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ULTIMATE LATERAL RESISTANCE

OF PILES

7.1 INTRODUCTION

Piles are frequently subjected to lateral forces and mo-
ments: for example, in quay and harbor structures, where
Forzontal forces are caused by the impact of ships during
berthing and wave action; in offshore structures subjected
o wind and wave action; in_pile-supported earth-retaining
itructures; in lock structures; in transmission-tower foun-
dations, where high wind forces may act; and in structures
<onstructed Jin earthquake areasjsuch as Japan or the West
Coast of the United States, v-here[s?)me building codes spec-

fy that piles supporting such structures_should have the
Jb‘llty to resist a lateral force of 10% of the applied axial

_93d. In the design of such pile foundations, two criteria

el B
Mﬂﬁsﬂ (!trst n adequate factor of safety against
nT; 2

dtimate failure: a an acceptable deflection at
*Jrklnq loads] As in othér fields of soil mechanics, these
WO criteria are generally treated separately, and the design
. “iaﬁged to provide the required safety margins indepen-
tn._ v
In this chapte er, methods of estimating the ultimate la-
‘_,-’-1 resistance of smglc piles and pile groupsm
" many practical cases, the design of piles for lateral load-
"2 will be dependent on satisfying a limiting lateral-deflec-

tion requirement that may result in the specificiation of
allowable lateral loads much less than the ultimate lateral
capacity of the piles. For such cases, the_estimation of la-
teral deflections caused by lateral loads is discussed in
Chapter 8, while the general problem of a pile or pile-group
subjected to both axial and lateral loading is considered in
Chapter 9. Consideration in the present chapter will be con-
fined to situations where the lateral deflection is not an im-
portant consideration. It must, however, be emphasized
that in many cases, the ultimate load will be reached at very
large deflections, especially in the case of relatively flexible
piles. For such cases, it may be desirable to carry out a
complete elastoplastic analysis, as outlined in Section 8.3.
However, for relatively rigid piles, the method described
herein will generally be applicable. The chapter concludes
with a brief consideration of the effects of piles on slope
stability, and of methods of increasing lateral load capacity.

7.2 SINGLE PILES

In this section, methods of estimating the ultimate lateral
resistance of relatively-slender vertical floating piles having

negligible base resistance are considered first, and a number
—
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146 ULTIMATE LATERAL RESISTANCE OF PILES

(a) Defiaections Probable Distribution
of Soil ions

Distribution of lateral resistance.

tafc = 1 and cyfe = 0 and, to sufficient accuracy, the
solution for any intermediate value of ¢,/c can be obtained
by linear interpolation. The curves in have been ob-
tained by plasticity theory using limit analysis. (The upper
bound obtained in this analysis generally only exceeded the
lower bound by 10 to 15% and the curves are for the aver-
age of the two bounds). The analysis_assumed the pile sec-
tion to be a_rhomb and may be glightly conservative for
other convex shapes of the same aspect ratio. Elsewhere in
this chapter the lateral resistance at depth in purely cohe-
sive soil is usually taken as 9¢, whatever the shape of the
‘pile and value of ¢,/¢, see for example Brom’s approach to
ultimate pile capacity detailed in 7.2.2.1 below. Fig. 7.5
confirms the reasonableness of this simple assumption.
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For the more general case of a ¢ - ¢ soil, an alternay;,,
derivation of the ultimate lateral soil resistance, baseq
essentially on earth-pressure theory, has been given by
Brinch Hansen (1961), who also considers the variatiop
of resistance with depth along the pile. The ultimate resist.
ance at any depth, z, below the surface is expressed as

Pu =[@+ @ (7.8]
where
g = vertical overburden pressure
¢ = cohesion
K¢, Kq = factors that are a function of ¢ and z/d

K. and K, are plotted in while the limiting values

for the grouhd surface and for infinite depth are plotted in

Broms's Theory

The theory developed by Broms (19644 and b) is essentially
the same as that described in the preceding section, except
that simplifications are made to the ultimate soil-resist-
ance distribution along the pile and also that full consider-
ation is given to restrained orlﬁxed head piles as well as
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FIGURE 7.5 Effect 04 aspect ratio&an{adhesiun rati§ on lateral resistance for purely cohesive soil.
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{a)

FIGURE 7.6 Lateral resistance factors Kg and K¢ (Brinch Hansen, 1961).

unrestrained orl freefhead piles. For convenience, piles in
purely cohesive soils and in purely frictional soils will be
considered separately.

