Verilog Introduction

Naehyuck Chang
Dept. of EECS/CSE
Seoul National University

mailto:naehyuck@snu.ac.kr
mailto:naehyuck@snu.ac.kr

Verilog — Introduction

e \lerilog Hardware Description Language (HDL)
Behavioral level
Register Transfer Level (RTL)
Gate level
Transistor/Switch level
e Developed in 1983 by Gateway Design Automation Inc.
Most popular HDL of the time
Traditional computer languages such as C
e JEEE Standard:
Verilog 95: IEEE Std. 1364-1995
Verilog 2001: IEEE Std. 1364-2001
SystemVerilog: IEEE Std 1800-2005

Verilog — Data Types

Name

Description

Example

Value set

0 - Logic zero, false condition

1 - Logic one, true condition

x - Unknown logic value

z - High impedance, floating state

Declared by the predefined word wire
Represent connections between hardware elements
Values continuously driven on them by the outputs of devices

wire sum;
wire S1 = 1'b0;

Registers

Declared by the predefined word reg
Represent data storage elements
Retain value until another value is placed onto them

reg Sum_total;

Vectors

Declared by brackets []
Represent multiple bits of net or register

wire [3:0] a = 4b1010;
reg [7:0] total = 8'd12;

Integers

Declared by the predefined word integer

integer no_bits;

Real

Declared by the predefined word real
Represent real (floating-point) numbers

real weight;

Parameters

Declared by the predefined word parameter
Represent global constants

parameter N=4;
parameter M=3;

Arrays

None predefined word
Registers and integers can be written as arrays

reg [M:0] b [0:N]
integer sugn [0:N]

Verilog — Operators

Bit-select operator

[]

Parenthesis

9,
Negations operators

I (logical), ~ (bit-wise)
Unary arithmetic operators

+, - (sign)
Concatenation

{a, b[2:1], c}
Replication

{n{m}} (m n times)
Binary arithmetic operators

*, [, % (mod)

+, -

Shift operators
<<, >>
Relational operators

, == (including x and z)

Bitwise logical operators

& (AND)

N (XOR), A~ or ~” (XNOR)

| (OR)
Boolean logical operators

&& (AND)

|| (OR)
Conditional operator

Cond. Exp. ? True Exp. : False
EXp.

Verilog — Two Main Components of Verilog

e Concurrent, event-triggered processes (behavioral)
Initial and Always blocks

Imperative code that can perform standard data
manipulation tasks (assignment, if-then, case)

Processes run until they delay for a period of time or wait
for a triggering event

e Structure (Plumbing)

Verilog program build from modules with I/O interfaces
Modules may contain instances of other modules
Modules contain local signals, etc.

Module configuration is static and all run concurrently

5

Verilog — Modules and Instances

e Basic structure of a Verilog module:
module mymod(outputl, output2, ... inputl, input2);
output outputl;
output [3:0] output2;
input inputl;
input [2:0] input2;

endmodule

e Instances of
o module mymod(y, a, b);

® |ook like
mymod mm1(yl, al, bl);e o // Connect-by-position
mymod mm2(.a(a2), .b(b2), .y(c2)); // Connect-by-name

6

Verilog — Initial and Always Blocks

® Basic components for behavioral modeling

initial always
begin begin
... Imperative statements Imperative statements ...
end end

Runs when simulation starts Runs when simulation starts
Terminates when control reaches the end Restarts when control reaches the end
Good for providing stimulus endmodule Good for modeling/specifying hardware

Verilog — Initial and Always

e Run until they encounter a delay
initial begin
#10a=1;,b=0;
1;

#10a=0;b
end

or a wait for an event
always @(posedge clk) g = d;
always begin wait(i); a = 0; wait(~i); a = 1; end

Verilog — Procedural Assignment

Inside an initial or always block:

sum =a + b + cin;

Just like in C: RHS evaluated and assigned to LHS before
next statement executes

RHS may contain wires and regs
Two possible sources for data

LHS must be a reg
Primitives or cont. assignment may set wire values

9

Verilog — Blocking vs. Non-blocking

¢ Verilog has two types of procedural assignment

¢ Fundamental problem:

In a synchronous system, all flip-flops sample
simultaneously

In Verilog, always @(posedge clk) blocks run in some
undefined sequence

Verilog — A Flawed Shift Register

® This doesn’t work as you'd expect:
reg d1, d2, d3, d4;
always @(posedge clk) d2 = di;
always @(posedge clk) d3 = d2;
always @(posedge clk) d4 = d3;

® These run in some order, but you don’t know which

Verilog — Non-blocking Assignments

e This version does work: Non-blocking rule:

RHS evaluated when
assignment runs

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= di;
always @(posedge clk) d3 <= d2;
always @(posedge clk) d4 <= d3;

