
2009-02-13

1

A Compact B-tree

ACM SIGMOD 2002ACM SIGMOD, 2002
Peter Bumbulis, Ivan T.Bowman
Presented by Kyuseok Shim

Patricia Tree(trie)Patricia Tree(trie)

Specialized set data structure based on the trie that is used
to store a set of strings
In contrast with a regular trie, the edges of a patricia trie
are labelled with sequences of characters rather than withare labelled with sequences of characters rather than with
single character

A trie for key {t,to,te,tea,ten,I,in,inn} A patricia trie

2009-02-13

2

Patricia Tree in BinaryPatricia Tree in Binary

Leaf nodes contain keys
Internal nodes contain offset, left-pointer and right-pointer

– Offset : bit offset, all leaves descended from a node must agree on
the first d-1 bitsthe first d 1 bits

– Left-pointer : all leaves descended from the left child must have a ‘0’
as the offset-th bit

– Left-pointer : all leaves descended from the right child must have a
‘1’ as the offset-th bit

N(d,l,r)
d : offset

A patricia trie for 1000,1110 and 1111

l,r : left, right child pointer

ObservationObservation

The bit offsets in the nodes must increase as we follow a
path from the root to a leaf

The number of internal nodes in a patricia tree is alwaysThe number of internal nodes in a patricia tree is always
one less than the number of leaves

A leaf a is to the left of a leaf b iff the key in the a is less
than the key in b

The offset of the first bit at which two keys differ is the bit
offset found in their lowest common ancestor

2009-02-13

3

Elementary OperationsElementary Operations

Blind search
– Given the key ki stored in a leaf L doing a blind search from the root
– For encountered node N(d,l,r) and search key k, if k[d] = 0, we

continue on to left-child l, otherwise right-child r

Blind search for 1110
1. Nroot : offset 2

k’s 2nd bit is 1, go right-child N1
2. N1 : offset 4

k’s 4th bit is 0, go left-child
3. Check the key stored in leaf node we found
is the search key(1110 = 1110)

Nroot

N1

y()

Elementary OperationsElementary Operations

Insert
– To insert a value k, do a blind search and find a key kj in a leaf node
– K must differ from kj at some bit position, let d be the first differing

bit position
– Encountered a node N(d’,l’,r’) during the blind search with d’>d,

then let the subtree s be the first such node, otherwise s be the leaf
node found with blind search

– If k[d] = 0, insert a new node N(d,L(k),s)
If k[d] = 1, insert a new node N(d,s,L(k))

2009-02-13

4

Compact B-TreeCompact B-Tree

Basic structure : B-tree structure
Patricia tree within each node

1
0
0
0
0

1
0
0
1
1

1
1
0
0
0

1
1
0
0
1

1
1
1
0
0

1
2
3
4
5

Node N Node N

2

34

5
10000 10011 11100

0

0 0

0

1

1

1

10 1 0 1 0
0 1 2 3 4

5 10000 10011

11000 11001

11100

Node Structure in Compact B-TreeNode Structure in Compact B-Tree

Header : node information
N : total number of leave
Pointers
N d i f i (i l l)Node information (internal only)

– D : bit offset
– L : number of leaves in the left subtree
– Pre-order traversal

Key : value associated with the pointer to this page in the
parent page

Header N P1...PN [D1L1] ... [DN-1LN-1] key

2009-02-13

5

Node Structure in Compact B-TreeNode Structure in Compact B-Tree

Example

2

34

0 1

n1

n2 n3

3

P1

4

P2 5

P3 P4

P5

10000 10011

11000 11001

11100

0 0

0

1 1

1

n4

Header 5 P1 P2 P3 P4 P5 [2,2] [4,1] [3,2] [5,1] key
n1 n2 n3 n4

Node operationsNode operations

Blind search
B(K)

i 1; j 1; n N
while n > 1 do

if K[D] 1 thif K[Dj] = 1 then
i i + Lj; j j + Lj; n n - Lj

else
j j + 1; n Lj

fi
od
return i

i : index of leftmost leaf
j : current visited node
n : number of leaves it contains

2009-02-13

6

i = 3,j =3, n=3, Dj = 3, K[3] = 0

Example of Blind SearchExample of Blind Search

Find key 11000
B(K)

i 1; j 1; n N
while n > 1 do

K =11000

i = 1, j = 1, n = 5

i = 1, j = 1, n = 5, Dj = 2, K[2] = 1i = 3, j =4, n = 2, Dj = 5, K[Dj] = 0

i = 3, j = 5, n = 1

e do
if K[Dj] = 1 then

i i + Lj; j j + Lj; n n - Lj
else

j j + 1; n Lj
fi

od

2

34

0

0 01

1

1

n1

n2 n3

n4

i = 1+2 = 3, j = 1+2 = 3, n = 5-2 =3

i = 3, j = 3+1 =4, n = 2i = 3, j = 4+1 = 5, n = 1

i = 3

return i P1 P2 5

P3 P4

P5

10000 10011

11000 11001

111000 1

Header 5 P1 P2 P3 P4 P5 [2,2] [4,1] [3,2] [5,1] key
n1 n2 n3 n4

Node operationsNode operations

Search
S(K)

k B(K)
d,b D(K,Pk)
i 1; j 1; n N
while n > 1 ∧ D ≤ d dowhile n > 1 ∧ Dj ≤ d do

if k ≥ Lj then
k k – Lj; i i + Lj; j j + Lj; n n – Lj

else
j j + 1; n Lj

fi
od
if b > 0 then

return i + nreturn i n
else

return i
fi

D(K1,K2) : return offset d, and k1[d]

2009-02-13

7

Example of SearchExample of Search

Find Key 10101
S(K)

k B(K)
d,b D(K,Pk)
i 1; j 1; n N

K =11000, k = 1

K =11000, k = 1, Pk = 10000, d = 3, b = 1

k = 1, d = 3, i = 1, j = 1, n = 5
k = 1, d = 3, i = 1, j = 1, n = 5, Dj = 2

k = 1, d = 3, i = 1, j = 1, n = 5, Dj =2, Lj = 2
k = 1 d = 3 i = 1 j = 1+1 = 2 n = 2 Lj = 1

k = 1, d = 3, i = 1, j = 2, n = 2, Dj = 4

while n > 1 ∧ Dj ≤ d do
if k ≥ Lj then

k k – Lj; i i + Lj; j j + Lj; n n – Lj
else

j j + 1; n Lj
fi

od
if b > 0 then

return i + n

2

34

0

0 01

1

1

n1

n2 n3

n4

k 1, d 3, i 1, j 1+1 2, n 2, Lj 1

k b = 1, i = 1, j = 2, n = 2
return 3

return i + n
else

return i
fi

P1 P2 5

P3 P4

P5

10000 10011

11000 11001

111000 1

Header 5 P1 P2 P3 P4 P5 [2,2] [4,1] [3,2] [5,1] key
n1 n2 n3 n4