PILES IM

As discussed previously (Fig. 7.4), the ultimate soil
resistance for piles in purely cohesive soils increases with

e ol A LA
depth from {2c,) at the surface (¢, = undrained shear-
strength) to 8 to 12 ¢, at a depth of about{thred pile-
diameters (3d) below the surface. Broms (1964a) suggested
a simplified distribution of soil resistange as being{zer®
from the ground surface to a th of and a constant
value of(9¢,) below this depth. This assumes also that pile
movements will be sufficient to generate this reaction in
the critical zones, the location of which will depend on the
failure mechanism.

OfLS

FIGURE 7.7 Lateral resistance factors at ground surface (@) and at
great depth (=) (Brinch Hansen, 1961).

(b}

Unrestrained p. 4Head Piles

Possxble failure mechanisms for unrestrained piles are shown
7.8, together with the

éﬁ) andg piles in Fi
smlm distributions. fShort"ip:les (termed rigid piles

in the precedmg sections) are those in which the lateral
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FIGURE 7.8 Failure mechanisms for piles in cohesive soil (Broms,
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148 ULTIMATE LATERAL RESISTANCE OF PILES

Hu,.uﬁgm;ﬁg t’\a‘r;‘s,aﬂ‘i‘al load
e, d

£= (7.9)

—

Also, taking moments about the maximum moment location,

Mupax = Hy (e + 1.5d + 0.50) (7.10a)
also,
Mmax = 2.25dg%c, € §hevt pile enl\-} (7.106)

for the ultimate lateral load The solution is plotted in

Fig. |?.9a1 in terms of dimensionless parameters L/d and
Hyfeyd?, and applies forShorl piles in which the yield
moment M]:émmax, the inequality being checked by using

Eqs. (7.9) and (7.10a). ,
For(longl piles, Eq. (7.10b) no longer holds, and &, is
obtained from Egs. (7.9) and (7.104) by setting M

Eam the {known) value of yield moment, This
solution is plotted in Fi. in terms of dime

Since L = 1.5d + f + g, Eqgs. %7.9‘) and (7.10) can be solved

onless
parameters H,/c,d* and Myfcudl. [t should be nofed that

S
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FIGURE 7.9 Ultimate lateral resistance in cohesive soils;@ short
piles;@lon piles (Broms, 1964a). P
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Broms’s solution for short piles can easily be recovered
from the simple statical solution for uniform soil described
in Section 7.2, by using an equivalent length of pile equal
to L - 1.5d, and an equivalent eccentricity of loading equal
toe+ 1.5d.

Restrained orfFixedHeaded Piles

Possible failure mechanisms for restrained piles are shown in
Fig. 7.10, together with the assumed distributions of soj]
reaction and moments. The changeover points from one
failure-mode to another depend again on the yield moment
of the pile. It is assumed@m_g_ment-restraint equal to the
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mediate; (cblong (after Broms, 1964a).
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moment in the pile just below the cap is available*. In
Fig. 7-10a, the following relationships hold for “" piles:

(.11

(7.12)

——

Hy = 9cyd (L - 1.5d)
Mmax = Hy (0.5L + 0.75d)

Solutions in dimensionless terms are shown in Fig. 7.9a.

For ‘intermediate” piles (ie., first yield of pile
occurs at the head) in Fig. 7.105, Eq. (7.9) holds, and
raking moments about the surface,

My = 225 c,dg® - 9e,df(1.5d +0.5f)

13

This equation, together with the relationship L = 1.5d + f + g,
may be solved for Hy. It is necessary to fhecKythat the
maximum positive moment, at depth f + 1.5d, is less than
My; otherwise, the failure mechanism for {lond’ piles
ilustrated in Fig. 7.10c holds. For the latter mechanism,
the following relationship applies:

My

=050+ 0sp

(7.14)

Dimensionless solutions are shown in Fig. 7.95.

-~
fi?.?.E’PILES L‘\’gOHESJONLESS OILS

The following assumptions are made in the analysis by
prabadoddll AL
Broms (1964b):

:D The active earth-pressure acting on the back of the pile
is neglected.

‘;) The distribution of passive pressure along the front of the
pile is equal -{@ imes the Iﬁankine] passive pressure‘*

3/ The shape of the pile section has Miieﬂ:ﬁon the
distribution of ultimate soil pressure or the ultimate lateral
tesistance.

