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Verilog – Introduction

 Verilog Hardware Description Language (HDL)
 Behavioral level
 Register Transfer Level (RTL)
 Gate level
 Transistor/Switch level

 Developed in 1983 by Gateway Design Automation Inc.
 Most popular HDL of the time
 Traditional computer languages such as C 

 IEEE Standard:
 Verilog 95: IEEE Std. 1364-1995
 Verilog 2001: IEEE Std. 1364-2001
 SystemVerilog: IEEE Std 1800-2005
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Verilog – Data Types

Name Description Example

Value set 0 - Logic zero, false condition

1 - Logic one, true condition

x - Unknown logic value

z - High impedance, floating state

Nets Declared by the predefined word wire

Represent connections between hardware elements

Values continuously driven on them by the outputs of devices

wire sum;
wire S1 = 1’b0;

Registers Declared by the predefined word reg

Represent data storage elements

Retain value until another value is placed onto them

reg Sum_total;

Vectors Declared by brackets []

Represent multiple bits of net or register

wire [3:0] a = 4’b1010;
reg [7:0] total = 8’d12;

Integers Declared by the predefined word integer integer no_bits;

Real Declared by the predefined word real

Represent real (floating-point) numbers

real weight;

Parameters Declared by the predefined word parameter

Represent global constants

parameter N=4;
parameter M=3;

Arrays None predefined word

Registers and integers can be written as arrays

reg [M:0] b [0:N]
integer sum [0:N]



4

Verilog – Operators

 Bit-select operator
 []

 Parenthesis
 ()

 Negations operators
 ! (logical), ~ (bit-wise)

 Unary arithmetic operators
 +, - (sign)

 Concatenation
 {a, b[2:1], c}

 Replication
 {n{m}} (m n times)

 Binary arithmetic operators
 *, /, % (mod)
 +, -

 Shift operators
 <<. >>

 Relational operators
 >, <, >=, <=
 ==, !=
 ===, !== (including x and z)

 Bitwise logical operators
 & (AND)
 ^ (XOR), ^~ or ~^ (XNOR)
 | (OR)

 Boolean logical operators
 && (AND)
 || (OR)

 Conditional operator
 Cond. Exp. ? True Exp. : False 

Exp.
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Verilog – Two Main Components of Verilog

 Concurrent, event-triggered processes (behavioral)
 Initial and Always blocks
 Imperative code that can perform standard data 

manipulation tasks (assignment, if-then, case)
 Processes run until they delay for a period of time or wait 

for a triggering event

 Structure (Plumbing)
 Verilog program build from modules with I/O interfaces
 Modules may contain instances of other modules
 Modules contain local signals, etc.
 Module configuration is static and all run concurrently
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Verilog – Modules and Instances

 Basic structure of a Verilog module:
module mymod(output1, output2, … input1, input2);
output output1;
output [3:0] output2;
input input1;
input [2:0] input2;
…
endmodule

 Instances of
	 module mymod(y, a, b);

 look like
mymod mm1(y1, a1, b1);	 	 	 // Connect-by-position
mymod mm2(.a(a2), .b(b2), .y(c2));  		 // Connect-by-name
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Verilog – Initial and Always Blocks

 Basic components for behavioral modeling

always
  begin
    … imperative statements …
  end

Runs when simulation starts
Restarts when control reaches the end
Good for modeling/specifying hardware

initial
  begin
    … imperative statements …
  end

Runs when simulation starts
Terminates when control reaches the end
Good for providing stimulus endmodule
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Verilog – Initial and Always

 Run until they encounter a delay
initial begin
  #10 a = 1; b = 0;
  #10 a = 0; b = 1;
end

 or a wait for an event
always @(posedge clk) q = d;
always begin wait(i); a = 0; wait(~i); a = 1; end
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Verilog – Procedural Assignment

 Inside an initial or always block:

	 sum = a + b + cin;

 Just like in C: RHS evaluated and assigned to LHS before 
next statement executes

 RHS may contain wires and regs
 Two possible sources for data

 LHS must be a reg
 Primitives or cont. assignment may set wire values
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Verilog – Blocking vs. Non-blocking

 Verilog has two types of procedural assignment

 Fundamental problem:
 In a synchronous system, all flip-flops sample 

simultaneously
 In Verilog, always @(posedge clk) blocks run in some 

undefined sequence
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Verilog – A Flawed Shift Register

 This doesn’t work as you’d expect:

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;
always @(posedge clk) d3 = d2;
always @(posedge clk) d4 = d3;

 These run in some order, but you don’t know which
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Verilog – Non-blocking Assignments

 This version does work:

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;
always @(posedge clk) d3 <= d2;
always @(posedge clk) d4 <= d3;

Non-blocking rule:

RHS evaluated when 
assignment runs

LHS updated only after all 
events for the current instant 
have run
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Verilog – Non-blocking Can Behave Oddly

