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Series Preface 

The long-term aim of  the Commission on Crystallographic Teaching in 
establishing this pamphle t  p rogramme is to produce a large collection of  
short statements each dealing with a specific topic at a specific level. The 
emphasis is on a particular teaching approach and there may well, in time, 
be pamphlets  giving alternative teaching approaches to the same topic. It 
is not the function of.the Commission to decide on the 'best '  approach but 
to make all available so that teachers can make their own selection. Similarly, 
in due course, we hope that the same topics will be covered at more than 
one level. 

The first set of  ten pamphlets ,  published in 1981, and this second set of  
nine represent a sample of  the various levels and approaches and it is hoped 
that they will stimulate many  more people to contribute to this scheme. It 
does not take very long to write a short pamphlet ,  but its value to someone 
teaching a topic for the first time can be very great. 

Each pamphlet  is prefaced by a statement of  aims, level, necessal:y 
background, etc. 

C. A. Taylor 
Editor for the Commission 

The financial assistance of UNESCO, ICSU and of the International Union of Crystallog- 
raphy in publishing the pamphlets is gratefully acknowledged. 



Teaching Aims 

The teaching aim of  this booklet is to give an overall view about crystal 
physics without the separate discussion of the individual physical properties 
of  crystals. It may be called 'Essential Crystal Physics'. 

Crystal physics is based on physics, crystallography and mathematics. 
Therefore this booklet is suitable for advanced undergraduates or initial 
postgraduates who are already acquainted with the elements of solid state 
physics, of crystallography and of vector calculations. According to the 
author's experience four-six hours are sufficient to form a true notion of 
the essentials of crystal physics for non-specialists in that field. 



An Introduction to Crystal Physics 
(Descr ip t ion o f  the Physical  Propert ies o f  Crystals)  

Ervin H a r t m a n n  

Research Laboratory for Crystal Physics, Hungarian Academy of Sciences, 
Budapest 

Introduction 

Most monographs on physics discussing the physical properties of matter 
usually proceed from isotropic materials and as a generalization include a 
more or less limited description of the behaviour of crystalline bodies. This 
way of presentation is doubtless advantageous, however, it implies a separate 
discussion of the various properties, inevitably obscuring the general prin- 
ciples and methods applicable in the theory of crystal properties. The 
purpose of the present work is to discuss and summarize in a unified 
treatment the physical properties of crystals, and to illustrate by some typical 
examples the principles and methods underlying to a uniform description 
of these properties. 

For an introduction, in order to develop a clear crystal physical picture, 
let us investigate the problem of the dielectric susceptibility in an isotropic 
and an anisotropic medium respectively. 

In isotropic insulators the dipoles generated in the course of dielectric 
polarization are parallel with the electric field (Fig. l a), consequently the 
relation between the vector of the electric polarization (/5) and the electric 
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Fig. I. Formation of dipoles (a) in isotropic, (1o) in anisotropic insulators. 



field (/~), that is the susceptibility can be characterized by one single value 
(x) 

P =x~. (1.1) 

In an anisotropic medium, however, the dipoles formed during the dielectric 
polarization are generally not parallel with the electric field. Fig. lb depicts 
the relatively simple case in which the dipoles though arranged in a plane 
parallel with the electric field (represented by the plane of the drawing) 
have a different direction. In this case the vector of the electric polarization 
(P) due to the vertical electric field (E = E~) has not only a vertical (P~) 
but also a horizontal component  (fib). Consequently in the case of  Fig. lb 
two quantities (X~ ; Xh~) are necessary to describe the relation between the 
vertical electric field and the electric polarization, and the components of 
the two vectors in question are connected by the equations 

P~ = x,,o&. (1.2) 

Generally, when investigating the dielectric polarization in the three 
dimensional space one finds that, disregarding the higher order effects, in 
an xi, x2, xs coordinate system the following equations hold between the 
components of the vector of the electric field (/~ = [El, E2, E3]) and the 
components of the electric polarization (15 = [p~, P2, P3]): 

Pt = x~IE~ + x12E2 +xI3E3 

P2 = xz lEI  +x22E2 't- X23 E3 (1.3) 

Ps = x3IEI  +X32Ez + x33E3 • 

This means that altogether nine data are necessary to describe the relation 
between the electric field and the electric polarization. By means of vector 
algebra it can be shown that in case of an orthogonal co-ordinate transforma- 
tion the nine coefficients in the eq. (1.3) transform as the products of the 
components of two vectors, i.e. they are components of a second-rank tensor. 
Consequently the dielectric susceptibility in an anisotropic medium can be 
described by a second-rank tensor. 

Equations (1.3) can be rewritten in an abbreviated form 

3 
P, = E x~jEj (i = 1, 2, 3). (1.4) 

j=l  

With Einstein's notation the ~ symbol can be omitted if in the same term 
a suffix occurs twice. Accordingly eq. (1.4) takes the following form 

P,=XoEj ( i , j =  1,2,3). (15) 

In the forthcoming discussions the Einstein convention will be used. 



2. Physical Properties as Tensors 

It has been demonstrated in the introduction that the dielectric susceptibil- 
ity of  an anisotropic medium can be described with a second-rank tensor 
which expresses the relation between two physical quantities i.e. the relation 
between the vector of  polarization and the vector of  the electric field. 
Similarly the greater part  of  the various physical properties may be described 
with a tensor which establishes the relation existing between measurable 
physical tensor quantities. Every scalar is a zero-rank, and every vector a 
first-rank tensor. Generally in crystal physics a se t  of  3 r quantities with r 
indices transforming under  transition from the old coordinates to the new 
ones as the products of  the components  of  r vectors is called a polar  (or 
true) tensor of  rank r. 

Accordingly if the [Boa..,] and [Apq ..... ] tensors represent physical quan- 
tities the general form of  the relation between these quantities may be 
written (in first-order approximation)  using the Einstein's convention as 
follows 

Bijk- . . .=auk-. .npq ..... " m p q  ..... (i,j,k...n,p,q,r,...u=l,2,3) (2.1) 

where the t e n s o r  [aij-k.,npq ..... ] denotes the physical property connecting the 
two physical quantities. 

