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i Introduction

= Histograms and Wavelet synopsis provide
useful tools in
= Query optimization
= Approximate query answering

2009-02-13



2009-02-13

i Overview

= Basics of Algorithms
= Histogram Construction
= Wavelet Synopses

* Basics of Algorithms

[Jagadish, Koudas, Muthukrishnan,
Poosala, Sevcik, Suel:VLDB'98]

[Guha, Koudas, Shim:STOC'01]




i Algorithm Analysis

= Running time of an algorithm almost always
depends on the amount of input: More input means
more time. Thus the running time, 7, is a function
of the amount of input, A, or 7{NV) = F(N).

= The exact value of the function depends on
» the speed of the host machine;
= the quality of the compiler and optimizer;
» the quality of the program that implements the
algorithm;
» the basic fundamentals of the algorithm
= Typically, the last item is most important.

i Worst-case Vs. Average Case

= Worst-case running time is a bound over all inputs of
a certain size N. (Guarantee)

= Average-case running time is an average over all
inputs of a certain size V. (Prediction): Difficult to
define the distribution to compute the average cases

= Best case running time: Can be used to argue that
the algorithm is really bad.

2009-02-13



i Running Time Functions
Quadratic

T ubic

OfNlogN)

Linear
50 100 N

= Several common functions; for small inputs some are somewhat faster than
others.

i Definitions

= Big-Oh for upper bound:

= T(N) = O(f(N)) if there area positive constants c and n0
such that T(N) <= c f(N) when N >= n0.

= Big-Omega for lower bound:

= T(N) = Omega(g(N)) if there are positive constants c and n0
such that T(N) >= c g(N) when N >= n0.

= Big-Theta:
= T(N) = Theta(h(N)) iff T(N) = O(h(N)) and T(N) =
Omega(h(N)).
= Small-Oh:
= T(N) = o(p(N)) iff T(N) = O(p(N)) and T(N) is not
Theta(p(N)).
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i Properties of Big-Oh

If TI(N) = O(f(N)) and T2(N) = O(g(N)), then
= T1(N) + T2(N) = max(O(f(N)), O(g(N))
= Lower-order terms are ignored
= TI(N)*T2(N) =O(f(N)*g(N))
= O(c f(N)) = O(f(N)) for some constant c
= Constants are ignored!
= In reality, constants and lower-order terms may
matter, especially when the input size is small.
= Can you prove the above properties with the
definitions?

i Running Time Functions

= For large inputs, some running time functions are
completely unusable.

T Cubic O(NlogN)
Quadratic
Linear
5000 10000 N




Types of Functions; Big-Oh

= Cubic: dominant term is some constant times A2. We
say O( V3).

= Quadratic: dominant term is some constant times A2.
We say O NV2).

= O Nlog NV): dominant term is some constant times
Nlog N.

= Linear: dominant term is some constant times N. We
say O V).

= Example: 350V 2+ N+ N3 is cubic.

= Big-Oh ignores leading constants.

Dominant Term Matters

= Suppose we estimate 350V 2+ NV + N3 with 3.
= For /= 10000:
= Actual value is 1,003,500,010,000
« Estimate is 1,000,000,000,000
= Error in estimate is 0.35%, which is negligible.
= For large N, dominant term is usually indicative of algorithm's
behavior.
= For small A, dominant term is not necessarily indicative of
behavior, BUT, typically programs on small inputs run so fast
we don't care anyway.
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* Running Time Calculation

1. Summations for Loops
for i=1tondo{ for i=1tondo{
forj=1tondo{

Running Time Calculation

. Sequential and If-Then-Else Blocks

fori=1tondo{

Alil=0;
}
fori=1tondo{ T(n)=0(n)+0(n?)=0(n*)
for j=1tondo{
Aflil++;
b
}
if (cond)
Si
else
S T(n)=max(T.(n), (T.(n))
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i Actual Running Time

For /= 100, actual time is 0.47 seconds on a
particular computer.

