ARM Processor Organization

ARM Cache Memory

ARM core

Cache Policy

RR vs. Pseudorandom Replacement

€ Write policy: WB or WT ® RR
Cache line replacement policy
= Round-robin (+) Predictability improved
s Pseudorandom :
n then Vlictim counter reaches the max. vlaue, reset to the (-) large Change mn performance for a small
ase value .
€ Allocation policy on a cache miss change irmemory access

= Read-allocate
= Read-write-allocate

E.g, ARM920T: WB/WT, RR/PR, RA
Xscale: WB/WT, RR, RA/RWA

EX: ARM 940T Cache

@ 4KB I-Cache

@ 4 Sets, each set with 1KB
@ 16B line size

® 64 B in a way

void cache_RRtest(unsigned int times,unsigned int numset)

{

clock_t count;

-4printf("Round Robin test size = %d\r\n", numset);

enableRoundRobin();

cleanFlushCache();

count = clock();

readSet(times,numset);

count = clock() - count;

printf("Round Robin enabled = %.2f seconds\r\n",
(float)count/CLOCKS_PER_SEC);

enableRandom();

cleanFlushCache();

count = clock();

readSet(times, numset);

count = clock() - count;

printf("Random enabled = %.2f seconds\r\n\r\n",
(float)count/CLOCKS_PER_SEC);

int readSet(unsigned int times, unsigned int numset)
{
int setcount, value;
——velatile-int*newstart;
volatile int *start = (int *)0x20000;
__asm
{
timesloop:
MOV newstart, start
MOV setcount, numset
setloop:
LDR value [newstart,#0];
ADD newstart,newstart,#0x40;
SUBS setcount, setcount, #1;
BNE setloop
SUBS times, times, #1;
BNE timesloop;

} Cache_RRtest(0x10000, 64) vs.
return valug; Cache_RRtest(0x10000, 65)?

System Control Coprocessor 15

@ Used to configure & control ARM cached
cores

#® Clean & Flush cache
m Flush in ARM == Invalidate

+ Clear the valid bit in the cache line

s Clean in ARM == Flush

+ Write dirby cache lines to memory

& Drain write buffer
@ Cache lockdown

Cache Lockdown

® Improve the predictability but reduce
the cache size

@® Candidates for lockdown
= Vector interrupt table
= ISR
» Performance critical code
= Global variables (frequently used)

ARM 920T I-Cache Organization

® 16KB (512 lines * 32 bytes, arranged as a 64-
way set associative cache)

- Moaed Wirual Addnass - s = I
[T}
- SEG 0 T
TAG v O] I T T 71 I Iw7
Cache fneindex cann LA
ZRE RAM = B4 s @ S words =
=3
= 1T I T1]
o v
SEG 0 select
ROATALS 00 10

EX: I-Cache Locking

ADRL ri, start_address ; address pointer
ADRL rl,end_address
MOV r2 #lockdown_base<<26 i victim painter
MCR pl5,0,r2,c9,00,1 v write [Cache vierim and lockdown base
Toop MER pl5,0,r0,c7,c13,1 i Prefetch ICache line
ADD b, rd, #32 i increment address pointer to next ICache line

;1 do we need to increment the vicrim pointer?
;1 test for segment @, and if so, increment the vicrim pointer
:: and write the ICache victim and lockdown base.

AND ri,), #0xED ; extract the segment bite from the addrass
(MP r3, #0xd i test for segment O

ADDEQ r2,r2,80xlec2b i if segment @, increment victim pointer
MCRED pl5.0.r2,c%,cd,1 i and write ICache victim and lockdown base

11 have we linefilled enough code?
3+ test for the address pointer being less than or equal to the
:: end_address and if so, Toop and perform another Tinefill
MP rid, rl ; Test for less than or equal to end_address

BLE loop i if not, loop

11 have we exited with r3 pointing to segment ©7
33 if so, the ICache victim and lockdown base has already been set to one
:: higher than the last entry written,
;1 if not, increment the victim pointer and write the Ifache victim and
11 lockdown base.
Mp ri3, #0x0 . test for segments 1 to 7
ADONE rd,rd, #lacl ; if address i< cagment 1 1o 7,
MCRNE pl5.0.r2.c%.c0.1 i write ICache victim and Tockdown base 11

