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E@E&:r depth in noncohesive soils and normally loaded clays Tangent modulus . &
increase in o _ \QC%S @S:Rn.

@ ; and silts is duc _to two reasons: These soils frequently exhibil an increase
1

[ strength with depth as a result of overburden pressures and natural deposition

and consolidation processes; and pile deflections decrease with depth for any 6 7 ﬂ —V WB P
& given loading, and the corresponding equivalent elastic moduli of soil .Ran:ro:v ’ T mm _ Vratag
tend to increase with decreasing deflection.

.}.fmmmwum\:.m:m_..\rmmmcm.ﬂGmd reported test data on model piles subjected to \\mﬁa ad 1 .
horizontal load at 5 cm above the sand surface. The pile lengths were 10, .uo_ u.o. 7 §h D.fwz - :. : __W SW P vsﬂos J
40, 50, and 60 cm. The deflections of piles at ground level, are shown in Fig \\ A_ q 5 u

% g“% as the pile length increases, the ground deflection of a n:n. of 4
constant cross section decreases at the same load. This decrease in deflection Deflection y Flgure 7.11 Typical soil reaction deflection curve.

occurs first at a <2M3wﬂﬂﬂow Subsequently, this rate decreases, and, beyond a

¢ .ﬁ characteristic length [of the pile, the deflections are not materially m:an:&.. This .

length L, is defined as the infinite length of the pile. This length would obviously will be developed subsequently in the chapter for classifying piles as infinitely
be a function of pile stiffness and soil stiffness k. The greater the pile long or rigid. . =k

1)13-\.. \.I.J\l i - Stress, strain, and load-deformation relations in soils are invariabl N.muuﬂn

stiffness, the greater L, and the greater the soil stiffness, the smaller L. AP
» can also be derived from considera- _car (Fig. 7.11). For loads of less than one-third to one-half their ultimate va ues,

P vs. y curve

Load, p
~

The concept gf an “Infinitely long pile” ; i 3
tion on@mﬁﬂﬂmr.wwanmcma soil reactions are introduced only upon deflection of the load-deflection curve can be adequately expressed by a tangent modulus.
6 il 1. i cbyiots hEL for a_given load and pile mao:o.F :6:... is a For larger loads, a secant modulus is more appropriate. The secant modulus is
characteristic pile length beyond ‘%Em_. the deflections of the pile .m_qmb.mm:m&_p dependent upon load level. Therefore, application of the theory of linear

i e elasticity to the solution of pile problems is not strictly justified; however, to

This Tength corresponds to L,. 1 . on of
llv_:mnmuu._omsmmio:._mﬂo:ro deflection of the pile(y junder a given load account for the nonlinearity between the load and pile deflection (or soil

posed of the rigid-body movement &E that which is resistance and pile deflection), two approaches may be adopted:

and at any depth,(xis com 1d tha
due to curvature of the pile. The latter decreases as the pile stiffness £l

increases, while other things remain the mma® the pile becomes.rigid enough I. One may employ repeated application of the elastic theory. Soil resistance
50 that its deflections, due to curvature, may be neglected as compared with its moduli are adjusted upon completion of each trial run until satisfactory

O e ofFTTmA or a pole. :&mm.n,mammafﬂw compatibility is obtained between the predicted soil behavior and th -
rigid-body movements, 1L 1S called gid p m P \\\.mif - : : k e
/ deflection relationships required by an elastic pile (Matlock and Reese, 1962).

2. The relationship between the secant modulus and the tangent modulus can be
- T ¢ oo defined in R:E .2. strain _9.&_, .um was the case of the relationship between

|60 cm JilE i shear moduli at different strains in Chap. 4. However, the strain levels in soils
20 \

=v— 50 ¢ L4 -
e _‘ along the length of the pile have not been defined, and a considerable
40cm amount of research is needed to solve this problem. Guidelines on n, or &,
values to be adopted for a practice problem are discussed in a subsequent
section. [n any case, the final computed values of deflections and bending
moments are not very sensitive to changes in soil modulus values.