Can use this to estimate time for larger inputs:
TTN)=cN3
TU10NV) = d10N)3 = 1000cV3 = 1000 7T V)
Inputs size increases by a factor of 10 means that
running time increases by a factor of 1,000.

For /= 1000, estimate an actual time of 470
seconds. (Actual was 449 seconds).

For /= 10,000, estimate 449000 seconds (6 days).

* Histogram Construction Algorithms

[Jagadish, Koudas, Muthukrishnan,
Poosala, Sevcik, Suel:VLDB'98]

[Guha, Koudas, Shim:STOC'01]
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i Histograms and Wavelets

= Assume that the input is aggregated i.e., we
get <i,f(i)> and we want to approximate the
fn f by B piecewise constant functions.

7\

S

i An Example of Histograms

Data Distribution

Location (i) 1 2 3 4 5 6 7

Value (Xi) 1210 2] 8] 14] 28] 16

Optimal Histogram

Range [1,4] [55] | [6/6] | [7,7]

Representative 8 14 28 16
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i Sum of Squared Error Measure

Error for a range of [i,j]
i i i
ERRORTi, j]="(x, —X)* = x2 —— 1. Q%)
p=i p=i J_H'l p=i
1
j—i+1

= (SQSUMIL i]- SQSUMIL i —1]) - (SUMIL i]- SUMIL i —1])2

SQSUM[l,i]zixﬁ SUM[l,i]zZi:Xp
p=1 p=1

:_L Idea: V-Optimal Algorithm

= Within "step/bucket”: Mean is the best.
= Assume that the last bucket is [j..n].
What can we say about the rest k-1 ?

K-1 buckets Last bucket
| R
| —
1 j-1'] n

Must also be optimal for [1..j-1] |
Dynamic Programming !!
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:_L The Optimal Algorithm

For i=1to n do
For K=1 to B do
For j=1 to i-1 do (split point for the last bucket)

T[ 1., k] = Min[T[1...i, K], T[1..j,k-1]+ERROR[j+1,i] ]

Give a O(Bn) space O(n’B) time optimal algorithm.

i The Approximate Algorithm Idea

= Sum of two functions
= Decreasing: the last bucket
= Increasing: error from first k-1 buckets

Part 1

What if approximate the
increasing function ?

(By a histogram !)

2009-02-13



i Approximating Increasing Fn

f/r,//‘

Works for piecewise small degree poly.

2009-02-13

12



Optimal V-Optimal Construction:
O(Bn?)

= Jagadish, Kouda, Muthukrishnan, Poosala, Sevcik, Suel, VLDB 1998
= OPT(i,k) = min,; {OPT(j k-1)+VARG+1,i)}

Approximate Histograms
: O(BnP)

= Guha, Kouda, Shim, STOC 2001
= SOL[p+1,bP] = min,;{SOL[p,b]+VAR[bP+1,n+1]}

:

=

—
)

(1+8)a =b
K‘M_\
- \% >

(reR<e peoEme
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Enhanced Approximate
Histogram - O(BP2/ogn)

= Guha, Kouda, ICDE 2002
= Binary Search

(1+8)a =b I

wo [T

(1+8)a < b+1

- 0 |

1]

v

i Can we approximate in less space

= [Guha, Koudas, Shim:STOC'01] show that indeed we
can. The algorithm takes O(B*slogn) space, o(B*nz"logn)
time with 1 + ¢ times more error than optimal.