1) The fu eral resistance is mobilized at the movement
- L
‘onsidered.

The simplified assumption of an ultimate soil resist-
ince, py , equal to@ times the Rankine passive pressure
s based on limited empirical evidence from comparisons
ktween predicted and observed ultimate loads made by

Jroms; these comparisons suggest that the assumed factors
3 may in some cases be conservative, as the average ratio

*If only limited head-restraint is available, solutions may be
’“lped by application of statical considerations similar to those
*scribed in this and the previous section,

f by 2 DF{;}";_?;;P

PR
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of predicted to measured ultimate loads is about two KMM{ be

thirds. The distribution of soil resistance is o w.pw{ Yy Tcé
Pu = 30K, sy ¥ e ise
— et 4
where .

o, = effective vertical overburden pressure
Kp = (1 +sin ¢')/(1 - sin ¢)
¢' = angle of internal friction (effective stress)

The analysis resulting from the assumption of the above
factor of 3 is much simpler than that which would follow
using Brinch Hansen's variable factor K, (Fig. 7.6).
Broms’s approach is equivalent to assuming that Brinch
Hansen's K; = 3K, for all depths. From Fig. 7.7, it can be
seen that;rﬂ’_ﬁﬁ.ﬁ:s of ¢ likely to obtain in sands, 3K,
lies between Brinch Hansen’s surface and deep values of
Ky.

Unrestrained o Head Piles

Possible failure-modes, soil-resistance distributions, and
bending-moment distributions for “long” and *“short”
piles are shown ifor constant soil unit weight v
along the pile). AS belore, the pile will act as a @’
pile if the maximum moment is less than the yield moment

of the section. In Fig. 7.11a, the rotation is assumed to be <

about a point close to the tip.and the high pressures acting

near_this point are freplaced by a single concentrated force
at the tip. Taking moments about the toe, :
ot

3
_ 0.5vdL’K, (7.16)
u e + L —

This relationship is plotted insing the dimension-

less parameters L/d and H,/Kpyd”. The maximum moment
occurs at a distance f below the surface, where

Fu = g1dkyf 17
that is,
Hy
f= 082 Tﬁ:?)
The maximum moment is
Mmax = Hu(e + %f) (7.18)

@after use of Eq. (7.16), the calculated value of A,
results in Mmax > M), (Myay from Eq. 7.18), then the pile
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FIGURE 7.11 Free-head piles in a cohesionless soil: ffa) hort'®long (after Broms, 19645).
———

(«f.7-8)

will act as a @ pile, md@maz then be calculated
from Egs. (7.I7) and (7.18), putting M = My. The
solutions for A, for “long™ piles are plotted in l‘"ig. %.125,]
in terms of Hy,/Kpyd® and My/d*vKp.

For short piles, reveal that Broms's as-
sumptions lead to higher values of ultimate load than the
simple analysis given in Section 7.2, For example, for L/d
=20 and e/L = 0, Broms’s solution gives a load 33% more
than that derived from the simple statical analysis.

e oot

Restrained or@'—Head Piles

The assumption of an available moment-resistance at the
top cap of at least M, is again made. Possible failure
modes for “short” “intermediate,” and “long” piles are
shown in . For a “short™ pile (Fig. 7.13a),
horizontal equilibrium gives

Hy = 15yL%dK, (.19)

This solution is plotted in dimensionless form in Fig. 7.12a.
The maximum moment is

Mpa = %HuL (7.20

—

e ol reathi i

If Mpyax exceeds M, then the failure mode in Fig. 7.13b 1
relevant. From Fig. 7.13b, for horizontal equilibrium:

F = @yd{.’f{p - Hy (7.21)
— —

o [
See Fig. 135
Taking moments about the top of the pile, and substituting
for F from Eq. (7.21):

SNU Geotechnical and Geoenvironmental Engineering Lab.
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FIGURE 7.12 Ultimate lateral resistance of piles in cohesionless soils: hort:@ons (after Broms, 1964b).

—— e

My = (0.5vd L’Kp) - HL 7.22)

—

Hence, A, may be obtained.

This equation only holds if the maximum moment at depth /
is less than M. yr the distance f being calculated from Eq.

(7.17).