AN

>

Load, kg
=

| 20cm

7.7 SOLUTION FOR PILES IN(NONCOHESIVE [SOILS

Figure 7.10 Lateral load vs. A typical foundation pile of length L, and flexural stiffness £7 is shown in Fig.
“Teflection with different pile 7.12. The depth x is measured downward from the ground line. The boundary
57 32 40 48 56  embedment. (fter Prakash and i conditions at the top consist of an imposed moment M, and a shear Q_, and
Deflection Y, mm Agarwal, 1967.) each is shown acting in a positive sense. The soil siodliils variation. for. which

10 cm
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? k,=n,x (7.9q)

M, dy d?y ddy dty
e 21 —~\ v mnmﬂ glm_a <|m_m.x.m wum__u.n
.4 Q, i
X ylx)
L
el
v
(a) (&) (c) (d) (¢)
——n

q._~\> pile of length L, fully embedded in soil and acted upon by loads @, and M,. @1

Deffection’y. (b)Slope dy/dx.((c) Moment Efd%y/dx?.(d)Shear EIdy/dx’. (€))Soil Eion
Eld*y/dx*. @ m\ & &

the solution is available is defined by

llllr!-llrli\l\
Figure 7.12a shows the y(x) curve of the pile. Once this curve is known, its
derivatives yield slope, moment, shear, and soil reaction, which are shown in
@ Fig. 7.12b, ¢, d, and e, respectively. The factors on which the deflection of the

pile y(x) depends are:

< | Qg My, EI of pile, k, of s mo__ h xand L, lthe characteristic length of the
fmws:o; long pile. ( ko Seil shines k
o T= £( &1, »u..u LEL LPile :;r&.r;_ (5l
= Instead of L, a quantity T, termed the relative stiffness factor, may be used.
T has units of length and is related with L, through the Tollowing relationship:

L
Ay F= |ys (7.10)
PRSI, 555
in which A is a positive integer. Now y(x) may be expressed as
- w(x) = ¥(x,T,L,.k,EI,Q,, M,) (7.11)

If the deflections are small and il an_elastic_behavior is assumed, the
3 principle onr.ﬁmio\Bom:._o: may be applied. Therefore, the effects of an imposcd

Ci 0 (4 wd Smprsed grveme My mav he considered 63332. as
[ateral boad Om v ! Ghewn vh __nma ;9

7
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Figure 7.13 (a) Application of the principle of superposition to the laterally-loaded-pile problem.
(b) Sign convention. (After Matlock and Reese, 1962.)

If(y; represents the deflection caused by the lateral _cma m:a@ the
deflection caused by mNJ the total deflection is E
r=yt vy A.._. _Mv

Furthermore, it is the ratios y, /Q. and ya/M, that maﬁs.vo:ma in the
clastic solution. Thus the solutions for Cases A EE B may be expressed as

o
0,

@nb? T.L..k; ED) (7.135)

in which f, and f, are two different functions of the same terms. In each case,

thara ara civ tarme and twn dimancinne Mares and lanath) invalind Thare nea

=[x, T,L,,k, EI) (7.13q)

and
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arrangements chosen are (Matlock and Reese, 1962):

Case A:
. 4
Mﬂ%nﬂ$ (7.14a)
Casc B:
feble x Vi (7.14b)

Ewﬂ“.mm_ TE]

Each of the nondimensional terms formulated above can be assigned the

e ———————
following names and symbols:
% =Z (depth coefficient) (7.15)
- 7.16
v e ﬁ_.:wx_n_:_.s depth coefficient) (7.16)
Ty ¢(z) (soil modulus function) (7.17)
Bl ——
YaEl ; o
=4 (deflection coefficient for Case A) (7.18)
mn.ﬂu ¥ S
w.mmd ; o
5 =B8,  (deflection coefficient for Case B) (7.19)
M,T g
Thus, from Egs. (7.18) and (7.19),
ar M,T?
Y=t yp=4, 7 + B, £ (7.20)

Proceeding in a similar manner, the solutions for other quantities may be
expressed as follows:

Slope:
Q,T? M, T 431
=8,+ 8= h||h.|_.|+hnm~ (7:21)
Moment:
M = M+ My=4,0,T + B,M, (1.22)
Shear:
Eh
Vo= Vit Vy=A4y(Q,) + By (7.23)
Soil reaction:
0 M
2= Pt P ...Jﬂm + maﬂw (7.24)