= Combined with results from [Guha, Koudas]
Approximating a data stream for Querying and
Estimation, ICDE, 2002, an extended version of the
above shows that in space M (M >0<lelogn>1 +&)we
can get an approximation in time O(n+ 8% *log*n)

= A smooth tradeoff.
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i Wavelet

= A useful mathematical tool for hierarchically
decomposing functions

= Represent a function in terms of

= A coarse overall shape

= Details that range from broad to narrow

= Haar wavelet

= The Haar basis is the simplest wavelet basis
» Fastest to compute and easiest to implement

i Haar wavelet

= Given a one dimensional data with a

resolution 4, [9 7 3 5]

= Recursive pairwise averaging and differencing at

different resolutions

Resolution

Averages

Detall
coefficients

4

[9735]

2

[8 4]

[1-1]

1

(6]

(2]

» The wavelet transform of the original data is given

by [6 21 -1]
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Error Tree

Wavelet

Coefficients

. Original data values

Path(u) : The set of all nodes in T that are proper ancestor of u
with nonzero coefficients (definition in [GG02])

i Reconstruction

= The reconstruction of any data value d; using Error

Tree
di - ZCjepath(di)é‘ii .CJ'

= Where o;=+1 if d; e left leaves of ¢;, or j=0, and
5 =-1 otherwise

Ex) in previous error tree
d3=C0_C1+C3=6_2+(_1)=3

2009-02-13
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i Compression

= Wavelet compression

= A large number of the detail coefficients turn out
to be very small in magnitude

= Removing these small coefficients introduces small
errors

= LOSsy compression

Ex) from [6 2 1 -1], take two coefficients, 6, 2, that
is [6 2 0 0] then

original data = [9 7 3 5]
reconstructed data = [8 8 4 4]

i Normalization

= In order to equalize the importance of all
wavelet coefficients

= Normalizing the coefficients is needed
= If the coefficients have the same importance

= We could choose the coefficients in order of
absolute magnitude

= Then we could achieve the best approximation of
original data

2009-02-13
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i Example error tree

Level =0
Level = 1 ji EL
Level =2 @ Q Q
Remove L2 error
Co -C, G Co Co 4xcy?
Cs —Cs Cs 2%Cg?
Cs,Cs ~—Co, ~Cp, Cp=Cs CotCs 4*C,2+2%Cg?

i Haar wavelet normalization

= Assume we use L? error

« If we remove c,, then it affects four values d;, d,,
d;, d, and results in 4*c,? L2 error

« If we remove ¢, then it affects two values dg, dg
and result in 2*cs? L2 error

« If we remove c,, C;, then it result in 4*c,2+ 2*cs?
L2 error

= Removing each coefficient affects the L2 error
independently

2009-02-13
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Haar wavelet
normalization(cont’d)

= If the values of c,, c; are the same in

absolute magnitude

= Removing ¢, increases L2 error more than

removing Csg

= To compare the importance between ¢, and

C; directly

= we need to normalize the coefficients

o If 4%c,2 = 2%¢? , o= %cs

= C,and %cs have the same importance

Haar wavelet
normalization(cont’d)

= The coefficients in the same level have the
same importance

= Between two coefficients which has one level
difference

= The higher level coefficients have % times
importance of the lower level

= 10 normalize coefficients

= Divide each wavelet coefficient by 2" , where |
denotes the level .

. EX) [6 21 _1] Normalization [6 2 % - ]

2009-02-13
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Minimize L2 error in Haar wavelet
i compression

= Compressing the original N data using B(<<N)
wavelet coefficients
= Normalize the coefficients
= Choose the B wavelet coefficients with the largest
absolute value

= This is an optimal method of minimizing L2 error
using B wavelet coefficients

Wavelet-Based Histograms for
Selectivity Estimation

Yossi Matias, Jeffrey Scott Vitter,
Min Wang

2009-02-13
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:.L Motivation

= One important task in query optimization is
selectivity estimation

= We need quick approximate answers to OLAP
queries
= When the exact answers are not required

= Histograms give very good approximations
with limited space usage

i Overview

= Wavelet-based Histograms
» Based on a multi-resolution wavelet decomposition

= Approximate the frequency distribution using
given limited space

= Built on the cumulative data distribution

= Haar wavelet
= The Haar basis is the simplest wavelet basis
» Fastest to compute and easiest to implement
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Introduction

a < X <£b :Range predicates, X is a non negative attribute of the
domain of a relation R and a and b are constants