LHS updated only after all
events for the current instant
have run

Verilog — Non-blocking Can Behave Oddly

e A sequence of non-blocking assignments don't
communicate

a=1; a<=1;
b =a; b <=a;
C =Db; c<=b;

Blocking assignment: Non-blocking assignment:
a=b=c=1 a=1

b = old value of a

c = old value of b

Verilog — Non-blocking Looks Like Latches

e RHS of blocking taken from wires

e RHS of non-blocking taken from latches
a=1;
b =a;
c=Db;

a<=1;

b<=a;
c <= b;

Verilog — IF Statement

if (Boolean Expression)

begin

o statement 1; /*if only one statement, begin and end can be omitted */
o gstatement 2;

else if (Boolean Expression)
o statement a; /*if only one statement, begin and end can be omitted */

15

Verilog — IF Statement example

e 2x1 Multiplexer

module MUXBH (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
regy; /* since Y is an output and appears inside always,
Y has to be declared as register) */
always @ (SEL, A, B, Gbar)
begin A
if (Gbar == 0 & SEL == 1)
begin
Y = B; B
end
else if (Gbar == 0 & SEL == 0) SE-
Y =A;
Gbar
else Y
Y = 1'bz;
end
endmodule

Verilog — CASE Statement

case (control expression)
test valuel:
begin
statementl;
end
test value2:

default:
default statements

endcase

Verilog — CASE Statement example

® Positive Edge-Triggered JK Flip-Flop

module JK_FF (JK, clk, q, gb); 0x
input [1:0] JK;

input clk;

output g, gb;

reg q, gb;

x1
State diagram

always @(posedge clk)
begin
case (JK)
2'd0: g =q;
2'dl: q=0;
2'd2: q=1;
2'd3: q = ~q;
endcase
gb = ~q;
end

Simulation waveform of a positive edge -triggered JK flip -flop

endmodule

Verilog — FSM from a Single Always Block

module FSM(o, a, b);
output o;
reg o;

input a, b; Outputs are latched
reg [1:0] state; / Inputs only sampled at
clock edges

Expresses Moore machine
behavior:

always @(posedge clk or reset)

if (reset) state <= 2'b00; Non-blocking assignments
eIs’e case (st_ate) used throughout to ensure
2'b00: begin coherency.
— ? /4 . Y . I
state <=a? 2'b00 : 2'b01; RHS refers to values

0<=a&b; * calculated in previous
end clock cycle
2'b01: begin state <= 2'b10; 0 <= 0; end
endcase

Verilog - Design flow

Verilog can be synthesized using various tools
Xilinx ISE (for Xilinx FPGAS)

Design Verification

!

l Behavioral
Simulation

Verilog files (.v) Design +

Netlists (logical) e
Logical Synthesis

Physical programming file
Place & Route l

Xilinx Device In-Circuit

ASSlgn paCkage plns Programming Verification

Functional
Simulation

Design Static Timing
Implementation Analysis

Back Timing
Annotation Simulation

Synthesizable Verilog Codes

¢ Behavioral simulation is not enough!
¢ Verilog codes must be synthesizable
® Do not code Verilog like C

module wverilog top(
input clk,
input a,
input b,
output reg c

)

alvays @ (posedge clk or a)
begin

c <= clk & a & b;
end

encdmodule

Analyzing top module <verilog top>.
€ ERROR: ¥Xst:902 - "werilog top.w" line 29: Unexpected a event in always block sensitivity list.

Synthesizable Verilog Codes

¢ Behavioral simulation is not enough!
¢ Verilog codes must be synthesizable
® Do not code Verilog like C

module verilog top|
input clk,
input a,
input b,
output reg c

)

always @ (posedge clk or negedge a)
begin

c <= ¢clk & a & b
end

endmodule

Analyzing top module <verilog top>.
€ ERROR: ¥Xst:902 - "werilog top.w" line 29: Unexpected a event in always block sensitivity list.

Synthesizable Verilog Codes

¢ Behavioral simulation is not enough!
¢ Verilog codes must be synthesizable
® Do not code Verilog like C

module verilog top|
input clk,
input a,
input b,
output reg c

)

always @ (posedge clk or negedge a)
begin

c <= ¢clk & a & b
end

endmodule

Analyzing top module <verilog top>.
'€3 ERROR: X5t :899 - "verilog top.v" line 31: The logic for <c> does not match a known FF or Latch template

Combinational Logic

¢ All inputs must be in the sensitivity list

® Must describe the output for all kinds of inputs
Otherwise a latch will be generated!
Latches are not preferred in logic designs
Be careful when using 'if’ statements or ‘case’ statements

alvays @(a or b or ¢ or d)

Combinational
Logic
(implemented
with LUT)

'L1001)

