
1

Verilog Introduction

Naehyuck Chang
Dept. of EECS/CSE

Seoul National University
naehyuck@snu.ac.kr

mailto:naehyuck@snu.ac.kr
mailto:naehyuck@snu.ac.kr

2

Verilog – Introduction

 Verilog Hardware Description Language (HDL)
 Behavioral level
 Register Transfer Level (RTL)
 Gate level
 Transistor/Switch level

 Developed in 1983 by Gateway Design Automation Inc.
 Most popular HDL of the time
 Traditional computer languages such as C

 IEEE Standard:
 Verilog 95: IEEE Std. 1364-1995
 Verilog 2001: IEEE Std. 1364-2001
 SystemVerilog: IEEE Std 1800-2005

3

Verilog – Data Types

Name Description Example

Value set 0 - Logic zero, false condition

1 - Logic one, true condition

x - Unknown logic value

z - High impedance, floating state

Nets Declared by the predefined word wire

Represent connections between hardware elements

Values continuously driven on them by the outputs of devices

wire sum;
wire S1 = 1’b0;

Registers Declared by the predefined word reg

Represent data storage elements

Retain value until another value is placed onto them

reg Sum_total;

Vectors Declared by brackets []

Represent multiple bits of net or register

wire [3:0] a = 4’b1010;
reg [7:0] total = 8’d12;

Integers Declared by the predefined word integer integer no_bits;

Real Declared by the predefined word real

Represent real (floating-point) numbers

real weight;

Parameters Declared by the predefined word parameter

Represent global constants

parameter N=4;
parameter M=3;

Arrays None predefined word

Registers and integers can be written as arrays

reg [M:0] b [0:N]
integer sum [0:N]

4

Verilog – Operators

 Bit-select operator
 []

 Parenthesis
 ()

 Negations operators
 ! (logical), ~ (bit-wise)

 Unary arithmetic operators
 +, - (sign)

 Concatenation
 {a, b[2:1], c}

 Replication
 {n{m}} (m n times)

 Binary arithmetic operators
 *, /, % (mod)
 +, -

 Shift operators
 <<. >>

 Relational operators
 >, <, >=, <=
 ==, !=
 ===, !== (including x and z)

 Bitwise logical operators
 & (AND)
 ^ (XOR), ^~ or ~^ (XNOR)
 | (OR)

 Boolean logical operators
 && (AND)
 || (OR)

 Conditional operator
 Cond. Exp. ? True Exp. : False

Exp.

5

Verilog – Two Main Components of Verilog

 Concurrent, event-triggered processes (behavioral)
 Initial and Always blocks
 Imperative code that can perform standard data

manipulation tasks (assignment, if-then, case)
 Processes run until they delay for a period of time or wait

for a triggering event

 Structure (Plumbing)
 Verilog program build from modules with I/O interfaces
 Modules may contain instances of other modules
 Modules contain local signals, etc.
 Module configuration is static and all run concurrently

6

Verilog – Modules and Instances

 Basic structure of a Verilog module:
module mymod(output1, output2, … input1, input2);
output output1;
output [3:0] output2;
input input1;
input [2:0] input2;
…
endmodule

 Instances of
	 module mymod(y, a, b);

 look like
mymod mm1(y1, a1, b1);	 	 	 // Connect-by-position
mymod mm2(.a(a2), .b(b2), .y(c2)); 		 // Connect-by-name

7

Verilog – Initial and Always Blocks

 Basic components for behavioral modeling

always
 begin
 … imperative statements …
 end

Runs when simulation starts
Restarts when control reaches the end
Good for modeling/specifying hardware

initial
 begin
 … imperative statements …
 end

Runs when simulation starts
Terminates when control reaches the end
Good for providing stimulus endmodule

8

Verilog – Initial and Always

 Run until they encounter a delay
initial begin
 #10 a = 1; b = 0;
 #10 a = 0; b = 1;
end

 or a wait for an event
always @(posedge clk) q = d;
always begin wait(i); a = 0; wait(~i); a = 1; end

9

Verilog – Procedural Assignment

 Inside an initial or always block:

	 sum = a + b + cin;

 Just like in C: RHS evaluated and assigned to LHS before
next statement executes

 RHS may contain wires and regs
 Two possible sources for data

 LHS must be a reg
 Primitives or cont. assignment may set wire values

10

Verilog – Blocking vs. Non-blocking

 Verilog has two types of procedural assignment

 Fundamental problem:
 In a synchronous system, all flip-flops sample

simultaneously
 In Verilog, always @(posedge clk) blocks run in some

undefined sequence

11

Verilog – A Flawed Shift Register

 This doesn’t work as you’d expect:

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;
always @(posedge clk) d3 = d2;
always @(posedge clk) d4 = d3;

 These run in some order, but you don’t know which

12

Verilog – Non-blocking Assignments

 This version does work:

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;
always @(posedge clk) d3 <= d2;
always @(posedge clk) d4 <= d3;

Non-blocking rule:

RHS evaluated when
assignment runs

LHS updated only after all
events for the current instant
have run

13

Verilog – Non-blocking Can Behave Oddly

 A sequence of non-blocking assignments don’t
communicate

a = 1;

b = a;

c = b;