The domainD of X is the set of all possible values of X

Value set V(< D) is the set of values of Xthat are actually present in R
LetV ={v;:1<i<D}, wherev, <v; when i< j
The frequency f;of V;is the number of tuples t e Rwith t.X =V,

The cumulative frequency C;of V;is the number of tuples te R
with tX <v, ,ie. = f

j=1

Introduction(cont'd)

T:{(Vv f1):(V2’ fz),...,(VD, fo)}
: The data distribution of X in R

T¢ :{(V]_,Cl),(VZ,CZ),...,(VD,CD)}
: The cumulative data distribution of X in R

The cumulative data distribution of X , denoted by TC¢"

: the cumulative data distribution of T° extended over the entire
domain D by assigning a zero frequency to every value in D -V

2009-02-13
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i Histogram construction algorithm

1. Form the extenged cumulative data
distribution T of the attribute X

2. Compute the wavelet decomposition of TS
=« Obtaining a set of N wavelet coefficients

3. Keep only the m most significant wavelet
coefficients
= m(<<N) is given by user

= The choice of m coefficients depends upon the
particular thresholding method

i Wavelet Decomposition

= Suppose that the data distribution T of attribute X is
= {(0,2),(2,5),(3,2)}
= Then, the cumulated values are
= {(0,2),(1,2),(2,7),(3,9)}
= Perform a wavelet transform on the extended
cumulative frequencies

Detall

Resolution

Averages

coefficients

4

[2279]

2

[2 8]

[01]

1

(5]

(3]

Wavelet transform -> [53 0 1]

2009-02-13
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Error measures

= Use the following three error measures
1. Absolute error : e = |S, - S/|
2. Relative error : g = e?s/S; = |S; - S/|/S;,
S, >0
5. Combined error :
e°mb = min{a x @, B x ¢}, a, B>0
if S =0, g©°mb = qx e?2bs
=« Where S; is original value of query q;, and S/’ is
estimated value of query g;

Error measures(cont’d)

= Combined error
= For very small frequencies
= It may be good enough if the absolute error is small
= For large frequencies
= The absolute error may not be as meaningful as the
relative error

= p-NOrm average error

1
e, = (5 e
Q 1<i<Q
= Where p > 0, Q is the number of queries

2009-02-13

24



Thresholding methods

= The first step is normalizing coefficients
= Here, use haar basis normaization
= 2-norm average absolute error

= There is an optimal method for choosing m best
wavelet coefficients

= Other than the 2-norm

= No efficient technique is known for choosing m
best wavelet coefficients

Thresholding methods(cont’d)

1. Choose the m largest (in absolute value) wavelet
coefficients
= Optimal for 2-norm error

2. Choose the m wavelet coefficients in a greedy way
= First, choose the m largest coefficients and then repeatedly
do the following two steps m times
@ Choose the coeff. whose inclusion leads to the largest
reduction in error
®» Throw away the coeff. whose deletion leads to the smallest
increase in error
= Or do the above two steps repeatedly until a cycle is
reached or improvement is small

2009-02-13
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Thresholding methods(cont’d)

3. Start with the m/2 largest (in absolute value)
wavelet coefficients
= Choose the next m/2 coefficients greedily

4. Start with the 2m largest (in absolute value)
wavelet coefficients
= Throw away m of them greedily

= Method 2 does best overall in terms of accuracy

Thresholding methods(cont’d)

= Time complexity of naive algorithm
= Reconstructing of wavelet coefficients takes O(N) time
= Each iteration of the greedy method requires O(N2) time
= Thus the total time is O(mN2)

= Using error tree, we can reduce the time to
O(N(logN)logm) time
= Store the error change introduced by adding or deleting
wavelet coefficients

= In each iteration, we just need to update value of the error
change
= Which is an ancestor or descendant of added or deleted nodes

2009-02-13
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Thresholding methods(cont’d)

