generated due to the fact 
the variable pc is written twice (we assume that pc is not to be 
replicated). The constraint indicates, that path 1 has to be “cut” 
between operations 6 and I O ,  so that the two assignments to pc 
are not in the same control state. 

It  is easy to see that a constraint on the amount of hardware 
(or on the maximum cycle time) just generates a series of in- 
tervals obtained by adding sizes (times) along the path, starting 
at each operation, until  the constraint is violated. In the exam- 
ple Prefetch. if the maximum functional unit  area is limited to 
100 cells and the incrementer necessary for the ‘ ’  +4” incre- 
ment uses 80 cells (so only one incrementer can be used), then 
constraint 2 is generated (Fig. 4). I t  states that operations 3 and 
9 must be scheduled in different control states. 

If the cycle time is constrained to T. then the execution times 
of the operations are added along the path starting at operation 
I ,  according to the data dependencies. At  some operation 1 1  this 
addition will be larger than T,  and a constraint must be gener- 
ated covering the interval from operation 2 to operation I ) ,  

meaning that the path has to be cut at one of these points to 
meet the cycle time T. The process is then repeated, starting the 
addition at operation 2,  3, etc. All these constraints must ob- 

PA1 t i  1 CUT,, 
I 

A CONSTRAINTS 

L m 

1 N T E RVA L 
GRAPH 

Fig. 4 .  Constraints and interval graph for one path in the Prefetch 
example. 

viously be met. In the example no such constraints are gener- 
ated, because the operations do not have data dependencies (i.e., 
they may all be executed in parallel). External constraints such 
as protocols, that require, for example, operations to be exe- 
cuted in successive cycles, are formulated as intervals with just 
one operation. 

3) The interval graph for the set of constraints of each path 
is formed, and a minimum clique covering is computed (Figs. 
4 and 5). In the interval graph each node corresponds to an 
interval and edges indicate that the corresponding two intervals 
overlap. A clique is a complete subgraph, with all possible 
edges. A minimum clique covering is a minimal number of cli- 
ques, so that each node is in one clique. 

By construction, it is clear that the solution to the minimum 
clique covering gives the minimum number of control states. A 
“cut” corresponds to each clique. It represents the possible op- 
erations at which a state starts. States are ordered along one 
path. In addition, a cut for the first operation along the path is 
added (the first state on the path starts with the first operation). 
The cuts give the minimum number of control states to execute 
this path (a state starts at a cut which corresponds to a clique, 
and a minimum clique covering is generated). Since each inter- 
val will be in one clique, all constraints are met. 

In the example of Fig. 4 only one clique exists, and the two 
intervals indeed overlap. So only two cuts are generated, cut,, 
for the first operation, and cut ,  for the clique corresponding to 
the two constraints. A more complicated example with two 
cliques is given in Fig. 5. Cuts are kept as the maximal set of 
overlapping operations, indicating all the possible positions for 
that cut, for example, the cutl  in Fig. 4 will consist of opera- 
tions 6, 7, 8, 9, indicating that the next state may start at any 
of them. Cut, in Fig. 5 is also an interval. 

The above algorithm obtains the AFAP schedule for each path 
individually. Besides the fact that the number of paths may ex- 
plode, all steps can be performed efficiently. Clique covering is 
in general NP-complete. but can be computed efficiently in a 
single pass through the path for interval graphs 1281 (also known 
as “left edge” algorithm). Notice that there are many possible 
minimum clique coverings. e.g. ,  in  Fig. 5 one clique could con- 
tain only node 2 and the other one nodes I ,  3 , 4 ,  5. All solutions 
obviously correspond to the minimum number of control states. 

C. Overlapping of Paths 

To find the minimum number of states for all paths. the 
schedules for each path must be overlapped. Again. the obser- 
vation that overlapping cuts can be merged helps to formulate 
the problem formally. A graph is formed. such that the nodes 
correspond to the cuts (set of nodes) defined in the previous step 
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PATH C O N S T R A I N T S  C U I S  INTERVAL 
GRAPH 8 

Fig. 5 .  Constraints and interval graph for a more complex example 

PAlHl PAIH2 C L I Q U E ,  

c. 

Fig. 6. Overlapping cuts for ditferent paths 

and edges join nodes corresponding to overlapping cuts (the in- 
tersection of the sets of operations is # +). A minimum clique 
cover of this new graph will clearly give the minimum set of 
cuts that fulfills the fastest schedule for each path, and thus the 
minimum number of control states (control states start at cuts). 