It follows from the tensor algebra that if  [Apq ..... ] denotes an f-rank and 
[B,jk_..n] a g-rank tensor the [ao.k...npq...u] , denoting the physical property,  must 
be an ( f + g ) - r a n k  tensor. 

Let us consider some examples. In a given state the density of  matter 
expresses the relationship between its mass and volume, they are represented 
by 0-rank tensors, consequently the density is represented by a 0-rank 
tensor (i.e. a scalar). The pyroelectric properties of  crystals are described 
by a first-rank tensor. The pyro-electric tensor, (essentially a vector) rep- 
resents the relation between a first-rank tensor (the vector of electric polariza- 
tion) and a zero-rank tensor (the temperature). Besides the dielectric 
susceptibility, the electrical conductivity, the heat conductivity, the thermal 
expansion and so on may be represented by a second-rank tensor. Further 
examples including properties which can be expressed with higher-rank 
tensors are summarized in Table 1. 

Crystals have further on also some anisotropic properties which cannot 
be directly represented by tensors, such proper t ies - -not  to be discussed in 
this p a p e r - - a r e  for instance the tensile strength, flow stress, surface energy, 
rate of  growth and dissolution, and so on. 

3. The Intrinsic Symmetry of the Physical Properties 

The rank of  the tensors determines the numbers of  the tensor components.  
The number  of the components  of  the 0,1,2,3,4,5,6-rank tensors are 
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1,3,9,27,81,243,729. However, certain symmetries considerably reduce the 
number of the independent components. These may be intrinsic symmetries, 
inherent in the physical property, or crystal symmetries, whose effect on 
the number of the independent components will be discussed in the next 
section. 

In some instance the intrinsic symmetries follow from the definition of 
the physical property in question. Thus for example in the case of  elasticity 
it follows from the symmetry of the stress and deformation tensors that also 
the fourth-rank tensor of the second-order elastic stiffnesses [ciikt] (see Table 
1) is symmetric with respect to the (/j) and (kl) permutations. This way the 
number of the independent coefficients of the fourth-rank elastic tensor 
decreases from 81 to 36. Further on from the symmetry of the deforma- 
tion tensor follows the symmetry of  the [do.k] piezo-electric tensor (see 
Table 1) with respect to the commutability of the j and k suffixes, which 
means that the piezoelectric tensor has not more than 18 independent 
components. 

The symmetries inherent in the physical properties may be in most cases 
found by thermodynamical reasoning. In case of  equilibrium properties, 
i.e. properties which refer to thermodynamically reversible changes, the 
intrinsic symmetry of the properties can be disclosed by investigating the 
thermodynamical potentials. For physical properties characteristic for trans- 
port processes the intrinsic symmetry is the consequence of Onsager's 
principle. 

In order to illustrate the thermodynamical discussion of equilibrium 
properties let us consider a more complicated example from which not only 
the symmetry of the tensors representing individual physical properties 
(tensors of elasticity, electric and magnetic susceptibility) but also the 
relationship among the tensors representing various properties becomes 
obvious. In the example the elastic, thermo, electric and magnetic effects 
are investigated simultaneously. Independent variables should be the stress 
[o-kt], the electric field [Ek], the magnetic field [Ht] and temperature IT] 
whereas the deformation It;j], the polarization [P~], the magnetization IMp] 
and the entropy IS] are selected as dependent variables. The differentials 
of the former quantities are obviously connected with the following relation- 
ships: 

f a~ij 
\Ocrkd \3Ek/ \3Hz/ \ a T /  

I. 2. 3. 4. 

/ aP,\ /aP,\ 

5. 6. 7. g. 



d M , = C O M ' l  dCrk, dEk dHt + d T  
\ao 'kd  \ a E k /  k a H z /  

9. 10. II. 12. 

()0s 
+ (  O S I  dE\  + dH, + d T  (3.1) 

13. 14. 15. 16. 

The partial derivatives are characteristic of the following effects: 
1. Elastic deformation. 
2. Reciprocal (or converse) piezo-electric effect. 
3. Reciprocal (or converse) piezo-magnetic effect. 
4. Thermal dilatation. 
5. Piezo-electric effect. 
6. Electric polarization. 
7. Magneto-electric polarization. 
8. Pyroe!ectricity. 
9. Piezo-magnetic effect. 

10. Reciprocal (or converse) magneto-electric polarization. 
11. Magnetic polarization. 
12. Pyromagnetism. 
13. Piezo-caloric effect. 
14. Electro-caloric effect. 
15. Magneto-caloric effect. 
16. Heat transmission. 
In order to recognize the relationships among the partial derivatives of 

the equation-system (3.1) let us discuss the Gibb's potential of the system 

O = U - true o - EkPk -- H,M, - TS. (3.2) 

Remembering that the total differential of the internal energy according to 
the first and second law of thermodynamics is 

d U  = o" U de• + Ek dPk + Ht dMt + T d S  (3.3) 

one obtains for the total differential of the Gibbs' potential the expression 

dG = -e~ i do" o - Pk dE\  - Mt dHt - S dT. (3.4) 

At the same time one may describe the total differential of the Gibbs' 
potential with the partial derivatives of the independent variables: 

\ O E , /  ~ d H , +  ~-~ d T  (3.5) 

that is 
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~-~ = -S.  (3.9) 

Investigating the second partial derivatives of the Gibbs' potential and 
taking into consideration the commutability of the sequence of the partial 
differentiations one comes to the conclusion that the elastic [Sukt], dielectric 
[)0k] and diamagnetic susceptibility [Okz] tensors, as defined by eqs. (3.10)- 
(3.12) below, are symmetrical 

\OorkIOO.ij/ OOrk I Sijkl \OGvijOO.M ] Otrv = Skt~j (3.10) 

\OEjaEk/ =d-~j =Xkj \aEkaEy/=aEk =Xyk (3.11) 

\OHkaH~] - OHk - O~k = \oH~OHk] - OHtt - Ok,. (3.12) 

Moreover, the study of the partial derivatives not only demonstrates the 
symmetry of the above tensors, but also indicates that the components of 
the tensors representing the direct and reciprocal effects correspond to each 
other. Let us investigate the following partial derivatives 

\Oo'ij OEk,I \acrij/ \OEk Otrij,/ \OEk., I 

\ao-~ aHt/ \acru/ \aHt Ocrq/ \ O H J  = qt~i (3.14) 

