

Algorithm Analysis

- Running time of an algorithm almost always depends on the amount of input: More input means more time. Thus the running time, T, is a function of the amount of input, N, or T(N) = f(N).
- The exact value of the function depends on
 - the speed of the host machine;
 - the quality of the compiler and optimizer;
 - the quality of the program that implements the algorithm;
 - the basic fundamentals of the algorithm
- Typically, the last item is most important.

nple	e of	Hist	togi	rams	5		
	Data	Dist	ribut	ion			
1	2	3	4	5	6	7	
12	10	2	8	14	28	16	
Optir	mal H	listo	ogra	m			
	[1,4]		5,5]	[6,6]		[7,7]	
Representative 8			14	28		16	
	nple	nple of Data 1 2 12 10 Optimal H [1,4] 8	nple of Hist Data Dist1233121022Optimal Histo[1,4][5]88	Data Distribut1234121028Optimal Histogra[1,4][5,5]2814	Data Distribution1234512102814Optimal Histogram[1,4][5,5][6,6]a81428	Data Distribution1234561210281428Optimal Histogram[1,4][5,5][6,6]1281428	

Wavelet

- A useful mathematical tool for hierarchically decomposing functions
- Represent a function in terms of
 - A coarse overall shape
 - Details that range from broad to narrow
- Haar wavelet
 - The Haar basis is the simplest wavelet basis
 - Fastest to compute and easiest to implement

Introduction

 $a \le X \le b$: Range predicates, X is a non negative attribute of the domain of a relation R and a and b are constants

The domain D of X is the set of all possible values of X

Value set $V(\subseteq D)$ is the set of values of X that are actually present in R

Let $V = \{v_i : 1 \le i \le D\}$, where $v_i < v_j$ when i < j

The frequency f_i of v_i is the number of tuples $t \in R$ with $t \cdot X = v_i$

The cumulative frequency c_i of v_i is the number of tuples $t \in R$ with $t.X \le v_i$, i.e., $c_i = \sum_{i=1}^i f_i$

- 1. Form the extended cumulative data distribution T^{C^+} of the attribute X
- 2. Compute the wavelet decomposition of T^{C^+}
 - Obtaining a set of N wavelet coefficients
- 3. Keep only the m most significant wavelet coefficients
 - m(<<N) is given by user
 - The choice of m coefficients depends upon the particular thresholding method

- The first step is normalizing coefficients
 - Here, use haar basis normaization
- 2-norm average absolute error
 - There is an optimal method for choosing m best wavelet coefficients
- Other than the 2-norm
 - No efficient technique is known for choosing m best wavelet coefficients

Mot	ivat	ion						
	l	lake 8 Jsing L	coeffic ² error	minimiz	om 16 v e metho	alues		
original	(127)	71	87	(31)	59	(3)	43	99
values	100	42	0	58	(30)	88	72	130
		1				_		
wavelet	(65)	65	65	(65)	65	(65)	65	65
answers	100	42	0	58	(30)	88	72	130
Sim	ilar dat 30 and 3 ely diff	a value 31 have erent v	es have e approx values,	e widely ximatior 3 and	y differe ns 30 an 127, ha	ent app d 65 ive the	roxima same a	itions appro>

35