Blocking assignment:

a = b = c = 1

a <= 1;

b <= a;

c <= b;

Non-blocking assignment:

a = 1

b = old value of a

c = old value of b

14

Verilog – Non-blocking Looks Like Latches

 RHS of blocking taken from wires
 RHS of non-blocking taken from latches

a = 1;

b = a;

c = b;

a <= 1;

b <= a;

c <= b;

1
a b c

a

b

c

1

15

Verilog – IF Statement

if (Boolean Expression)
begin
	 statement 1; /*if only one statement, begin and end can be omitted */

	 statement 2;

	 begin
 ……….

	 end

end
else if (Boolean Expression)
	 statement a; /*if only one statement, begin and end can be omitted */

16

Verilog – IF Statement example

 2x1 Multiplexer

module MUXBH (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
reg Y; /* since Y is an output and appears inside always,
 Y has to be declared as register) */
always @ (SEL, A, B, Gbar)
begin

if (Gbar == 0 & SEL == 1)
begin
Y = B;
end
else if (Gbar == 0 & SEL == 0)
Y = A;
else
Y = 1’bz;
end

endmodule

17

Verilog – CASE Statement

case (control expression)
test value1:
 begin
 statement1;

end
test value2:

…….

default:
default statements

endcase

18

Verilog – CASE Statement example

 Positive Edge-Triggered JK Flip-Flop

module JK_FF (JK, clk, q, qb);
input [1:0] JK;
input clk;
output q, qb;
reg q, qb;

always @(posedge clk)
begin

case (JK)
2’d0: q = q;
2’d1: q = 0;
2’d2: q = 1;
2’d3: q = ~q;

endcase
qb = ~q;
end

endmodule

19

Verilog – FSM from a Single Always Block

module FSM(o, a, b);
output o;
reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)
 if (reset) state <= 2’b00;
 else case (state)
 2’b00: begin
 state <= a ? 2’b00 : 2’b01;
 o <= a & b;
 end
 2’b01: begin state <= 2’b10; o <= 0; end
 endcase

Expresses Moore machine
behavior:

Outputs are latched

Inputs only sampled at
clock edges

Non-blocking assignments
used throughout to ensure
coherency.

RHS refers to values
calculated in previous
clock cycle

Verilog - Design flow

 Verilog can be synthesized using various tools
 Xilinx ISE (for Xilinx FPGAs)

 Verilog files (.v)
 Netlists (logical)

 Logical Synthesis
 Physical programming file

 Place & Route
 Assign package pins

20

Synthesizable Verilog Codes

 Behavioral simulation is not enough!
 Verilog codes must be synthesizable
 Do not code Verilog like C

21

Synthesizable Verilog Codes

 Behavioral simulation is not enough!
 Verilog codes must be synthesizable
 Do not code Verilog like C

21

Synthesizable Verilog Codes

 Behavioral simulation is not enough!
 Verilog codes must be synthesizable
 Do not code Verilog like C

21

Combinational Logic

 All inputs must be in the sensitivity list
 Must describe the output for all kinds of inputs

 Otherwise a latch will be generated!
 Latches are not preferred in logic designs
 Be careful when using ‘if’ statements or ‘case’ statements

22

Combinational
Logic

(implemented
with LUT)

a[3:0]
b

c
d

e

Sequential Logic

 ‘posedge’ or ‘negedge’ must be included in the sensitivity
list

 FF with asynchronous reset
 FF with synchronous reset

23

a_in

clk

a_out

rst

Synthesizable Verilog code

 Always think about the hardware architecture first and
then describe it in Verilog

 RTL (Register Transfer Level) Coding

24

25

Modeling FSMs Behaviorally

 There are many ways to do it

 Define the next-state logic combinationally and define
the state-holding latches explicitly

Finite State Machines

 Moore Machine

26

Combinational
Logic to compute

next state
next state state

Combinational
Logic to compute

output

output

input

Finite State Machines

 Moore Machine
 3 always blocks

27

Combinational
Logic to compute

next state
next state state

Combinational
Logic to compute

output

output

input

28

Finite State Machines

module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
 case (state)
 2’b00: begin
 nextState = a ? 2’b00 : 2’b01;
 o = a & b;
 end
 2’b01: begin nextState = 2’b10; o = 0; end
 endcase

 ……

Combinational block must
be sensitive to any change
on any of its inputs

(Implies state-holding
elements otherwise)

Output o is declared a reg
because it is assigned
procedurally, not because
it holds state

29

Finite State Machines

always @(a or b or state)
 case (state)
 2’b00: begin
 nextState = a ? 2’b00 : 2’b01;
 o = a & b;
 end
 2’b01: begin nextState = 2’b10; o = 0; end
 endcase

always @(posedge clk or reset)
 if (reset)
 state <= 2’b00;
 else
 state <= nextState;

This is a Mealy machine
because the output is
directly affected by any
change on the input

Latch implied by sensitivity
to the clock or reset only

Synthesis Result

30

Synthesis Result

31

Synthesis Result

32

RTL coding

33

 Can you implement it in Verilog?