Assume that we use method 2
If c2 is deleted in greedy choice
The error change value of ¢0, c1, ¢c2, c4, c5 have to be updated

Thresholding methods(cont’d)

Suppose that

= At the ith step of the greedy choice of method 2, the node n;
is deleted

= The subtree rooted at n; has k' leaves
Then update cost is k' x logN
The worst case is m deleted or added coeff. are in
the top logm levels
So there are m terms of k' x logN

= The sum of the terms in the same level becomes N x logN
= Thus overall time complexity is O(N x logN x logm)

27



Probabilistic Wavelet Synopses

"

Minos Garofalakis, Phillip B. Gibbons

Motivation

Take 8 coefficients from 16 values
using L2 error minimize method

original 71 87 43 99
values 100 42 0 8 8 72 130
wavelet 65 | 65 ._ 65 65

answers [ 100 | 42 0 58 88 72 130

= Similar data values have widely different approximations
= 30 and 31 have approximations 30 and 65
= Widely different values, 3 and 127, have the same approximate
answers 65

2009-02-13
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i Motivation

= Major shortcoming of deterministic wavelet
= The quality of the answers varies widely

= No informative guarantees on the accuracy of a
particular answer

i Overview

= Propose probabilistic wavelet synopses
= Based on probabilistic thresholding scheme

= Assign each coefficient a probability of being
included

= based on its importance to the reconstruction of
individual data values

= Flip coins to select the synopsis
= Minimize
= The expected mean-squared error

= Upper bound on the maximum error in the
reconstruction of the data

2009-02-13
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General Approach

= For each non zero wavelet coefficient ¢;
= Set random variable C; such that

Z;  with probability %

C - .
0 with probability 1—%

« Where 4 is selected rounding value, 0<%<1

« Let Y, =% be the probability of rounding up

= The main idea of this approach

= Select proper rounding value 4 which minimize a desired
error metric

General Approach(cont’d)

C. C.
E[C]=4 —-+0-(1-—-
[Cl=4-~-+0-0-~

):ci

2. &

Var (C,) = E[C/1- (E[C)? = 47 - ~-¢% = (2, -¢c) ¢,

d, is original data, dj' is estimate for d; and dj' is random variable

E[dj‘]= E( Zéij 'ci)= Zé‘ij 'E[ci]= dj

cje path (d ;) cje path (d;)

Each coefficient is rounded independently

Var (djl):E( z5ij'ci): Z(éij)z’var (Ci): Z(’iifci)’ci

ciepath (d;) cjepath (d;) ciepath (d;)

2009-02-13
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i General Approach(cont’d)

EWs,[1= ¥ 5= Yy,

i|c,¢0ﬁvi ilc; =0

Wws ,| means the number of retained non-zero coefficients

Given desired number of retained coefficients B,

the choice of A4,'s needs to ensure that
E[WS ,[1<B

E[|WS,|] means that expected number of retained coefficients

i General Approach(cont’d)

i 0 1 2 5 11 22 45 Co @
Ci 204 -6 -4 20 4 =1 0
Vi 1 2/3 1/2 1 1/2 1/6 - Cq
Ni 204 -9 -8 20 8 -6 s @
Coins S S F S S F - @ @
. WS. 204 -9 — 20 8 — - cs @
Coin flips 0.7 0.4 0.8 0.5 0.1 0.3 —
e (4)
22 (1)
dy' =204-9-20+ 8 = 183 - o
45
(the actual value for d,; = 187)
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MinL2 Algorithm

= To minimize the expected mean-squared error
= Select A, to minimize E[L?]