The AFAP schedules for the three paths of the Prefetch ex- 
ample are shown in Fig. 6. Cuts are subindexed with the path 
number first and then with an increasing index starting at 0 .  
Cut,,, and cutl I correspond to the cuts discussed in Fig. 4.  Cut,, 
and cut3, correspond to the initial operation in paths 2 and 3 ,  
respectively. Cutzl  is generated by the area constraint along path 
2 and avoids the two increment operations ( 3  and 9 )  that are 
scheduled in the same control state. There is the trivial clique 
containing the cuts representing the first operation 1 ,  in the ex- 
ample clique 1 .  All other cuts overlap at operation 7,  forming 
clique 2 .  This clique represents the start of the second state at 
operation 7. A clique may still contain more than one overlap- 
ping operation. In this case one operation is selected as “the 
cut” for the construction of the control automaton. Any oper- 
ation in the set of overlapping operations can be selected. Op- 
erations easily related to the original specification, such as 
conditional branches and joins, are a good choice. 

Since this graph does not seem to have any special property, 
the problem is most likely NP-complete. It is not an interval 
graph due to the fact that operations in alternative branches of 
a conditional branch are not ordered (this is not seen in the ex- 
ample, but would be the case for an operation x between oper- 
ations 4 and 6 in path 2: operation x and operation 5 would not 
be ordered). Although several heuristics for the clique covering 
problem exist [29], we implemented an exact solution by ex- 
haustive search and have not experienced problems with exces- 
sive runtimes yet (see Section IV). 

Notice that minimizing the number of cuts only minimizes 
the number of control states. Not solving this optimally will not 
change the fact that the schedule for each path is the fastest 
possible. 

D. Control Finite State Machine 

So far we have obtained the cut positions for all paths. The 
control automaton is built by merging as many path segments 
as possible into one state. We now construct a finite state ma- 
chine that implements the control for the schedule. 

Let the set of paths be { p , } .  Let the ordered set of cutting 
points for a path p ,  be {cur , , } .  Let the ordered set of last op- 
erations for control states be {ce , , }  = { ( U  E p ,  1 v = 
pred(cut / , ,+  , ) ) ,  u , ~ } ,  i.e., the ordered set of immediate pre- 
decessors of cutting points along the path, including the last 
operation uIL of the path (clearly, the last operation on a path 
will also be the ‘‘last’’ operation in a control state). Let the path 
interval r,,,, = [ cut,,,! ce,,,,] contain operations on path p I  starting 
at and ending at ce,,,,. By construction, all operations in a 
path interval can be scheduled in one control control state. 

The intervals for the Prefetch example are shown in Fig. 7. 
Path one, for instance, is divided into the path intervals r l ,  = 
{ 1 ,  2 ,  3 ,  4, 5 ,  6 )  and r l I  = { 7 ,  8, 9, IO} (the numbers in the 
set represent the operations or  nodes in the graph). The cuts 
(first operations) are cut,, = 1 and cu t l l  = 7. The last opera- 
tions are ce10 = 6 and c e l l  = 10. 

Let a state be denoted by s,. The set of all operations that are 
(conditionally) executed in s, is said to be scheduled in s,. A 
state transition is denoted s, -+ s, (cond,, = Boolean expres- 
s ion) ,  with cnnd,, being the condition that enables this state 
transition given as a Boolean expression. 

The control automaton is constructed in 3 steps. 
I )  Overlapping of intervals to form states: All intervals 

starting with the same operation cut,, can be merged into one 
state and their operations are all scheduled in this state. Let the 
necessary states be s,, k = I ,  2 ,  3 . . . . Intervals with the same 
first operation are trivial to identify. Conditional branches within 
one state are handled by combinational logic (the enable sig- 
nals). In the Prefetch example there will be two states neces- 
sary, s, starting with operation 1 and s2 starting with operation 
7 (Fig. 7). 

2 )  Construction of the state transitions: For each pair of 
states s,, s, such that si is “previous” to s k ,  i.e., for some ce,,,, 
scheduled in s i ,  curln scheduled in s A ,  ce/,,, = pred(cut l , ) ,  one 
state transition is added: 

S, -+ S I  (cond,,! ) . 