=mwcpey
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From the theory of a beam on an clastic foundation, the equation of the
deflected beam s

d*y
El— = 125
Tl L
F.ca.é_:r_o; hypothesis, p = —ky. Soil reaction is always in a dircction
opposite to deflection; hence the negative sign is used. The basic equation for a
beam on an elastic foundation, or for a laterally loaded pile, may then be written
as
E|A.w 4 h =0 .G_. M@
dx? Er’ i

Because the applied lateral load Q, and an applied moment M, have been

considered separately, according to the principle of superposition, Eq. (7.26)
becomes

Ommo\.?.
d dr k
It e m =0 (7.27a)
Case B:
e d ..&w k
ot TE0 m@m@
e k : ; :
Substituting for y,, 7k and % in nondimensional forms from Egs. (7.18),
(7.17), and (7.15), respectively, in Eq. (7.27a and b), we obtain
Case A:
N i
24 7.28
7 gt H\.v
nmm.mw
] d*B,
7.29
= (1.29

To obtain a particular set of nondimensional A and B coefficients, it is

RS&mQ..B.mmmlle ¢(z) and to defin Bttt

For and other soils whose foil modulus)may be assumed lo increase

linearly_ with depth, $(z) may be equated to ﬂ Hence, in Eq. (7.17), by
stbstifufing for & from Eq. 33‘4.{.@.@12 J

*.x..ui A Q.mﬁ._ﬂu

BT (7.30)

\nl.l..i.i,r!l..
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W SOU B NAMICS Table 7.4 Coefficients B for long piles under Iateral loads*
:W eese_and Matlock :mumww who Qn:.:na AKNV, .p_._a N. as above, obtained the z B, By B, B, B,
solution of Egs. (7.28) and (7.29) the = cthod for the
coefficients A and B. Deflection (), slope (s), moment (M), shear (V), and soil 0.0 1.623 — L1750 1.000 0.000 0.000
—, reaction (p) coefficients for Q, and M, are shown in Eu And bil 2 Lo o e FEsy
: 02 1.293 ~ 1.550 0.999 — 0.028 — 0259
respectively (Matlock and Reese, 1961). 03 t 143 e 0.994 0053 NG
Based on the boundary nou.n:mo:m Q, and M, m:.a En.qamc_:sm A and B 04 1.003 — 1351 0987 . 0.095 — 0401
coefficients, relations can be derived so that problems involving other boundary 0.5 0.873 ~ 1.253 0.976 —0.137 - 0.436
conditions (such as a partially or completely restrained top) may be solved 0.6 0.752 — 1156 0.960 — 0181 — 0451
(Reese and Matlock, 1956; Matlock and Reese, 1961). 0.7 0.642 - 1.061 0.939 - 0.226 — 0.449
=" Matlock and Reese (1962) showed that by considering the soil modulus 0.8 0.540 ~ 0.968 0914 — 0270 - 0432
variation of the form given in Eq. (7.8) for n = 1, 1, and 2, the(differencej caused ﬁ_vw wwMM 3 N.HW NMMW = NWMM = NMMW
by the applied shear and moment at the ground surface in the deflection and ; : : ; Bl :
: _and moment at ic 12 0.223 ~ 0.629 0.775 ~0.414 —0.268
=7 | moment in a long pile is not appreciable.|It was further shown that one can 1.4 0112 04 0618 B it
: Bm_,S .mooa ?.n&n:oum of Ew moment curves by using k, = n,x, even though 1.6 0.029 — 0354 0.594 — o4 — 0.047
variations may be quite nonlinear with respect to n_ov:g.iog the effect of 1.8 - 0.030 — 0.245 0.498 — 0.476 0.054
7| the_soil modulus. variation close to the_ground surface on the computed mo- 20 - 0.070 — 0.155 0.404 ~ 0.456 0.140
ments is very large. 3.0 ~ 0.089 0.057 0.059 - 0.213 0.268
1 In Figs. 7.14 w:ag A, and B, coefficients are plotted “.E 40 - 0.028 0.049 - 0,042 0.017 0.112
d, 2,3,4, 5, and 10. It can be seen that the coefficients 4, m:&.mw vary almost in a 5.0 0.000 0011 —0.026 0.029 - 0.002
linear fashion with the depth coefficient z for Z,,, = 2. Because the deflections
s *Alter Matlock and Reese (1961 and 1962).
Table 7.3 Coefficients A for long piles under lateral loads* 2t
Z 4, Ag Ay Ay A, B i
0.0 2435 — 1623 0.000 1.000 0.000 -
0.1 2.273 - 1.618 0.100 0.989 —-0.227 & v )
0.2 2.112 - 1.603 0.198 0.956 —0.422 s
0.3 1.952 - 1.578 0.291 0.906 — 0.586 30 i 4|
04 1.796 ~ 1.545 0.379 0.840 -0.718 _P
05 1.644 - 1.503 0.459 0.764 — 0822 < W Sl L W Y
06 1.496 — 1.454 0.532 0.677 — 0897 z i ok ﬁ_ﬂ g
0.7 1.353 - 1397 0.595 0.585 — 0.947 =20 AT - =
0.8 1.216 - 1.335 0.649 0.489 - 0973 g where T = (El/n, )"
0.9 1.086 ~ 1.268 0.693 0.392 — 0977 k P = e
1.0 0.962 — 1197 0.727 0.295 —0.962 = - alwitiphal 4 e
12 0.738 - 1.047 0.767 0.109 — 0885 a
14 0.544 —0.893 0.772 — 0.056 - 0.761 == +— — L
1.6 0.381 — 0.741 0.746 —~0.19 ~ 0.609 : /,.f e
18 0.247 ~ 0.59 0.696 ~ 0.298 — 0445 0 - Z | T
N e e R
2.0 0.142 — 0464 0.628 ~ 0371 - 0.283 L el e [
30 - 0.075 ~0.040 0.225 - 0.349 0.226 . [ e |
4.0 ~ 0.050 0.052 0.000 ~ 0.106 0.201
5.0 ~ 0.009 0.025 ~ 0,033 0.013 0.046 [ P i Figure 7.14 Dellection coefficien
" A due to lateral load at grounc
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R