For the situation shown in Fig. 7.13¢, where the
maximum moment reaches M, at two locations, it is
readily found that

2
Hyle + §,.f)= 2M,, (7.23)

e

Dimensionless solutions from this equation are shown in

Fig, 1124
‘, have been made by Broms between

maximum bending moments calculated from the above
approach and values determined experimentally in a con-
siderable number of tests reported in the literaturc

ils atig bf calculated to observed moment
88 with an average value of

0.54 and 1.61, with an average value of While good
agreement was obtained, it was pointed out by Bromsithat
the calculated maximum moment is not sensitive to small
variations in the assumed soil-resistance distribution.

SNU Geotechnical and Geoenvironmental Engineering Lab.



152 ULTIMATE LATERAL RESISTANCE OF PILES

JYLdL

(a) Daflection Soil ﬁ‘cagticn

(Myiaig)

Bending Moment

Myiald

t /
‘
| ¢ = 7
L
3YdLKp Mmax

Ceflection Soil Reaction Bending Moment
(b)
(Mymld]
N Hy
AL Myietd Myial

|

Bending Momaent

m Restrained piles in a cohesionless scil: short;@

ong.

Ll

Daflection Soil Regction

Solutions for a perfectly-rigid free-head plate in a purely-
cohesive weightless soil have been obtained by Davis
(1961) for plane-strain conditions. If it is assumed that
there can be no tension between the soil and plate and that
the plate is smooth, the soil pressure will act normally
over the right-hand side of a portion 4B of the plate, and
over the left-hand side of BC, as shown in Fig, 7.14.
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FIGURE 7.14 Plasticity analysis for laterally loaded plate.

Solutions for the failure of a strip footing near a vertical
edge are then utilized. At failure, the pressure on AB is
2c, while that on BC is given by the solution for a strip of
width BC, distant AB from a vertical edge (Davis and
Booker, 1973). Upper- and lower-bound solutions obtained
in this way are shown in Fig. 7.15, and for practical pur-
poses, these upper and lower bounds coincide or are only a
slight distance apart. A similar approach can be employed
in the case of a rough plate, by considering a rough footing
under various inclinations of load (it is still assumed there is
no tension between soil and plate.) A lower-bound solution
for the rough-plate case is also shown in Fig. 7.15. The
roughness of the plate only has an appreciable effect over
alimited range of moment and load combinations. It should
be emphasized that the solutions in Fig. 7.15 are for a
weightless soil and will tend to be conservative for soil
having appreciable weight. Also, plane-strain conditions are
assumed with failure occurring in a vertical plane in con-
trast to failure in a horizontal plane in the analysis in Fig.
7.5. Model tests (Douglas, 1958) show satisfactory confir-
mation of the theory.

Comparisons between the solutions in Fig. 7.15 and
those obtained from Broms’s theory (Fig. 7.9) show that the
ultimate lateral resistance calculated from plasticity theoryis
much less than that from Broms’s theory—for example,
for L/d = 12 and e/L = 0, the calculated ultimate loads
differ by a factor of 3. This difference arises largely from
the lower ultimate-soil-resistances used in the plasticity
approach (a value of 2¢y for the portion AB and a maxi-
mum value of 5.14¢, for portion BC, as against Broms's
value of 9c,), as a consequence of the assumption of
plane-strain conditions.

The plasticity solutions in Fig. 7.15, while unduly
conservative for normal proportions of pile, are relevant
to the case of shallowly-embedded sheet piling and may be

SNU Geotechnical and Geoenvironmental Engineering Lab.
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The gi'wp edpauity 14 the (eger oF
n times the lateral load capacity of a single pile.
The lateral load capacity of an equivalent single block

containing the piles in the group and the soil between
them.

The@ value, representing individual pile failure, can be
obtained by the methods described in Section 7.2. The
@value, representing block failure and occum’nﬁ at
re atively—-ETBse spacings, can be obtained as described in
Section 7.2.4 for an equivalent single pile of diameter or
width equal to the breadth of the group perpendicular to

s the grou
breadth, while ignoring such a zone may be unduly
: g  is to use a “dead”

. = individual pile diameter) or

= embedded length of piles). Results of a limited
series of model tests suggest that the above procedure gives
a reasonable estimate of the group capacity at close spac-
ings. [t the group is relatively narrow, and loaded perpen-
dicular to the longer direction, the ultimate lateral load
for block failure may be estimated from the plasticity
solutions in Fig. 7.15. For a group of fixed-head npiles,
with the head embedded in a massive cap, the ultimate
load for block failure can be calculated as the sum of the
resistance of a short restrained pile (e.g., see Fig. 7.9 and
7.12) and the shear resistance of the base. Some allowance
may also be made for side i e of the block.