\oEk 3Ht] \3Ek,] \ a H z  3Ek,] \OHt/ = AIk (3.15) 

\a tr  U a T /  ~ \ a T a o - j  \ O T /  c~° (3.16) 

KOTaEk/ \ a T /  \aEk a T /  -~k =Pk (3.17) 

\ a T  OH,] \ a T ]  \OH, a T /  - ~  = rn,. (3.18) 

From the above equations follows that correspondences exist between: 
(a) the components of the tensors representing the pi.ezoelectric and 

reciprocal piezo-electric effect (eq. (3.13)), 
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(b) the components of the tensors representing the piezo-magnetic and 
reciprocal piezo-magnetic effect (eq. (3.14)), 

(c) the components of the tensors representing the magneto-electric 
polarization and reciprocal magneto-electric polarization (eq. (3.15)), 

(d) the components of the tensors representing the piezo-caloric effect 
and the thermal dilatation (eq. (3.16)), 

(e) the components of the tensors representing the pyroelectric and elec- 
trocaloric effect (eq. (3.17)), 

(f) the components of the tensors representing the pyromagnetic and 
magneto-caloric effect (eq. (3.18)). 

Integrating equations (3.1) taking into consideration the above statements, 
and restricting only to the first-order effects the following system of equations 
is obtained 

%. = Sqk~Crkt + dkuEk + qtijHI + aUA T 

Pk = dguo'~i + xklEt + AjkH~ + pkA T 

Mr = qloc~q + htkEk + ~l,,H,, + rniA T 

AS  = a,jo" U + pkEk + mtHg + C A  T 
1 

(i,j, k, I = 1, 2, 3). 

(3.19) 

It is perhaps worthwhile to draw the reader's attention to the fact that 
the system of equations (3.19) represents 16 = 9 + 3  +3+1  equations, the 
right side of these equations contains 16 terms, since the suffixes occurring 
twice in each term imply summation according to the Einstein convention. 
Furthermore the deformation tensor [eu] and the stress tensor [~k~] are 
symmetrical, consequently the system of equation (3.19) contains altOgether 
13 independent equations with 13 independent variables. 

As has been pointed out the intrinsic symmetry characteristic for the 
transport processes is the consequence of Onsager's reciprocal relations. 
However, it is important to stress that this relation is valid only if the fluxes 
and the thermodynamical forces connected with them are suitably selected. 
For simplicity let us study the case of the electrical conductivity. 
The thermodynamical force [Xk] attached to the electrical current density 
[j,] is 

1 0~ 
Xk = -~ 8Xk (k = I, 2, 3) (3.20) 

where OC~/OXk denotes the k-th component of the • electrical potential 
gradient and T is the temperature. 

In this case the law of linear current flow is 

1 0~ 
J' = Lik-T OXk (i, k = 1, 2, 3). (3.21) 



The expanded form of this equation will be 

1 oO 1 o ~  1 o ~  

j, = t , , ¥  L, -f ox--; 
1 009 1 009 1 o09 

j2 = L2, ¥ + z 2¥ + L 3¥ (3.22) 

1 od9 1 009 I a09 
j3 = L3 , -~ ~x  l + Ls2 ~ a x----~2 + L3 s -~ 8 x----~3 " 

According to Onsager's reciprocity relation the Lik conductivity coefficients 
are symmetrical with respect to the interchangeability of the suffices, i.e. 

Lik = Lki. (3.23) 

The relationship between the conductivity coefficients and the components 
of the specific conductivity tensor [O';k] are easily found. The defining 
equation of the [Crag] tensor (see Table 1), is 

a09 
j i  = O'ikEk = -- O'ik "OXk" (3.24) 

However by comparing equations (3.21) and (3.24) one readily sees that 

Lik = -- TO'ik. (3.25) 

From eqs. (3.23) and (3.25) on the other hand the symmetry of the tensor 
representing the specific electrical conductivity is quite obvious. 

Discussing composite transport processes by some proper selection of 
the fluxes and thermodynamical forces corresponding to them not only the 
symmetry of the various tensors, but also the relationships among the tensors 
representing various properties follow from Onsager's reciprocity relations. 
For example when discussing the thermoelectric effects the symmetry of 
the electrical and thermal conductivity tensors follow from Onsager's prin- 
ciple as well as the relationships between the tensors representing the 
Seebeck effect [fl~k] and the Peltier tensor [Trek] (see Table 1) 

T" flik = *' lTik .  (3.26) 

Additionally it should be remarked that the relationship between the conduc- 
tivity coefficients in the presence of (/4) magnetic field takes the form 

L~k (fit)  ---- Lk~(-  fit). (3.27) 

4. N e u m a n n ' s  Pr inc ip le  

It has been demonstrated in the previous section that the intrinsic sym- 
metry of the physical properties decreases the number of the independent 
tensor components. Further reduction of the independent components of 
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a physical property tensor, and the zero value of certain components follow 
from the fact that the crystal symmetry exerts some influence on the sym- 
metry of the physical properties. This fact is expressed by Neumann's 
principle formulated already in the 19th century according to which the 
symmetry elements of  any physical property of  a crystal must include all the 
symmetry elements of  the point group of  the crystal: 

Ga D= Gk (4.1) 

where Gk denotes the symmetry group of the crystal, G~ is the symmetry 
group of the tensor representing the physical property, the sign D indicates 
that the subgroup belongs to the group. The symmetry group of the crystal 
refers generally to the 32 point groups derived from the crystal forms, 
however, sometimes also the recently introduced 90 magnetic or more 
generally the 122 Shubnikov groups (see [10-14]) should be considered. 
According to Neumann's principle the tensor representing any physical 
property should be invariant with regard to every symmetry operation of 
the given crystal class. The condition of invariance reduces the number of 
the independent tensor components, since it signifies relationships between 
the tensor components. In order to describe these relationships it is necessary 
to discuss the transformation of the tensor components to some extent. 