. ¥
30 (= = —
14 -
LAY _ _s _1
@ = -
g Ve = _le_.. x=Z(T)
8 where T = (El/n, )"/®
=y
o
£
£
5
&
5
o 0
L
P 3
Zppe = 2%
-1.0
0 1.0 20 30 4.0 5.0
Depth coefficient £

Figure 7.15 Deflection coefficient B, due to moment at ground surface. (After Reese and Matleck,
1956.)

¥4 and y, are directly proportional to 4, and B, for a given set of conditions, it is
evident that both deflections y, and y, are linear with depth x. This shows that
the pile undergoes onl - ctions and that deflections caused by
curvature are negligible. g the piles with Z_ . < 2 behave as rigid piles)or
poles.

_um:wnnﬁ from the same figures, it can be seen that the deflection coefficients

A, and B, for Z ., of 5 and 10 are identical. (This_ meank that pile length beyond
y max e a— e 5
Z,.an = 5 is not effective in altering the deflections of the pile. Therefore,
e e s s
L,=5T (7.32)

——

It will be seen that, g. most_of the piles satisfy the condition
L >3T, Therefore, solutions To g piles are applicable. Cocfficients A and
in Tables 7.3 and 7.4 can then be used. Also, the pile heads are usually :xaw.,

— =

that is, at Z = 0, § = 0. Therefore, Eq. (7.21) gives
e :\.IMlll
ﬂumﬂ maw..u ?\nﬂ.
Sa= 8.+ Sp= A+ By—— =0 (7.33a)

PILE FOUNDATIONS 247

which gives
i gy (7.33b
. & Bs |z w0 o
By substituting the values of Ag and Bg at z = 0 from Tables 7.3 and 7.4, we
get
\ M
= 7L 0B (7.33¢)
| Qﬁ S —
=) Quantity M,/Q,T has been defined as the nondimensional fixity fact
] : nondimens Xil or by
Prakash (1962). ?n expression for deflection [Eq. (7.20)] is modified for this
case as
3
'V &HAL».I@LQMJ
% i
| =G~ (7.34a)
in which >
G = d, S BE (7.34b)
[n a similar manner, the C coefficients for moment and soil reaction may be
defined as
G = A =S ER (7.35a)
which gives
M= G O (7.35b)
and
G=4,-093B, (7.36a)
which gives
ec
= ﬁ._:..wn. ﬁqum%u

ay undergo some rolation at the joints where their heads meet

lv the caps. This results in partial fixity. In this case, the nondimensional fixity

factor (NDFF) may be defined suitably, and the coefficients ‘C’ would also be
madified accordingly.