QThe concept of a|grou efﬁciencyjfor lateral loading,
n

) can be employed as with group efficiency for vertical
oading, where for a group of n piles,

_ Ultimate lateral-load capacity of group
nL n X ultimate lateral load capacity of
single pile

(7.35)
e

A relatively small amount of data is available for values of
1y . A series of tests on_model pile groups inclay was carred
out by Prakash and Saran (1967) while Oteo (1972) carried
out similar tests in sand; the values of n; derived from these
test results are shown in Fip L2 Ty decreases with
increasing numbers of piles in a group or with decreasing
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FIGURE 7.22 Lateral group efficiency from model tests.
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7.11 GROUP ACTION

Piles are most often used in groups. Therefore, the value of k needs to be
corrected. The following guidelines may be used.

1. If the center-to-center spacing in the direction of loading is 8 d, in which d is
the diameter of the pile, and the center-to-center spacing is at least 2.5 4 in
the direction perpendicular to the load, there is no group action.

2. If the spacing in the direction of the load is 3 d, the effective value of k (Kege)
is 0.25 k. For other spacing values, a linear interpolation may be made.

3. If the load is applied in a repeated manner, the deflections increase and k
decreases. It has been observed that the deflections after 50 cycles of load
application are double the deflections under the first cycle (Prakash, 1962).
The soil modulus is correspondingly reduced. The deflections after 800 cycles
are increased to about 2.5 to 3 times the deflections in the first cycle (Prakash
and Chandrasekaran, 1970). The soil modulus is further reduced.

4. If the load is applied in an oscillatory manner, the deflections increase about
seven times that under the first cycle of loading (Prakash and Sharma, 1969).
The soil modulus decreases to a larger extent in this case.

If group action and oscillatory loads are considered, the soil modulus is
decreased on two counts, and the final value may be less than 10 percent of &
for a single pile.

These recommendations may be regarded as tentative. When more data
become available, these recommendations may need to be revised.

SNU Geotechnical and Geoenvironmental Engineering Lab.



2 pile is installed in the slope, the portion of the pile
(1ength L,) above the assumed failure surface will be
subjected to an inclined disturbing force P at some
eccentricity e above this surface. Ignoring any axial
cesistance for simplicity, this disturbing force can be con-
sidered to be resisted by the lower portion of the pile
(length L,) below the critical failure surface. The maxi-
mum value of this resisting force, ff,, is given by the least
of the following four values:

1. The ultimate lateral resistance of a “‘short” pile of
length L, loaded at an eccentricity e.

2. The ultimate lateral resistance of a “long” pile loaded
at an eccentricity e (this value will depend on the yield
moment of the pile).

3. The ultimate load that can be developed along the upper
part (length L, ) of the pile if the soil flows past the pile and
the ultimate pile-soil pressure is developed along this portion
of the pile.

4, The shear resistance of the pile section itself.

The values in 1, 2,and 3 may be obtained from the analysis
presented in Section 7.2, once the ultimate pile-soil pressure
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distribution has been determined. Approximate allowance
can be made for the inclination, as outlined in Section
7.2.6. The eccentricity e can, as a first approximation, be
estimated by assuming full mobilization of the pile-soil
pressure above the assumed failure surface.

Once the value of A, has been thus determined, the
additional resisting moment or force caused by the pile
can be determined, and hence the effect on the safety factor
can be evaluated (see Fig. 7.24). The procedure must be
repeated for a series of trial failure surfaces to find the one
with the lowest safety factor. Consideration should also be
given to a surface that passes below the pile tips.

With groups of piles, adjustments can be made to the
ultimate pile-soil pressures to allow for group effects, and
the influence of each pile can be added up to determine the
effect of the group on slope stability.

{ 7.9 METHODS FOR INCREASING THE LATERAL RE-

SISTANCE OF PILES

Broms (1972) has discussed some methods of increasing the
lateral resistance of piles. As shown in Fig. 7.25, most of
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FIGURE 7.25 Methods used to increase the lateral resistance of piles.
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