Sequential Logic

® ‘posedge’ or 'negedge’ must be included in the sensitivity

list
® FF with asynchronous reset
® FF with synchronous reset

%
e

alwvays @ (posedge clk or negedge rst)
begin
if [(~rst)
a out <= 0;
else
a out <= a in;
end

always @ (posedge clk)
begin
if (~rst)
a out <= 0;
else
a out <= a in;
enu:i]

Synthesizable Verilog code

e Always think about the hardware architecture first and
then describe it in Verilog

e RTL (Register Transfer Level) Coding

clk

Modeling FSMs Behaviorally

® There are many ways to do it

¢ Define the next-state logic combinationally and define
the state-holding latches explicitly

Finite State Machines

® Moore Machine

Combinational

Logic to compute next state

next state

input

SR,
V-L ™
)‘»»:ZZA\

Seoul National University

state

Combinational
Logic to compute

|\/

output

26

Finite State Machines

® Moore Machine
* 3 always blocks

Combinational
next state state Logic to compute output
output

Combinational
Logic to compute
next state

input

,
A

Seoul National University

alwvays @ (posedge clk or negedge rst)
begin
if [~rst)
state <= 0;
else
state <= next state;
end

always @(state or /Finputs®/)
begin

next state <=
end

alvays @ state)
begin

/S foutputs*/ <=
end

Finite State Machines

module FSM(o, a, b, reset); Output o is declared a reg
output o; — because it is assigned
reg 0; «— procedurally, not because

input a, b, reset; it holds state
reg [1:0] state, nextState;

always @(a or b or state) Combinational block must
case (state) be sensitive to any change

2'b00: begin on any of its inputs

nextState = a ? 2'b00 : 2’b01; (Implies state-holding
o=a&b; elements otherwise)

end
2'b01: begin nextState = 2'b10; o = 0; end
endcase

Finite State Machines

always @(a or b or state) \
case (state) This is a Mealy machine

2'b00: begin because the output is
nextState = a ? 2'b00 : 2'b01; directly affected by any

o=a&b; « change on the input
end
2'b01: begin nextState = 2'b10; 0 = 0; end
endcase

always @(posedge clk or reset)
if (reset) \ o L
Latch implied by sensitivity

eIssteate <= 2'b00; to the clock or reset only

state <= nextState;

Synthesis Result

Slice Logic Utilization
MNumber of Slice Registers
MNumber used as Flip Flops
MNumber used as Latches
Number of Slice LUTs
MNurmber used as logic
Murmber using O6 output only
Mumber using 05 output only
MNumber using 05 and OB
MNumber used as Memory
Number used as Dual Port RAM

Seoul National University

Device Utilization Summary
Used Available

4,262 138,240

4,238

24
8,032 138,240
7,664 138,240

1.250

177

237
336 36,480

133

Utilization

w
%

m o,
& ¢

=
Note(s)

30

Synthesis Result

Synthesizing Unit <NOR_F3M-.
Related source file is "NOR_ctrl/NOR_F3M.wv".

WARNING:¥st:646 - Signal <MEM MASK> is assigned but never used. This unconnected sig
Found finite state machine <F5M_6> for signal <state>.

States	5
Transitions	15
Inputs	8
Outputs	5
Clock	HCLK (rising_ edge)
Reset	HRESETn (negatiwve)
Reset type	synchronous
Reset State	00000000000
Power Up State	00000000000
Encoding	automatic
Implementation	LUT

Found 1-bit register for signal <ready>.
Found 3Z-bit register for signal <CFIFO_ADDR_1>.
Found 32-bit adder for signal <CFIFO_ADDR_l$share0000> created at line 125.
Found S5-bit register for signal <CFIFO_LEN 1>.
Found S-bhit subtractor for signal <CFIFO_LEN_l$share0000> created at line 125.
Found 11-bit up counter for signal <cnt>.
Found 4-bit register for signal <DELAY CNT>.
Found 4-bit subtractor for signal <DELAY_CNT$addsubDODD>.
Swrary:
inferred 1 Finite State Machine(s).
inferred 1 Counteri(s).
inferred 42 D-type flip-flop(s).
inferred 3 Adder/Subtractor(s).
Unit <NOR_F3M> synthesized.

p——
X

Seoul National University

31

Synthesis Result

Timing Swaonary:

Speed Grade: -2

Minirouam
Miniruam
Max irmuam
Max irmum

Seoul National University

period: 11.888ns (Maximum Frequency: S4.117MHz)

input arrival time before clock:
output regquired time after clock:
combinational path delay: 3.246ns

10.698ns
3.921ns

32

RTL coding

e Can you implement it in Verilog?

Memory : Write

Instruction Instr. Decode Execute
Back

Fetch ' Reg. Fetch ' Addr. Calc ' Access

] NextseaPc [7] NextSEQPC

Next PC _ _
F\‘SIA
RS2 | o
&
> m e P ZERO? P
o

X37ai
nv
s

y
pueix3
ubis

Imm

eleg gam

\

33

Yy %
DX

Seoul National University