Design Procedure

Bascd upon the discussion presented above, the following design procedure is
..r.no_.._,,.:a:n_nn_

C. Determine the loads on the top of the pile.

@ Determine the soil profile and estimate a proper value of & or ny, for the
wpe of soil. o

SNU Geotechnical and Geoenvironmental Engineering Lab.
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_@ Select E with known n £] and its width.

(3 Compute

e

,:._n. term Z,., in pracfict 1 hlways greater than 5. Consideration of the
verl m_._oma.aw:ﬁ: capacity de m:.n_anm the length.

9.7’
Y= ET (7.34a)
Gl “ yrement
in which h.:. A e

G=4,~-(Ax098,)

The maximum deflection occurs at the top of the pile and should not be _.8::
than the permissible value. In the absence of a specified permissible <m_=n.
(1.25 cm) may be adopted as a reasonable permissible value.

C“m.n mmmﬁ_.a__a&a cn:a_nmanna;_ozm_rnmn:m;o:rovzn by using
- 'llll\llllrlllll.llnll

M,= G, QT (7.356)

in which
Ci= AN B

The following tabulation format is convenient for recording these computations,

Table for computation of M,

Z x A 0.9308 ol M, Remarks

Plot the bending moment along the depth of the pile and determine M.
Check the stresses in the section and compare them with the allowable stres LMQ
in_the material of the pile.

ctermine the soil reaction along the length of the pile by using the

 ————— e

following equation:

(7.36b)
in which
C=4,—-093\8,

PILE POUNDA LIUING ares

Table of computations for p,

Z x 4, 0.93)8, G Pe Remarks

(]

1 2 3 4 3 6 7

Com pare with
= Plot-the soil reaction a_mm am along the depth of the _u:a. The _unﬂ:_am&_n soil
reaction at any depth x is given by
1 +sing

P = .< X b (7.37)

1 —sing

n which y = unil weight of soil and b = width of pile.
¢ 9.1F the deflection, stress in the pile, and soil reactions indicate that the

section adopted is safe and S ot overly conservative, The selection of the section

is permissible. Otherwise, sclect a new section and repeat steps 3 through 8.
et .Y} é A pile in sand, 10 m long with head free to deflect and rotate is
r,i, acted upon by a lateral load of 3000 kg. The £J of the section is 3.5 x 10"
kg-cm?, The pile undergoes a deflection of 12 mm. If the piles in the group
were restrained against rotation to the extent of 50 percent of the fully
restrained piles, determine the maximum bending moment and the soil
reaction on the piles. Also plot the deflected shape of the pile. Assume that
the width of the pile is 30 cm and that the unit weight of soil is 1.8 g/cm’.
Neglect group action.

SoLutioN From the test data,
5
_40,T
T gy

Therefore,

Ely (12)(35 x 10")
=t g = 179.15
=Yie 2.435 X 3000 e

Because the pile head is restrained only 50 percent of the full restraint,

the negative moment at the top of the pile is} —0.465Q,T

therefore
M, = —0.465 % 3000 x 179.15 kg-cm
Now,
0.1’ M,T? QT
y = A=+ B—p— = (4, = 04658 )=