The well-known equations of transformation from an orthogonal xt, x2, 
t t t x3 system to another similarly orthogonal x~, x2, x3 system are for first-, 

second-, third- and fourth-rank polar tensors according to their definition: 

T~ = a~Tj (4.2) 

T~ = aik aitTkr (4.3) 

T~k = ailai,,ak~ Tt,,~ (4.4) 

T qkl = ai,~aj~akoatpTm,op (4.5) 

which leads us to the general polar-tensor transformation notation expressed 
in the equation: 

T~z..n = aoajqak . . . .  a n ~ T v q  . . . . .  (4.6) 

where the a0 direction cosines are the elements of the (aij) matrix. The (a,j) 
matrix connects the original and the 'new' co-ordinates according to the 
matrix equation 

x~ / =~a21 a22 a23~ = x2 . (4.7) 
x'~/ \a3,  a3~_ a ~ /  x3 

In some cases the tensor describing the physical properties is not polar, 
but axial (as for instance the tensor describing the optical activity or 
piezomagnetism). For axial (or pseudo) tensors the following transformation 
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relation may be used as definition 

Tbk...n = lao.la~pajqak . . . .  anurpq . . . . .  (4.8) 

where [aq] denotes the value of  the determinant of the matrix (aij) whose 
value is (+1) if the transforming operation consists of pure rotation and 
( - l )  if beside rotation the transformation contains also an inversion, which 
means that the symmetry operation changes also the hand of  the axes. 

It is not difficult to find out whether the tensor representing any physical 
property is polar or axial, since this can be easily decided by the eq. (2.1) 
defining the physical property in question. If only one of the tensors [Apq ..... ] 
and [Bqk..~] in eq. (2.1) is axial (for instance magnetic field is an axial tensor 
of  rank one) also the property tensor [a i j k . . . n p q  . . . . .  ] as defined by eq. (2.1) will 
be axial, in every other case the tensor is polar. 

It should be remarked that if also the magnetic point groups are considered 
eq. (4.6) and eq. (4.8) expressing the transformation properties of  the tensor 
components are valid only for conventional symmetry operations. If, 
however, the conventional symmetry operations are combined with time- 
inversion which actually happens in anti-symmetry operations (see [10-14]) 
the right sides of eqs. (4.6) and (4.8) respectively should be multiplied with 
( -1 )  whenever eq. (2.1) defining the physical properties contains the mag- 
netic vector quantities (magnetic field, magnetic induction, magnetization 
vector) odd times. Tensors representing this type of properties are called 
C-tensors. ~ For a more detailed discussion of this problem the reader is 
referred to the literature.~-a 

Considering the equations of  transformation (4.6) and (4.8) and with 
regard to the above remark, the relationships between the components of 
the polar and axial tensors for a given crystal class can now be defined, 
since the invariance of a tensor with regard to any symmetry operation 
requires the relationship 

T,~k_.., = T/2~..~. (4.9) 

Thus in case of polar tensors, if the matrix ( % )  describes any conventional 
symmetry operation of a given crystal class, the tensor components must 
according to the Neumann's principle satisfy the equation 

To.~_.., = a~,,ajqak . . . .  a,~ Tpq ...... (4.10) 

whereas considering the condition of the invariance of axial tensors taking 
into account the eqs. (4.8) and (4.9) one may write 

To.k..., = ]au]%ajqak  . . . .  a , ~ T p q  ..... (4.11) 

Of course in the case of antisymmetry operations and the previously dis- 
cussed C-tensors the right-hand side of the eqs. (4.10) and (4.11) are 
multiplied with (-1).  

12 



For every tensor component  an equation of the type (4.10) and (4.11) 
respectively should be valid so that the tensor components  must satisfy a 
system of these equations. Since this holds for every symmetry operation 
of a given crystal class, the number  of  the systems of equations between 
the tensor components  will be equal to the number  of  the symmetry oper- 
ations which may be performed in the given crystal class. However,  in order 
to obtain every relationship among the components  of  a tensor representing 
any physical property in case of  a given crystal class, it is not necessary to 
write down for every symmetry operation the system of equations of  the 
type (4.10) and (4.11) respectively. It is well known from the group theory 
that for various crystal classes every symmetry operation may be deduced 
from a few basic symmetry operations. The application of  the matrices 
corresponding to these basic operations (the generating matrices) are 
sufficient to obtain the effect due to the symmetry of a crystal class on the 
given tensor in question. Tables 2 and 3 summarize a series of  generating 
matrices for every conventional crystal class. 

These interrelations appear  to be at first instance somewhat  complicated, 
a simple example, however, will help to obtain a better understanding. 
Let us consider the form of the pyroelectric tensor in the crystal class 3 
of  the trigonal system assuming that the x3 axis of  the co-ordinate system 
is the three-fold rotation axis. As one may see on consulting Tables 2 and 
3 the coordinate transformation related to the symmetry operation can be 
described with the following matrix (1 0)1 2 2 

2 2 v . 

0 0 

(4.12) 

Taking into consideration the condition of invariance of the polar  tensor 
as expressed in eq. (4. I0) one obtains for the tensor components  the following 
equations 

Pt -- - ~ P l - ~ - P 2  

P2='-~P~ -~P2 (4.13) 

P 3  ~ P 3  • 

It follows from these equations that p~ =P2 = 0 and only P3 can differ from 
zero, consequently the form of the pyroelectric tensor of  crystal class 3 of  
the trigonal system will be p = [0; 0; P3]- 
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Table 7. The generating matrices of the 32 point groups (crystal classes). After Koptsik 13 

The choice of  
x~, x2, x 3 crystal 

Class symbol No. of physical axes in 
Crystal Generat ing symmetry relation to the 
system International Schoenflies matrices elements symmetry axes 

Triclinic 1 C, Mo 1 
$2 = G M, 2 

Monoclinic 2 (?2 M 2 2 
m C i h = C s  M3 2 X3 112 or-9 

2/ m C2h M2, M 3 4 

Orthorhombic 222 V = D 2 M~, M 2 4 x I [[ 2 or 
ram2 C2o Ms, M2 4 x 2 [[ 2 or 9Z 
rnmm Vh = D2h Ms, M6, M3 8 x3 II 2 

Tetragonal 4 C4 M7 4 
2, $4 M 8 4 

422 /34 M 7, M4 8 x I [[ 2 or 
4/m C4h My, M3 8 x 2 [1 2 o r 2  
4ram C4o MT, M5 8 x3 II 4 or ~, 
~,2m Vd = D2d MS, M4 8 