Also, state transitions to allow the repetition of loops must be 
added: s, -+ sA(cond, , ) ,  where the last loop operation U,, is 
scheduled in s, and the corresponding first loop operation z j F  is 
the first operation scheduled in s,. Conditions are constructed 
in the next step. 

In Fig. 7, there is a state transition s I  + s2 because operation 
6 (the last in s,) is a predecessor of operation 7 (the first in s2). 
The loops add transitions s2 -+ s2 and s2 -+ s I .  

3) Construction of state transition conditions: An operation 
in the control-flow graph is executed, if the previous operation 
was executed and the condition on the incoming edge is true. 
Thus along a path, an operation is executed, if all previous con- 
ditions were true, i.e., the A N D  of these conditions is true. If 
an operation has more than one predecessor, the conditions 
along those paths must be oRed. A state transition s, -+ S I  takes 
place, if a last operation ce,,,, scheduled in s, is executed, such 
that cutln = succ(ce, , , , )  is the first operation scheduled in s,? 
and the condition on the edge (ce,,, , ,  cut,,) is true. Hence, the 
condition is 

cond,, = V cond(ce, ,,,, cutln) A cond( I ’ / ,  ,,,, z’, ,  + I ,,,,#) 
I,,! I 
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Fig. 7. Building the control finite state machine for the Prefetch example. 

CON I ROL 
FSM 

INTERVALS 

Fig. 8. Building the control finite state machine for Prefetch with no area 
constraints. 

with lm ranging over all intervals r/,,! scheduled in s,, a n d j  rang- 
ing over all operations of the interval except for the last. 

In Fig. 7, for example 

cond,2 = brunch V branch = I ,  

condz, = ire, 

cond,, = ire 
- 

The proof that the above algorithm indeed yields a control au- 
tomaton that implements the behavior of the original control- 
flow graph is straight forward (by construction) and is omitted 
here. The proof that all transformations used are behavior pre- 
serving can be found in [30]. 

Notice that conditional branches can be scheduled completely 
in one state (e.g., operations 4,  5, and 6 in Fig 7). This is usu- 
ally desirable, if the delay in the data path is larger than in the 
control. However, if a new state for each conditional branch is 
desired, it can be easily accomplished by adding constraints that 
force new states. 

The execution of operations must be controlled by combina- 
tional logic. For this, an enable signal e,. is defined for each 
operation U. This signal is used to enable register loading, to 
select appropriate multiplexer inputs, to enable bus drivers, etc. 
Reasoning in the same way than deriving the state transition 
conditions, the enable signal is defined as 

where sA is used as a Boolean variable that is “ I ”  if the control 
automaton is in state sA and “0” otherwise, k ranges over all 
states into which if is scheduled, Im ranges over all intervals r,,,, 
scheduled in sA, a n d j  ranges over all operations along the in- 
terval that are previous to 1 1 .  

In Fig. 7 for example, operation 5 has the condition e, = 
brunch A s,. indicating that the operation (loading of pc, see 

Fig. I )  is to be executed in state 1 if branch is true. Operations 
8-10 have an enable equal to ire A s2.  The Boolean expressions 
for enable signals should be minimized on the fly, taking ad- 
vantage of the structure of the control-flow graph, e.g., condi- 
tions of a particular conditional branch simplify to “ I ”  after 
closing the branch. 

Since each path is scheduled independently for speed, one 
operation may be scheduled in more than one state. Since states 
are mutually exclusive, this does not create problems. Con- 
sider, for example, Prefetch without the area constraint (Fig. 
8). In this case there is no constraint along path 2 and all the 
operations along this path can be scheduled in a single state s I .  
A second state is needed for operations 7,  8, 9, 10 which are 
on a second path; these operations are thus scheduled in both 
states. It is easy to see that the given FSM is indeed the optimal 
control for this case. If branch is false and ire is true, only one 
cycle is needed for the complete execution! The enable signal 
for operations 8, 9, I O  (which are scheduled in two states) is 
equal to ( s ,  V s 2 )  A ire. 

AFAP scheduling is complex and computationally intensive. 
A simpler heuristic is to examine one path at a time, and to cut 
the complete graph just according to this one path. Cutting the 
complete graph consists of removing one edge in the path under 
consideration; all other paths containing this edge are cut as 
well, thus reducing considerably the effort for computing cuts 
and making the overlapping of paths unnecessary. This tech- 
nique, combined with a greedy cutting criteria for a path that 
cuts whenever one constraint is violated, was implemented in 
the YSC. An even simpler method consists of traversing the 
graph only once doing a depth-first search, and cutting the graph 
whenever a constraint is found. 

