A Compact B-tree

ACM SIGMOD, 2002 Peter Bumbulis, Ivan T.Bowman Presented by Kyuseok Shim





| Observation                                                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>The bit offsets in the nodes must increase as we follow a<br/>path from the root to a leaf</li> </ul>                       |  |
| <ul> <li>The number of internal nodes in a patricia tree is always<br/>one less than the number of leaves</li> </ul>                 |  |
| <ul> <li>A leaf a is to the left of a leaf b iff the key in the a is less<br/>than the key in b</li> </ul>                           |  |
| <ul> <li>The offset of the first bit at which two keys differ is the bit<br/>offset found in their lowest common ancestor</li> </ul> |  |
|                                                                                                                                      |  |







| Node Structure in Compact B-Tree                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Header : node information</li> <li>N : total number of leave</li> <li>Pointers</li> <li>Node information (internal only) <ul> <li>D : bit offset</li> <li>L : number of leaves in the left subtree</li> <li>Pre-order traversal</li> </ul> </li> <li>Key : value associated with the pointer to this page in the parent page</li> </ul> |
| Header         N $P_1P_N$ $[D_1L_1][D_{N-1}L_{N-1}]$ key                                                                                                                                                                                                                                                                                         |



| Node operations                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Blind search<br>$\mathcal{B}(K)$<br>$i \in 1; j \in 1; n \in N$<br>while $n > 1$ do<br>if $K[D_j] = 1$ then<br>$i \in i + L_j; j \in j + L_j; n \in n - L_j$<br>else<br>$j \in j + 1; n \in L_j$<br>fi<br>od<br>return i |
| <ul> <li>i : index of leftmost leaf</li> <li>j : current visited node</li> <li>n : number of leaves it contains</li> </ul>                                                                                                 |
|                                                                                                                                                                                                                            |



| Node operations                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Search<br>s(K)<br>$k \in B(K)$<br>$d,b \in D(K,P_k)$<br>$i \in 1; j \in 1; n \in N$<br>while $n > 1 \land D_j \le d$ do<br>if $k \ge L_j$ then<br>$k \in K - L_j; i \in i + L_j; j \in j + L_j; n \in n - L_j$<br>else<br>$j \in j + 1; n \in L_j$<br>fi<br>od<br>if $b > 0$ then<br>return $i + n$<br>else<br>return i<br>fi |
|                                                                                                                                                                                                                                                                                                                                 |