4/mmm Dab My, M3, Ms 16 

Trigonal 3 C3 M 9 3 
$6=C~, Mx0 6 x 11[ 2or-~ 

32 D3 Mg, Ma 6 x 2 ± 2 o r 2  
3m C3o Mg, Ms 6 x3 [I 3 o r3  
3m Dad Mx0, l'v/5 12 

Hexagonal 6 C~ Mtl 6 
C3h MI2 6 

6rn2 D3h MI2, M 5 12 x I [[ 2 o r 2  
622 D6 M1 ~, Ma 12 x 2 ± 2 or 
6/m C6h Mtl , .a4~ 12 xr, II 6 o r6  
6ram C6~ Mzl. M5 12 

6/mmm D6h Mil, M s, Mr, 24 

Cubic 23 T MI3, M,  12 xt ]1 2 
rn3 Th MI~" M 2 24 x 2 [[ 2, xr, ][ 2 
432 0 Mi3, M 7 24 xl II 4or~- 
7~3m Td MI3, M s 24 x211 4 or a, 
m3rn Oh M~,, M~ 48 x~ II 4ora ,  

The method used in this example may be applied in every case, though 
with higher rank tensors it may be in many cases rather tiresome. 

Considerable time can be saved (with the exception of  the trigonal and 
hexagonal  classes) by the direct inspection method worked out by Fumi, 4 
which though in principle not differing from the previous treatment leads 
to results in a relatively short time. Fumi's method is based on the fact that 
in an orthogonal  coordinate system the polar tensor components  transform 
in the same way as the products of  the corresponding coordinates (see eq. 
(4.6)). One must, however,  be careful not to commute  the sequence of  the 
factors, thus for instance instead of  the product x~x2 one cannot write x2x~. 
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Table 3. Generating matrices 

Mo= I 
0 

identity 

(_! o !) 
M~ = - I  

0 - 

(-i o!) M j  = - I  

0 

M3= 1 

0 - 

M , =  -1 

0 - 

Ms= / 0 1 

0 0 

(i 0!) thre  ,drotation 
M6= -1 reflection in x l x  3 about [I 11] 

0 plane direction 

(i _l i) MT= 0 

0 

inversion Ms (i 
1 

2 
twofold rotation 

M 9 = -~3 about x 3 axis 
2 
0 

/1 

reflection in x l x  2 Mi o= ~ 
plane 

2 

0 

~ 2 
twofold rotation Mll = "/3 1 
about x~ axis 2 

0 

2 2 
reflection in x,.x 3 M=2= x/3 1 
plane 

2 2 

0 0 

Ml3 = 0 
1 

l !)four odinversion 
0 rotation about x 3 
0 - axis 

4~ 

1 threefold rotation 
about x 3 axis 

2 
0 

2 threefold inversion- 
1 rotation about x 3 
2 axis 

0 - 

"f3 0 / sixfold rotation 

about x 3 axis 

i )  sixfold inversion- 
rotation about x 3 
axis 

(!1 i)threefol inversio  
fourfold rotation M~,= 0 - rotation about [111] 
about x 3 axis direction 

- 0 

F u m i ' s  m e t h o d  m a y  be  s t u d i e d  by  a s i m p l e  e x a m p l e  c o n s i d e r i n g  the  f o r m  

of .a  p o l a r  s e c o n d - r a n k  t ensor ,  e.g. the  d i e l ec t r i c  su scep t i b i l i t y  t e n s o r  o f  the  

crys ta l  class 2 o f  the  m o n o c l i n i c  sys tem.  A s s u m i n g  tha t  the  t w o - f o l d  sym-  

me t ry  axis  c o i n c i d e s  wi th  the  x,_ c o o r d i n a t e  axis  the  s y m m e t r y  o p e r a t o r  wil l  
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t r ans fo rm the coo rd ina t e s  in the  fo l lowing  way  

Xt  --> - - X l  X2--~ X 2 X 3 ~ - - X  3 

or in a more  concise  way  

(4.14) 

F r o m  this it fol lows tha t  

2 ~ 2  3 ~  - 3  (4.15) 

that  is 

1 1 ~  11 1 2 ~ - 1 2  1 3 ~  13 

2 1 ~ - 2 1  2 2 ~  22 23-+ - 2 3  

3 1 ~  31 3 2 ~ - 3 2  33-+ 33 

(4.16) 

XI1 ''~" XI I  XI2 '-~ - X I  2 .,~13 ''~ XI3 

X 2 1 ~ - X 2 1  X22 ~ X22 X 2 3 ~ - X 2 3  • (4.17) 

X3I ''~ /Z31 X32 "~ - X 3 2  X33 "~ )(33 

At the same  t ime as a consequence  o f  N e u m a n n ' s  p r inc ip le  every c o m p o n e n t  
shou ld  be t r ans fo rmed  into i tself  therefore  

Xt2 = -Xl~_ = 0 X~-2 = -X21 = 0 
(4.18) 

X23 = -X~_3 = 0 X32 = -)(32 = 0. 

Thus for  class 2 o f  the m o n o c l i n i c  system the e lect r ic  suscept ib i l i ty  t ensor  
has the  form 

[o' 0 ° 3] 
X22 • (4.19) 

LX3t 0 X331 

In the  case o f  d ie lec t r ic  suscep t ib i l i ty  as a resul t  o f  the  in t r ins ic  symmet ry  
X31 is equal  with X13 i.e. the t ensor  (4.19) is symmet r ica l .  

The  forms o f  tensors  or  mat r ices  c o m p o s e d  o f  t ensor  c o m p o n e n t s  for  the 
var ious  crystal  classes can be found  p rope r ly  t abu l a t ed  in the  specia l  
l i tera ture ,  see for  e x a m p l e  [1, 2, 5-7 ,  16, 17]. 