IV. RESULTS 
The examples used in this section are benchmarks from the 

1989 Workshop on High-Level Synthesis [31], with the excep- 
tion of EXE. COUNTER is a 4-b counter. GCD is a greatest 
common divisor calculation. PREFETCH is an instruction fetch 
unit for a microprocessor (different from the example used in 
the previous figures). TLC is a traffic light controller excluding 
the necessary timer (the timer is called). OTPT writes data onto 
a bus with a handshake which is used in KALMAN. KALMAN 
is a Kalman filter without the bus interface. TX8251 is the 
transmitter part of an Intel 8251 UART chip; HUNT imple- 
ments the hunt mode of the Intel 825 I .  EXE is the execution 
unit for a streamlined microprocessor with over 100 instructions 
(not given in the benchmark). The examples were written in 
VHDL [32], V [ 161, and ISPS [33]. The graphs were generated 
using the V compiler, examples in VHDL and ISPS were man- 
ually translated to V. 

AFAP scheduling was implemented in APL and APL2. All 
examples were run on an IBM 3090/200 machine under CMS 
VM/SP 4.2. APL is interpreted, which accounts partly for long 
runtimes. All examples could be executed with less than 
7Mbytes of memory. 

Table I gives the execution times for different steps in the 
algorithm. The compile phase is included for informative pur- 
poses only. Compiling includes the conversion into the internal 
representation, global data-flow analysis to disambiguate vari- 
ables (replicating them until single assignment is obtained) and 
grouping bit arrays into fields that are always used together (and 
can be treated as units). Detection of loops is syntax driven and 
correspondingly very fast. Computation of constraints con- 
structs intervals. Notice that constraints can be computed before 
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TABLE I 
E X E C ~ T I O N  TIMES I N  CPU SECONDS FOR S ~ V E R A L  EXAMPLES 

Design Compile Loops Constr. P u t h  Cuts Clique5 Control 

COUNTER 
GCD 
PREFETCH 
TLC 
OTPT 
KALMAN 
HUNT 
TX825 I 
EXE 

0.74 
0.95 
1.12 
0.64 
0.45 
6.6 
2.7 
5.3 

146 

0.01 
0.03 
0.02 
0.02 
0.02 
0.1 
0.03 
0. I 
0.2 

0.04 
0.05 
0.04 
0.04 
0.02 
0.3 
0. I 
0.2 
5.9 

0.02 0.01 
0.05 0.01 
0.06 0.02 
0.05 0.06 
0.02 0.01 
2.5 8. I 
0.2 0.02 
9.2 55.1 

53.6 0 

0 0.07 
0 0.15 
0.01 0.32 
0.05 0.42 
0.01 0. I3 
4.7 11.8 
0 0.94 

0 10.5 
I77 I I6 

TABLE I1 
RESULTS FOR SEVERAL EXAMPLES 

Design Nodes Edges Loops Constr. Puths Cuts Cliques Stores Exec. 

COUNTER 
GCD 
PREFETCH 
TLC 
OTPT 
KALMAN 
HUNT 
TX825 I 
EXE 

12/21 
15/24 
18/32 
14/25 
9/16 

100/ I68 
40/67 
92/141 

808/l I62 

14/19 
18/21 

16/18 
11 /8  

46/64 

950/ 1936 

22/25 

I I 1 / 192 

1 I I / 144 

I 
3 
3 
3 
3 

1 1  
6 

10 
I 

0 
0 
1 
4 
2 

19 
2 

15 
0 

~ 

3 
7 
9 

19 
5 

258 
28 

I594 
I596 

3 0  
7 0  

I I  1 
34 3 

7 1  
839 7 

28 0 
6319 I I  
1596 0 

1 / 1  1 / 1  
2/4 1/2 
4/9 1/3 
8/18 2/6 
2/4 1 /2  

6 /25  1/6 
22/112 2/18  

23/115 1/17 

1 / 1  1 / 1  

all paths are computed-they are later projected on the paths by 
simply determining if all operations of a constraint are on a 
particular path. Constraint computation is fast and is by no 
means a bottleneck. Paths computation can be slow for large 
graphs (e.g., EXE). Then all curs on all paths are computed, 
which corresponds to finding the cliques on the interval graphs. 
These cuts are then overlapped, and the cliques are computed 
using exhaustive search. This is also quite fast, because the 
graphs tend to have few edges and thus a large number of trivial 
cliques containing only one or a few nodes (Fig. 4). Finally, 
the finite state machine for conrrol is built. This tends to be one 
of the slowest steps due to the necessary bookkeeping and the 
construction of conditions. Some Boolean optimization capa- 
bilities were built into the algorithm, to keep expressions for 
conditions small. 