 A sequence of non-blocking assignments don’t 
communicate

a = 1;

b = a;

c = b;

Blocking assignment:

a = b = c = 1

a <= 1;

b <= a;

c <= b;

Non-blocking assignment:

a = 1

b = old value of a

c = old value of b
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Verilog – Non-blocking Looks Like Latches

 RHS of blocking taken from wires 
 RHS of non-blocking taken from latches

a = 1;

b = a;

c = b;

a <= 1;

b <= a;

c <= b;

1
a b c

a

b

c

1
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Verilog – IF Statement

if (Boolean Expression)
begin
	 statement 1; /*if only one statement, begin and end can be omitted */

	 statement 2;

	 begin
 ……….

	 end

end
else if (Boolean Expression)
	 statement a; /*if only one statement, begin and end can be omitted */
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Verilog – IF Statement example

 2x1 Multiplexer

module MUXBH (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
reg Y;                                /* since Y is an output and appears inside always, 
                                                       Y has to be declared as register) */
always @ (SEL, A, B, Gbar)
begin

if (Gbar == 0 & SEL == 1)
begin
Y = B;
end
else if (Gbar == 0 & SEL == 0)
Y = A;
else
Y = 1’bz;
end

endmodule
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Verilog – CASE Statement

case (control expression)
test value1: 
   begin 
      statement1;

end
test value2:

…….

default:
default statements

endcase
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Verilog – CASE Statement example

 Positive Edge-Triggered JK Flip-Flop

module JK_FF (JK, clk, q, qb);
input [1:0] JK;
input clk;
output q, qb;
reg q, qb;

always @(posedge clk)
begin

case (JK)
2’d0: q = q;
2’d1: q = 0;
2’d2: q = 1;
2’d3: q = ~q;

endcase
qb = ~q;
end

endmodule



19

Verilog – FSM from a Single Always Block

module FSM(o, a, b);
output o; 
reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)
  if (reset) state <= 2’b00;
  else case (state)
    2’b00: begin
       state <= a ? 2’b00 : 2’b01;
       o <= a & b;
    end
    2’b01: begin state <= 2’b10; o <= 0; end
 endcase

Expresses Moore machine 
behavior:

Outputs are latched

Inputs only sampled at 
clock edges

Non-blocking assignments 
used throughout to ensure 
coherency.

RHS refers to values 
calculated in previous 
clock cycle



Verilog - Design flow

 Verilog can be synthesized using various tools
 Xilinx ISE (for Xilinx FPGAs)

 Verilog files (.v)
 Netlists (logical)

 Logical Synthesis
 Physical programming file

 Place & Route
 Assign package pins
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Synthesizable Verilog Codes

 Behavioral simulation is not enough!
 Verilog codes must be synthesizable
 Do not code Verilog like C
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Combinational Logic

 All inputs must be in the sensitivity list
 Must describe the output for all kinds of inputs

 Otherwise a latch will be generated!
 Latches are not preferred in logic designs
 Be careful when using ‘if’ statements or ‘case’ statements

22

Combinational 
Logic 

(implemented 
with LUT)

a[3:0]
b

c
d

e



Sequential Logic

 ‘posedge’ or ‘negedge’ must be included in the sensitivity 
list

 FF with asynchronous reset
 FF with synchronous reset
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a_in

clk

a_out

rst



Synthesizable Verilog code

 Always think about the hardware architecture first and 
then describe it in Verilog

 RTL (Register Transfer Level) Coding

24
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Modeling FSMs Behaviorally

 There are many ways to do it

 Define the next-state logic combinationally and define 
the state-holding latches explicitly



Finite State Machines

 Moore Machine
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Combinational 
Logic to compute 

next state
next state state

Combinational 
Logic to compute 

output

output

input



Finite State Machines

 Moore Machine
 3 always blocks
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Combinational 
Logic to compute 

next state
next state state

Combinational 
Logic to compute 

output

output

input
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Finite State Machines

module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
 case (state)
    2’b00: begin
       nextState = a ? 2’b00 : 2’b01;
       o = a & b;
    end
    2’b01: begin nextState = 2’b10; o = 0; end
 endcase

 ……

Combinational block must 
be sensitive to any change 
on any of its inputs

(Implies state-holding 
elements otherwise)

Output o is declared a reg 
because it is assigned 
procedurally, not because 
it holds state
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Finite State Machines

always @(a or b or state)
 case (state)
    2’b00: begin
       nextState = a ? 2’b00 : 2’b01;
       o = a & b;
    end
    2’b01: begin nextState = 2’b10; o = 0; end
 endcase

always @(posedge clk or reset)
  if (reset)
    state <= 2’b00;
  else
    state <= nextState;

This is a Mealy machine 
because the output is 
directly affected by any 
change on the input

Latch implied by sensitivity 
to the clock or reset only



Synthesis Result
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Synthesis Result
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Synthesis Result
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RTL coding
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 Can you implement it in Verilog?