F ina l ly  it shou ld  be  obse rved  tha t  in some cases s imple  geomet r i c  con- 
s ide ra t ions  enab le  the  d e t e r m i n a t i o n  o f  the i n d e p e n d e n t  c o m p o n e n t s  o f  the 
tensors  represen t ing  the phys ica l  p roper t ies .  It is easy  to see that  no py roe lec -  
tric effect can exist  in a crystal  possess ing  a centre  o f  symmetry .  This  means  
that  for  these crystals  every c o m p o n e n t  o f  the pyroe lec t r i c  t ensor  is zero,  
p = [0, 0, 0], because  in these  crystals  i f  the vec tor  o f  po l a r i za t i on  were 
p o i n t e d  in a given d i rec t ion  the vec tor  shou ld  a p p e a r  also in the oppos i t e  
d i rec t ion  as a resul t  o f  the  N e u m a n n ' s  pr inc ip le ,  consequen t ly  its va lue  can 
on ly  be  zero. 
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5. The Value of a Physical Property in a Given Direction 

One frequently finds data in the literature which give the value of some 
physical property in a given direction. In this chapter the concept of the 
magnitude of a physical property in a given direction, and also the relation- 
ship between this value and the respective tensor components will be 
illustrated on the examples of  the direction dependence of the electrical 
conductivity and Young's modulus respectively. 

The specific conductivity in the direction of the electric field is defined 
as the ratio of the component  parallel with the electric field of the current 
density (Jll) and the magnitude of the electric field (E), i.e. jlJE. Let the 
components of the electric field be E i=  Eni, where ni denotes the i-th 
component  of the unit vector (t~) pointing into the direction of the electric 
field. The component of  the f current density parallel with /~ is in tensor 
notation 

jiEi (5.1) = - -  

J~l E " 

Consequently the specific electric conductivity in the direction given by the 
unit vector ti will be 

o-~ = Jll (j,E,) E,Ej 
- E2 - %  E2 (5.2) 

for which one has 

o-~ = o-i~" ni" nj. (5.3) 

Thus formula (5.3) yields the relationship between the value of the electrical 
conductivity in the direction of t~ and the components of the electrical 
conductivity tensors. Similar relationships give the value of the physical 
properties which can be represented by a second-rank tensor (e.g. thermal 
conductivity, dielectric permittivity, thermal expansion) in a given direction 
of a crystalline medium. 

Equation (5.3) may be applied in two ways. One possibility is to calculate 
the tensor components from the measured conductivity values and the 
corresponding direction cosines. For this purpose one should measure the 
electrical conductivity in different directions, which are not connected by 
symmetry, as many times as the number of  the independent components. 
Another possibility of applying eq. (5.3) is quite opposite to the first one. 
With the aid of the already known tensor components the conductivity 
value can be computed for any direction. 

Equation (5.3) becomes considerably simplified for crystals of  the 
tetragonal, trigonal and hexagonal systems which have only two independent 
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tensor-components (o'~ = 0-22 and 0"33 ) 

_ 
= "b 0-29 n ~ "~- 0-33 n3 = 0-11 ( l  --  n~) --[- 0-33 n2 . (5.4) 

I f  the angle between the ~ vector and the x3 principal axis of  the crystal is 
denoted with 0 the following equation is obtained 

o-~ = 0-1~ sin 2 0 + 0-33 cos 2 0. (5.5) 

The component  0-33 is frequently denoted as 0-1i and the component  of  0-tt 
as o-± with reference to the conductivity values parallel with the main axis 
of  the crystal (i.e. with the three, four or six-fold axis) and vertical to this 
axis resp. With these notations Eq. (5.5) may be rewritten to obtain 

0-~ = 0-_, sin 2 0 + 0-!1 c°s~- 0. (5.6) 

As another  example we will study the direction dependence of Young's  
modulus. To begin with it should be stated that Young's  modulus in the 
pulling direction is defined as the ratio of  the longitudinal stress (0-i~) and 
the longitudinal strain (e,). I f  the x~ axis of  the co-ordinate system is placed 
in the direction of  the ~ unit vector Young's  modulus in this direction will 
apparently be 

o'~3 
E ~ ii x; = -W-- (5.7) 

E33 

According to eq. (3.19) (if no external field exists) 

and one obtains 

. . . .  ( 5 . 8 )  E33 --  S33330"33 

1 
E,  l!x~ = G333" (5.9) 

Consequently in order to find the direction dependence of Young's  modulus 
it is necessary to know the change of the tensor-component  $3333 in the 
various directions. This dependence,  however, is given by the (4.5) transfor- 
mation equation of  the s~333 tensor component.  

$3333 : a 3 i "  a 3 j "  a3k"  a 3 l "  Sijkt  ( 5 . 1 0 )  

where a3, , aaj , a3~  a3t denote the direction cosines Of the x" axis parallel 
with the a unit vector with respect to the crystalphysical co-ordinate system; 
consequently 

S~333 = n i • YI j .  rl k • ~'l I • Si jkl .  (5.1 1) 

From this equation and eq. (5.9) one obtains Young's  modulus of  the crystals 
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belonging to the cubic system 

1 
E ~ -  2 2 2 2 2 2" (5.12) 

Still --2(Sll 1 l -- S1122- 2s2323)( n in2 q- n2n3 + n3n I) 

This means that even in the case of cubic crystals Young's  modulus is 
direction dependent. 

6. Higher Order Effects 

The relationship between two physical properties is not necessarily linear. 
The relation between the dependent  and independent  physical variables 
can be often expressed with Taylor expansion. Thus for instance the electric 
field dependence of the electric polarization in a strong field is described 
with expansion in power series 

Pi o = x o E j  +X,~kEjEk +X,jktEjEkEt + " "  (6.1) 

where the tensor Ix °] describes the linear or first order effect, the tensor 
[Xek] stands for the second order effect and so on. (The second-order effect 
explains the generation of double frequency light waves whenever light 
passes through crystals without symmetry centres). 

There is some freedom in deciding the order of  an effect, which depends 
upon the aspect the effect is studied. Thus in the above example if instead 
of  the tensor Ix °] the differential quotient with respect to the electric field 
of  the electric polarization vector (i.e. the [X,~] tensor) is considered as 
dielectric susceptibility, the previously second-order effect may be regarded 
as a first order effect, which describes the electric field dependence of the 
dielectric susceptibility. This becomes obvious from the equation 

oP, 0 
= Xo = X~ +xukEk  +XoktEkE~. (6.2) o~ 

The dependence of  the electrical resistivity on the magnetic field is similarly 

Pik ( H )  = p i ° + piktHt + Piklm HtHm + Pikz,,, HtHmHn (6.3) 

where the [p°k] tensor represents the electrical resistivity in the absence of 
a magnetic field; the tensor [p~kzm] describes the change of electrical resis- 
tivity due to a magnetic field, and the tens0rs [p~kJ] and [P~k~,,,,] refer to the 
first and second-order Hall effects. 