Runtimes are reasonably short, even for large examples. Im- 
plementing the algorithm in a compiled, lower level language 
such as C would result in a significant speed-up. 

The results in Table I1 again show the different steps of the 
algorithm. The nodes and edges columns give the size of the 
problem, giving both the control-flow and the data-flow graphs 
(control-flow/data-flow). The amount of loops usually includes 
one external infinite loop. The number of constraints ( Consrr. ) 
does not include external constraints; the examples were not 
limited to a certain size or cycle delay. The total number of 
paths is given next. Curs include the obvious cut at the first 
operation (see Section 111). The number of cliques does not in- 
clude trivial cliques with only one operation. 

The column states gives the number of states followed by the 
number of state transitions of the finite state machine con- 
structed for control. The examples KALMAN, TX8251, and 
EXE are hierarchical and contain calls to other modules which 
may generate the need for additional states. This paper does not 
discuss hierarchical design issues, the reader is referred to [ 191, 
1301. 

The last column labeled Exec. gives the nun.,er of cycles to 
execute the behavior without repeating loops. The first number 
gives the shortest sequence that returns to the initial state. The 
second number gives the longest sequence that returns to the 
initial state, without repeating states. This gives an idea of the 
performance. e.g. ,  the number of cycles for the longest and 
shortest instructions in a microprocessor. Notice that the short- 
est sequence is often of length one, due to the fact that loop 
bodies are scheduled in the same state as the following opera- 
tions, so that they can be conditionally executed in the same 
state if the exit condition is met. 

We also compared these results with the YSC heuristic men- 
tioned at the end of the previous section. In many cases the 
same results were reached. The exceptions were KALMAN 
scheduled in 30 states, TX8251 scheduled in 29 states, and 
HUNT scheduled in 8 states. Execution times for heuristic 1 
and AFAP scheduling cannot be compared in a meaningful way, 
since they were implemented in different environments. 

V .  COMPARISONS 
The comparison of AFAP scheduling to other scheduling 

techniques, such as force directed scheduling [ 181 or critical 
path first scheduling [ 141, is difficult because the objectives of 
these techniques are different. As already stated, AFAP sched- 
uling deals mainly with applications with many conditional 
branches and loops that emphasize fast schedules. Such appli- 
cations are common in processor design (as our experience tells 
us), in control dominated applications [34] and whenever short 
schedules are important. “Classical” scheduling in high-level 
synthesis, however, emphasizes much more applications where 
potential parallelism is high and the resulting schedules are rel- 
atively long to obtain a reasonably sized data path. Some com- 
parisons summarized in Table Ill may clarify these points 
further, In  Table 111, Adds is the number of adders, Subs is the 
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TABLE I11 
COMPARISONS W I T H  FORCE DIRECTED A N D  CRITICAL PATH FIRST 

SCHEDULING 

Design Method Adds Subs Muls States Paths Chain 

Filter Path 
Force 

Filter Path 
Force 

Diffeq Path 

mahal Path 
Crit 

mahal Path 
Crit 

Force 

2 -  1 13 
2 -  I 19 

3 -  I 9 

I I 2 4 
1 1 2 4 

2 3 -  4 
2 3 -  4 

1 I -  9 

3 -  I i n  

I 1 -  n 

13/13 
19 

9 /9  
i n  

4/ 1 

3/1 

5 / 2  n 

4 

4 

3 
1 

3 
1 

I 
I 

5 
3 

2 
2 

number of subtracters, Muls is the number of multipliers, States 
is the number of states, Paths is the longest/shortest path (in 
number of states) to execute the behavior without repeating 
loops, and Chain is the maximum number of operations chained. 

The jilter example is the well-known filter from [27]. The 
problem in this case degenerates to just one path (no conditional 
branches). Path directed scheduling uses less states than force 
directed scheduling [ 181 because i t  chains operations. Notice 
that arithmetic operations can be chained with very little time 
penalty, i.e., usually the delay necessary to compute just a I-b 
operation in carry chain implementations [35] .  Force-directed 
scheduling uses pipelined multipliers that take 2 cycles with a 
latency of 1 ,  while path-directed scheduling uses multipliers that 
take one cycle. 