SNU Geotechnical and Geoenvironmental Engineering Lab.
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Table 7.5 Computation of deflection y, bending moment M, and soil reaction p in Example 7.2
* 3 M, P,
m  Z=z| 4, U435, G cm Ao 04638 Sl el t-cm, A 0AESE G kg/cm,
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0.0 2435 0.755 1.680 0.828 0 — 0.465 - 0455 —250 0.000 0 0 0
036 0.2 2.112 0.601 1.511 0.745 0.198 0465 —0.267 -—143| —0422 -0.120 -0302 -5.06
072 04 1.796 0.466 1.330 0.655 0.379 0459 —0.080 —43 -0.718 =0.186 - 0.532 - 891
107 0.6 1.496 0.350 1.146 0.565 0.532 0.445 0.086 46 -0.8%7 -0210 =-0.687 -11.5
143 08 1.216 0.251 0.965 0.476 0.649 0.425 0.244 1,20 - 0973 -0.201 —-0.7712 =1293
179 1.0 0.962 0.169 0.793 0.391 0.727 0.396 0.331 117 -092 -0.169 =-—-0793 —13.28
235, 12 0.738 0.104 0.634 0.312 0.767 0.360 0.407 2,19 —-0.885 =0.125 =0.760 -—12.73
287 1.6 0.381 0.013 0.368 0.181 0.746 0.276 0.470 2,55 -0.609 -—0.022. -0.587 - 9.83
358 20 0.142 - 0.032 0.175 ° 0.086 0.628 0.188 0.440 2,36 - 0.283 0065 —0.318 —5.83
537 3.0 -0.075 -0.041 -0.034 -0.017 0.225 0.027 0.198 1,06 0.226 0.125 0.101 1.69
7.16 4.0 - 0050 =-0013 =0.037 =-0.018 0.000 - 0.019 0.020 10 0.201 0.052 0.149 2.50
896 5.0 - 0.009 0000 =0.009 -0004|-0033 -0012 -0.021 =1 0.046 - 0.001 0.047 0.79
e 4
~ ] %]
;) 8 > £ = o £ 2 2
H '|= N Wi T LS S R I e L L s B v ; g j =
: = ] =
K] = =
4 5 y o = T ]
S o Nondimensional fixity factor A
< 8 1 < { ; x o ﬁ
3 - fx) -
J g e ] o g o g
L T e Sk 5. Z8g
3 3 e ¥ (=] T T o
3 o RE
T g SN
3 A Il fosis
= 12 o e B
. 3 A
5 J 3k E B X
2 3 & Il Il
: BE G ~ ~
3 2 g s
3 = _ 3 e |
R g iz S aae Narn o =
: S «8 e gz > a
o = z o a
Z h L
T 18 b DEE N ©
3 1= =L &) = ~
3 §r T e )
> i : F
(A3
? g 13 3 8
E’ 3 8 = :"’n
£ | il
3 £
o =]
3 2 z
3 g L' & =
% §§ w 5 3 o
= E] = =
do 5
5 &
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k, linc for ¢ = 30° and y = 1.8 g/cm’ [Eq. (7.37)] has been plotted on the soil
reaction diagram.

78 PILES IN CLAY |

mcan:mm_.E.__ES:._nosnmRmns_namsmnn...____m<ncna=o.c§:§_¢
Davisson (1962) and by[ Davisson and Gill (1963)/for clays that oceur in fiwo!
layers. The stiffnesses of the top and bollom layers are defined by &, and k,
respectively. For a particular case of k, = k,, by using R in place of T for clay,
letting ¢(z) = 1, and with A, in place of A, in Eq. (7.28), we obtain the
following equation:

mfﬁ
o +¢(z)4,,=0 (7.38)

Therefore,
El o )
=== 2 ' VN I
. =V 5 (ef. 7 (1.39)
The depth coefficient is 3
X
2 (7.40a)
and the maximum depth coefficient is
L
> Zos= (1.400)
—

If both shear and moment act on a pile head, and if one uses B,_in Eq. (7.20),
we obtain

QR M, R?
Ex“\_\n EI + Q\nlq A.\.:au
Similarly, Eq. (7.22) becomes
M.,=A,0R+ 38, M, (7.416)
in which
A, = deflection coefficient for shear load on a free head pile in clay
B, = deflection coefficient for moment load on a free head pile in clay
A,,. = moment coefficient for shear load on free head pile in clay
B,,. = moment coefficient for moment load on free head pile in clay

The cnil raactinn dinoram mav he ahtained hy mnltinlvine the v diseram

PILE FOUNDATIONS 253

Deflection and moment coeflicient, A, A
-1.0 0 1 2.0
0 .0
5
3
M
o Y Zou 2
Ve — 4 ——
2 B
~
o2 ‘ Samessel . !
F 3
4

Dhespath st
=]

Figure 7.17 Deflection and moment coelficients
Ay and A, due to lateral loads at ground
surface. (After Davisson and Gill, 1963.)

The solutions for the 4 and B coefficients may be obtained by using either
the technique described by Matlock and Reese (1962) or an analogue computer
(Davisson and Gill, 1963). In Figs. 7.17 and 7.18, 4,,, 4,,, B, and 8, have
been plotted for piles of different Z

ye?
max”

Sk Ewm be seen from the deflection coefficients in Figs. 7.17 and 7.18 for

lma.:u 2, ‘that the plot is almost a straight line. Hence, the pile may be

LIegatls o comt e ameil o

— e
Deflection and moment coefficient, B, B,

cumlo -1.0 0 1.0 2.0
| o A
2 M
H =3
) M SRR
~4
e —_
L —— —
Figure 7.18 Deflection and mo-
7 Went coellicients B, and 8, due
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- considered to be a rigid pile _.L\NMHMSM.“ Similarly, for\Z .., = 4,/the pile may be

considered infinitely long pPile- i practice, most piles i clays satisfy this
condition.