Finally it should be noted that in the theory of elasticity the coefficients 
of  the second-order effect are called third order elastic stiffnesses, because 
it is more suitable to start the discussion of  the nonlinear s tress-deformation 
relationship with the energy function whose third-order derivatives supply 
the coefficients of the principally second-order effects. 
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7. Description of the Physical Properties 
in Matrix Notation 

It has been shown in the previous sections that the various physical 
properties of the crystals can be described quite suitably with tensors. 
However, especially with higher rank tensors the great number of  suffixes 
may become inconvenient. In many cases the introduction of a new notation, 
the matrix notation, is suitable to reduce the number of suffixes. The 
introduction of the matrix notation may be encouraged by the usually 
considerable reduction, due to intrinsic symmetries, of the number of 
independent components of  the tensors representing the physical properties. 

Let us consider first a simple example. For some purpose the following 
(c~) matrices are formed from the components of  the symmetrical second 
rank [~ii = aji] tensor 

/ ~ll /1~1 ~ 

0~2~ t Or2 
~3~ a3 (7.1) 

~ Cf-23 (3/. 4 
\ (~-31 0~5 
\O(-12 13t-6 ~ 

0~-22\ 0i- 2 

a 3 3 | =  I a3 (7.2) 

2a31 / a5 

2~12/ CX6 

As can be easily noted from the formulae (7.1) and (7.2) in both cases the 
same tensor component is connected with the same matrix element, i.e. the 
relation between the suffixes of  the tensor components and matrix terms is 
unambiguous 

tensor suffixes 11 22 33 23,32 31, 13 12,21 
(7.3) 

matrix suffixes 1 2 3 4 5 6 

This way by introducing the matrix notation the number of  the suffixes 
is reduced on the condition that the new suffixes beside 1, 2 and 3 can now 
take also the values 4, 5 and 6. Although the relationship between the 
suffixes of  the tensor components and matrix elements is unambiguous, the 
relationship between the tensor components and the matrix elements is 
defined to the extent of  a multiplication factor. A few examples explaining 
the role of  this factor are given below. 
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The advantage of the matrix notation becomes obvious with the third 
and higher rank tensors. A third rank tensor, occurring rather frequently 
in crystal physics, is the piezo-electric tensor, which describes the relation- 
ship between the stresses effective on the crystal and the resulting electric 
polarization according to the equation 

P; = duk. crj~ (/,j, k = 1, 2, 3). (7.4) 

The number of the components of the third rank piezoelectric tensor is 
33=27, which means that the components could be written in a three 
dimensional cubic table where the layer would refer to the first suffix, the 
second suffix would be the row, and the third the column. However, 
considering that.the [d~k] tensor is symmetric with respect to the commutabil- 
ity of  the k and j suffixes (see paragraph 3) by introducing a new notation 
the number of  these suffixes is reduced. The suffix pair jk  can be substituted 
according to (7.3) by only one. The elements (d;,) of the piezoelectric matrix 
are formed from the [duk] tensor components in the following way 

d; ,=duk if n = 1 , 2 , 3  
(7.5) 

di,=2duk if n =4,  5,6. 

Once the notation of  the piezoelectric matrix is accepted as above in (7.5) 
and a matrix is generated from the components of the stress tensor according 
to eq. (7.1) one obtains the following matrix equation 

1/ O" 1 PI) [dlldl2dl3dl4dl5d,6°-2 
P2 =~d21 d22 d23 &, & 5  d26)/cr3 

O- 6 

(7.6) 

Considering the convention according to which one suffix turning up twice 
in one term means adding up with respect to this suffix, (7.6) can be rewritten 
in the more compact form 

(i= 1, 2, 3 ) 
P~=d~ \ j =  1,2,3,4,  5, 6 " 

(7.7) 

It is important to notice that some authors do not introduce the multiplica- 
tion factor two in the interpretation of the n = 4, 5 and 6 elements of the 
piezoelectric matrix. This, however, excludes the compact description of 
the relationship between the vector of the electric polarization and the 
mechanical stress presented in eq. (7.7). 

Similarly other matrices representing various physical properties may be 
defined by different authors in different ways. Therefore when trying to use 
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the numerical values as published in the literature the various definitions 
used by the authors should be taken into account. 

Finally in order to demonstrate the advantage of  the matrix notation let 
us investigate the elasticity of  crystals. Hooke's law takes in tensor notation 
the following form 

o-u = Cijklekt (i , j ,  k, I = 1, 2, 3) (7.8) 

where [o-q] denotes the stress tensor and ekt are the components of  the 
deformation tensor. 

Now, since the components of the [Cqkt] tensor are symmetrical with 
regard to the first two and last two suffixes, respectively, these may be 
substituted each with one new suffix according to (7.3). 

Further on the elements of  the (cm,) matrix can be defined by the equation 

cij kl = crnn ( i, j, lg I = l, 2, 3, ) 
\ r n , n = l , 2 , 3 , 4 , 5 , 6  " (7.9) 

Composing matrices from the components of the [o-q] stress according to 
(7.1), the components of  the [ekt] deformation tensor according to (7.2) and 
the components of the [Ciikt] elasticity tensor according to (7.9) Hooke's law 
can be described with the following matrix equation 

O" 2 
O- 3 
0- 4 
O" 5 

I Cll Cl2 C13 C14 Cl5 

C21 C22 C23 C24 C25 

Ca~ C32 C33 %4 C35 

C41 C42 C43 C44 C45 

Csl C52 C53 C54 C55 

,C6[ C62 C63 C64 C65 

Cl61 / El 

C26 E 2 
C36 . E3 
C46 E4 
C56 E 5 
C66 E 6 

(7.10) 

SqCjk = CqSjk = 3ik (7.13) 

6,'k denoting the K.ronecker delta. 
Simple calculation shows that between the elements of the above (sin,) 

matrix and the components of  the [Sqk~] tensor expressing the relationship 
between the components of the [eq] strain and the [o-k~] stress respectively 
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or, considering the convention of  summation, in a more compact form. 

o-i=Cqej (/ , j  = 1, 2, 3, 4, 5, 6). (7.11) 

Expressing the strains in terms of  the stresses one obtains the equation 

ei=sqo-j ( i , j = 1 , 2 , 3 , 4 , 5 , 6 )  (7.12) 

where (so) is the reciprocal of the matrix (Cq) and this leads to the equation 



the following correspondence holds 

Srn n = Sijkl if m and n 1, 2 or 3 

sm~ = 2sok, if either m or n 4, 5 or 6 (7.14) 

sm~ = 4Sukt if both m and n 4, 5 or 6. 