The Diffeq example is the differential equation from [36 ] .  
Force-directed scheduling and path-directed scheduling essen- 
tially yield the same result. There is, however, a path that takes 
only one state to complete: if the exit condition of the loop is 
true at the start, the computation takes one cycle. 

The third example is used in MAHA (scheduling critical path 
first) [ 141. The description used for path-directed scheduling 
assumes that all the forks are conditional branches. In this case 
i t  can be seen that the path-directed schedule needs less states 
to complete, even though an extra state was needed for the case 
with one adder and one multiplier. Again, the chained opera- 
tions are all arithmetic so that the cycle time is only slightly 
affected. The CPU times for all examples is negligible (below 
1 s on an IBM PC/RT). 

Unfortunately, little results have been reported on the bench- 
marks given in Tables I and 11. Among those, the results for the 
i8251 benchmark as reported in [20] are summarized in Table 
IV .  The description is given in three modules, the main, the 
receiver, and the transmitter. Tran means number of transistors, 
in the case of path-directed scheduling excluding registers. Regs 
gives the number of registers ( in  bits). States is the total number 
of states and Paths gives the longest and shortest paths. The 
combinational logic in this example is rather simple containing 
only a few functional units of the complexity of a 4-b subtracter 
and an 8-b parity generator. It  was minimized using the YLE 
[37]. The execution times ( C P U  on a 3090/200) exclude logic 
synthesis for the case of path-directed scheduling. Naturally i t  
is difficult to compare these results directly since the design en- 
vironments are different. 

A comparison with Wakabayashi’s and Yoshimura’s example 
1211 is given in Table V .  Only one adder, one subtracter, and 
one comparator are used. The column labeled “Paths” gives 

TABLE IV 
COMPARISON W I T H  BRIDGE 

Design Method Trail Regs States Paths CPU 

main Path 488 48 10 8 / 1  8.0 
Bridge 3382 21 236.3 

rcvr Path 1116 38 28 20/2 22.4 
Bridge 3840 19 270.3 

xmtr Path 1236 18 22 18/2 351.6 
Bridge 3600 31 300.2 

TABLE V 
COMPARISON W I T H  WAKABAYASHI’S METHOD 

Design Method Adds Subs Conip States Paths Chain 

Waka Path I I  1 n i / 3 / 4 . 1 5  2 
Waka I I 1 1 1/5/5.15 2 
Path ALU ALU I 6 6/3/4.25 2 

the number of states necessary to execute the longest path, the 
shortest path, and the average over all paths assuming equal 
probabilities of taking each branch. Path-directed scheduling 
uses one extra state, but it executes the shortest path in only 3 
states rather than in 5 states, and it uses one cycle less on aver- 
age. An interesting case arises if, instead of the adder and the 
subtracter, two ALU’s capable of both addition and subtraction 
are used. Now also two additions can be chained, reducing the 
length of the critical path to only 6 states and the average num- 
ber of states for the execution to 4.25. In addition, overlapping 
of states allows to reduce the total number to only 6 states. 

VI. CONCLUSIONS A N D  OUTLOOK 
This paper presented a new scheduling method that combines 

several unique capabilities. AFAP scheduling is path-based and 
obtains the minimum number of control states for all execution 
paths. To allow the optimal scheduling of all execution paths, 
operations may be scheduled into several states (states overlap). 
Arbitrary constraints can be taken into account. Loops and con- 
ditional branches are handled as an integral part of the method. 
The output is the exact specification of a control finite state ma- 
chine that implements the AFAP schedule. 

Although exact methods are used, including the computation 
of all paths in a graph and the solution of a minimum clique 
covering problem, designs of several thousand nodes (the 
equivalent of a complete microprocessor) could be run. Since 
the representation level for a design is arbitrarily high (opera- 
tions may be Boolean or arithmetic or of any complexity), large 
problems can be handled. Results and comparisons with other 
scheduling methods are encouraging. 

The main limitations at present are the lack of pipeline sched- 
uling capabilities and the fact that the order of operations must 
be chosen in advance (although ordered operations may still be 
scheduled in the same control state in parallel). These are ob- 
vious topics for further research. 
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