7.9 DYNAMIC ANALYSIS

In current design practice, the total lateral load applied to a pile foundation is
equal to the base shear computed in the dynamic analysis of the superstructure,
which is considered to be fixed at the level of the foundation. Hayashi (1973),
Prakash and Sharma (1969), and Prakash and Gupta (1970) attempted to
determine the natural frequencies of the soil pile system by using an equivalent
cantilever method. The soil-pile system is idcalized as a massless equivalent
cantilever with a single concentrated mass at the top. Its natural frequency is
determined by using Rayleigh’s method. The exciting frequency is used to check
the frequency of the system for resonance. This approach is more or less
arbitrary.

Generally, there are three techniques that can be used to solve problems of
soil-pile superstructure interaction (Novak, 1977). The first represents soil as a
continuum with linear elastic properties. It correctly represents geometric damp-
ing as well as soil layer resonance (Novak and Nogami, 1977; Novak, 1977). In
the second, the finite element technique is used to represent the pile and the soil.
This method offers a maximum flexibility for the variation of soil-pile properties
(Novak, 1977; Kuhlemeyer, 1979). The third represents the soil-pile system by a
set of discrete (lumped) masses, springs, and dashpots. This approach can be
used to incorporate the depth and nonlinearity variations of the soil properties
in more detail. These variations depend upon the definition of the local soil
stiffness and geometric damping (Penzien et al., 1964; Penzien, 1970; Prakash
and Chandrasekaran, 1973, 1977).

A reasonably practical solution for soil-pile interaction under dynamic loads
has been proposed by Chandrasekaran (1974; Prakash and Chandrasekaran
1980). This analysis is based on the following assumptions:

1. The pile is divided into a convenient number of segments and mass of each
segment is concentrated at its center point (Fig. 7.19).

. The soil is assumed to act as a linear Winkler's spring. The soil reaction is
separated into discrete parts at the center points of the masses in Fig. 7.19.
The soil modulus variation is considered both constant with depth and
linearly varying with depth (Fig. 7.20).

. The mass of the superstructure is concentrated at the pile top as M,.

. The system is one-dimensional in its behavior.

. The pile end conditions are either completely frec to undergo translation and
rotation or completely restrained against rotation but free to undergo transla-
tion.
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Figure 7.19 Pile-structure idealization. (After
e My Chandrasekaran, 1974.)

For evaluating the free-vibration characteristics, the modal p:a«.mw is per-
formed by using successive approximations of the :ﬁﬁm_._..aaca:o.nm of the
system with an initially assumed value and related end conditions. ..:.a adopted
end conditions are also utilized to generate the transfer equations and to
evaluate the unknown quantities, either at the pile top or the pile bottom, in
terms of the known quantities. These modal quantity values at different mr”_:o.:
points definc the mode shapes. Values at the bottom or top of the piles assist in
determining the natural frequencics of vibrations in different modes. .

The forces and displacements in two different station points are illustrated
in Fig. 7.21 (Prakash and Chandrasckaran, 1977). . .

The details of the idealization and the method of analysis and detailed
parametric studies are presented elsewhere (Chandrasckaran, 1974). s

Information has been obtained with these approaches for piles embedded in
soils in which the soil modulus can be considered either to remain conslant or to
vary linearly with depth. In both of these cases, solutions have been obtained for
natural frequency, modal displacements, slopes, bending moments, shear forces,
and soil reactions along the lengths of the piles in the first three modes of
vibrations (Chandrasekaran, 1974; Prakash and O:mzﬁ_qmmm_aqu:. _omov.. Only
typical solutions for handling a practical problem shall be discussed herein.

Natural Frequencics

Based on the parametric study, nondimensional [requency factors have been

obtained with respect to the basic soil parameters. .
The variables conslituting Fep , the nondimensional frequency factor for v__m.‘m

embedded in soils in which the soil modulus remains constant with depth, is
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