Finally it should be noted that with the matrix notation, if applied, the 
number  of  the suffixes does not refer to the transformation formula of  the 
matrix elements. Thus for example in case of  a coordinate transformation 
the elements of  the piezo-electric matrix (du) transform differently from the 
matrix elements (c~j) of  the elasticity. 

8. Curie's Principle 

The crystal symmetry depends upon the state of  the crystal. If, due to 
some external influence, there is a change in the state of  the crystal, there 
may also be a change in the crystal symmetry. The symmetry of  a given 
state of  a crystal may be determined using the Curie principle from the 
symmetry of  the crystal free of  any external influence and from the symmetry 
of the external influence. 

According to Curie when various natural phenomena  are piled upon each 
other forming a system, the dissymmetries are added up leaving only those 
elements which separately, in each phenomenon regarded in itself, were 
present. By dissymmetry Curie meant  the sum of the absent symmetry 
elements. 8 Curie's principle in itself may be formulated in the physics of  
crystals as follows: the symmetry group of a crystal under an external 
influence (/~) is given by the greatest common subgroup of the symmetry 
group of the crystal without the influence (K)  and of the symmetry group 
of the external influence (G)  considering also the mutual position of the 
symmetry elements of  these groups: 9 

172= K n G (8.1) 

Curie's principle expressed in other words: a crystal under an external 
influence will exhibit only those symmetry  elements that are common to the 
crystal without the influence and the influence without the crystal  s 

As an example let us investigate the change of symmetry in the ADP 
(ammonium-dihydrogene-phospha te )  crystals in an electric field of  various 
directions. The ground state symmetry of  these crystals is 7~2rn, i.e. it has a 
fourfold inversion axis (which contains in itself also a two-fold rotation 
axis). The fourfold inversion axis lies in the line of  intersection of two 
mutually perpendicular  planes of  symmetry. Two diad axes are perpen- 
dicular to the fourfold inversion axis and at 45 ° to the planes of  symmetry. 
This is demonstrated in axionometric and stereographic representation 
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respectively in Figs. 2 and 3. The symmetry of the electric field is ccrn, i.e. 
it corresponds to the symmetry of a cone, which has an infinite-fold rotation 
axis containing every possible rotation axes of  lower symmetry including 
also the twofold axes, further on the infinite-fold rotation axis lies in the 
line of  intersection of an infinite number  of  mirror planes. 

First let us investigate the case when the electric field points in the [001] 
direction, which means that the vector of  the electric field is parallel with 
the fourfold inversion axis of  the crystal. The symmetry elements of  the 
electric field do not include the inversion axis, therefore according to the 
Curie principle the resulting symmetry elements do not contain this axis. 
However, it should be observed that the fourfold inversion axis contains 
also a twofold rotation axis which is a symmetry element of  the electric 
field, consequently the symmetry elements of  the crystal in an electric field 
of  the direction [001] will also contain this twofold axis. Of  the basic 
symmetry elements the two mirror planes are also symmetry elements of 
the electric field, thus they are conserved in the crystal too. The twofold 
rotation axes perpendicular  to the line of  intersection of the mirror planes 
do not belong to the symmetry elements of  the electric field, consequently 
they will disappear.  Summing up the common symmetry elements of  the 
electric field and the crystal in this field we have two mirror planes perpen- 
dicular to each other and a two-fold rotation axis in the line of  intersection 
of  the mirror planes. Thus the symmetry of the ADP crystal in the electric 
field of  the [001] direction is reduced to the symmetry of the or thorhombic 
rnrn2 point group (Figs. 2 and 3a). I f  the electric field acts in the [TO0] 
direction, i.e. along a twofold rotation axis perpendicular  to the fourfold 
inversion axis no mirror plane of the crystal coincides with the mirror planes 
of  the electric field which results in the disappearance of the mirror planes. 
Further on also the fourfold inversion axis (together with the twofold 
rotation axis connected with the inversion axis), and also from the two other 
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~2rn  c , o ~  ~ 2  

Fig. 2. The decrease o f  the symmetry o f  an A D P  crystal in an electrie field of  the [O. Ol] direction. 
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- w i t h  a 2. 
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7 ; 2 m  oo m { 

Fig. 3. The change of the symmetry of an ADP crystal in electric fields of various directions. 

twofold axes one axis will disappear, since the electric field has only in one 
direction a rotation symmetry. This way only the twofold rotation axis 
(along which the electric field is effective) remains conserved with the result 
that the symmetry of the crystal is reduced to the monoclinic point group 
2 (as depicted in Fig. 3b). If  the electric field influences the crystal in the 
(1T0] direction, i.e. in one mirror plane, the common symmetry element will 
be one mirror plane: the crystal symmetry is reduced to the point group m 
of  the monoclinic system (Fig. 3c). Finally if the electric field points in an 
arbitrary [hkl] direction, ditterent from the directions already discussed, no 
symmetry element of the crystal and the electric field coincides. Con- 
sequently no symmetry element is preserved. In this case the symmetry of 
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the crystal is reduced to the trivial point group 1 of the triclinic system (Fig. 
3d). 

It follows from the foregoing that the originally optically uniaxial ADP 
crystal will under the influence of an electric field behave like an optically 
biaxial crystal. 

It should be noted that the Curie principle constitutes only a special case 
of the general principle of the superposition of the symmetry groups. A 
detailed discussion of this subject, however, would go beyond the scope of 
this paper, one can refer to the book of Shubnikov and Koptsik. '° 
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