' (4i—ci)-c
E[Lz]zE[Zj(dj_dj)z]zzilcl¢ow
= Expected L2 error minimization
= Minimize
(4i—c)-c Ci
ZMW '0<731: E[[WS,[1<B

= The result of MinL2 is not optimal for L2 error

MinRelVar Algorithm

= Minimize individual answer errors
= Minimizing relative error is more important to approximate
query answering
= MinRelVar algorithm is minimizing the maximum
reconstruction error
= Goal

= Produce estimates d,’ for each data value d; such that for a
given sanity bound S > 0, the ratio
| dil_di |
max{ |d,|, S}
is small with high probability

2009-02-13
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i MinRelVar Algorithm(cont'd)

= Normalized standard error(NSE)

NSE (d.) = VVar (i)

max{ |d,|, S}
= The value of NSE means that expected relative error at d
= Maximum normalized standard error minimization

e oatnay (i =€) -Gy :
Minimize  max \/zepth(dk) L 0<Sg E[WS,1<B
path(d, )ePATHS maxﬂdk ‘, s} A

s PATHS={path(d) : i=1, ..., N

i MinRelVar Algorithm(cont'd)

= Formulating a dynamic programming
recurrence
= Let T, be the sub-tree rooted at the node c;

= M[j, B] denotes the optimal (i.e., minimum) value
of the maximum NSE(d,?)

= d, is the leaf node data of T;
= Assume a space budget of B

2009-02-13
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i MinRelVar Algorithm(cont'd)

M[j,Bl=  min max |y VARG
¥i€(0.1], ieTjlc; 0: | path(d, )ePATHS; iepath(dy) maX{dkz,Sz}

leTj\ci:O yi<B
VARG, y,) = (4 —¢)-¢, = 1= Yi.¢?

PATHS; denotes the set of all root-to-leaf paths in T;

i MinRelVar Algorithm(cont'd)

VAR(],Y;) .
. NORM (2j)
= OT'lianl B}; max VAR(i
gﬂe[(ofa-yj]' ' M
NORM (2j+1)
M[j,B]= if j<N,c;=0,and B>0
min, e {max{M[2]j,b ],M[2j+1,B-b ]}},if j<Nandc;=0
0 if j>N
© otherwise

M[2j.b.],

+M[2j+1,B-y;-Db ]

where NORM (i) = max{min,  {d, "}, S’}

2009-02-13
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i MinRelVar Algorithm(cont'd)

= Give constraint to the value y,=(0,1]

=« If there is no constraint, y; will have infinite choice
which is undesirable

Quantize the y; value to the number of g values
g is an input parameter,
So we take y; from {- —...1}

As a result budget b&[0,B] also has quantized
value {o,a ..... B}

i MinRelVar Algorithm(cont'd)

Assume that we already store optimal M for T, and T for all possible
budget nhumber

Then using table M, find M[2,b]

2009-02-13
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i MinRelVar Algorithm(cont'd)

VAR(2, Y,)

VAR(2,Y,)
NORM (5)

1 11
2’b = 41 1 5,b_*_*
M[2,b] = max{ +M[ q] +M[ q q]}

NORM (4)

i MinRelVar Algorithm(cont'd)

VAR(2,Y,)

VAR(2,Y,)
NORM (5)

2 1 2
2’b = 41 1 5,b_*_*
M[2,b] = max{ +M[ q] +M[ q q]}

NORM (4)

2009-02-13
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i MinRelVar Algorithm(cont'd)

VAR(2.Y,) , 2. VAR(2,Y,)

M[2,b] = max{ M[4,b—=]

| VTR,
NORM (4) g NORM (5) q

i MinRelVar Algorithm(cont'd)

yi=2/9

VAR(2,Y,)

VAR(2,Y,)
NORM (5)

M[2,b] = max{ +M [4,;], +M[5b —3]}

NORM (4)

2009-02-13
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MinRelVar Algorithm(cont'd)

= If complete assigning y, from 1/qto b
= Then minimum value M[2,b] is stored in table
= Compute 1 table entry takes O(g2B)
= Using property that M[j,b] is a decreasing function
of the budget B,
= We can use more efficient O(qlog(qB;))

= Needed table entry size is O(NgB)

= Thus overall running time complexity is
O(Ng-2Blog(gB))
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