Performance Monitoring

(Based on PXA250)

Overview

- Performance Monitoring Registers
 - Clock counter
 - Performance counter
 - Performance monitor control register
- Performance Monitoring Examples
 - CPI (cycles per instruction)
 - I-cache/D-cache efficiency
 - Instruction fetch latency
 - Data/bus request buffer
 - Stall/writeback statistics
 - I-TLB/D-TLB efficiency

Performance Monitoring Registers

- Two 32-bit Performance Monitor Count (PMN0/1)
 - Can monitor two events simultaneously
- One 32-bit Clock Counter (CCNT)
 - Useful when measuring total execution times
- Performance Monitor Control Register (PMNC)
 - Can select monitored events at PMN0 & PMN1
 - Reset, detect overflow of counters
- Accessible through Coprocessor 14 (CP14)
 - PMNC: reg 0
 - CCNT: reg 1 , PMN0/1: regs 2/3

Events Type

- Occurrence events:
 - whenever the event happens, counter ++
- Duration events:
 - while (ConditionIsTrue) counter++
- Performance monitoring Examples
 - Clock counter ⇒ total number of cycles during monitoring
 - Performance counter ⇒ Duration events counting
 - % of Event duration =
 - (performance counter / clock counter) * 100

Jihong Kim

Jihong Kim

Extending Count Duration > 32 bits

- Overflow interrupts whenever Counter reaches the max value (if enabled)
- Counting continues under Overflow until it is disabled by ISR
- In a typical ISR will do accumulate the number of overflows in a memory location.
- ISR overhead is negligible:
 - Overhead = tens of cycles << 2³²

<u>Clock Counter (CCNT)</u>

- Counts core clock cycles.
- If the max value (0xFFFFFFF) is reached,
 - Reset to 0
 - Overflow bit (PMNC bit 10) set to 1
 - IRQ/FIQ
 - If Enabled (PMNC bit 6)

Jihong Kim

Performance Monitor Control Reg. (PMNC)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						e١	/tC	oun	t1					e١	/tC (oun	t0				1	flag			i	nter	n	D	С	Ρ	E

- 19:12/27:20 : Event Type for PMN0/1
- 10:8 : Overflow/Interrupt flag
 - Identifies which counter overflowed
 bit 10: CCNT, bit 8/9: PMN0/1
- 6:4 : Interrupt Enable
 - Bit 6: CCNT, bit 4/5: PMN0/1
 - 1 = enable , 0 = disable

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						e٧	rtCo	oun	t1					e١	/tCo	bun	t0				1	flag			i	nter	n	D	С	Ρ	E

- 3(D) : clock counter divider
 - 0 = count every cycle , 1 = count every 64 cycles
- 2(C) : clock counter reset
 - 0 = no action, 1 = reset CCNT to 0
- 1(P) : performance counter reset
 - 0 = no action, 1 = reset both PMN0/1 to 0
- **0(E)** : enable
 - All three counters disable (0)/enable (1)

Jihong Kim

Performance Monitoring Event

Performance Monitoring Examples

Mode	PMNC.evtCount0	PMNC.evtCount1
Instruction Cache Efficiency	0x7 (instruction count)	0x0 (I Cache miss)
Data Cache Efficiency	0xA (Dcache access)	0xB (DCache miss)
Instruction Fetch Latency	0x1 (ICache cannot deliver)	0x0 (ICache miss)
Data/Bus Request Buffer Full	0x8 (DBuffer stall duration)	0x9 (DBuffer stall)
Stall/Writeback Statistics	0x2 (data stall)	0xC (DCache writeback)
Instruction TLB Efficiency	0x7 (instruction count)	0x3 (ITLB miss)
Data TLB Efficiency	OxA (Dcache access)	0x4 (DTLB miss)

Jihong Kim

Example: I-Cache Efficiency & CPI Monitoring

- $PMN0 \Rightarrow Instruction Count$
 - PMNC.evtCount0 = 0x7
- PMN1 \Rightarrow # of I-cache misses
 - PMNC.evtCount1 = 0x0
- CCNT \Rightarrow Total number of cycles
- I-cache miss rate = PMN1/PMN0
- CPI (cycles per ins.) = CCNT/PMN0

Configuring PMNC	<pre>; Configure PMNC with the following values: ; evtCount0 = 7, evtCount1 = 0instruction cache efficiency ; inten = 0x7set all counters to trigger an interrupt on</pre>
Interrupt handling	<pre>IRQ_INTERRUPT_SERVICE_ROUTINE: ; Assume that performance counting interrupts are the only IRQ in the system MRC P14,0,R1,C0,C0,0; read the PMBC register BIC R2,R1,#1 ; clear the enable bit MRC P14,0,R2,C0,c0,0; clear interrupt flag and disable counting MRC P14,0,R3,C1,C0,0; read CCNT register MRC P14,0,R3,C1,c0,0; read PMN0 register MRC P14,0,R5,C3,c0,0; read PMN1 register </pre>
Computing results	<pre>; Assume CCNT overflowed CCNT = 0x0000,0020 ;Overflowed and continued counting Number of instructions executed = PMN0 = 0x6AAA,AAAA Number of instruction cache miss requests = PMN1 = 0x0555,5555 Instruction Cache miss-rate = 100 * PMN1/PMN0 = 5% CPI = (CCNT + 2^32)/Number of instructions executed = 2.4 cycles/instruction</pre>

Example: D-Cache Efficiency

- PMN0 \Rightarrow # of D-cache accesses
 - PMNC.evtCount0 = 0xA
- PMN1 \Rightarrow # of D-cache misses
 - PMNC.evtCount1 = 0xB
- D-cache miss rate = PMN1/PMN0

Jihong Kim