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Introduction

Histograms and Wavelet synopsis provideHistograms and Wavelet synopsis provide 
useful tools in

Query optimization
Approximate query answering
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Overview

Basics of AlgorithmsBasics of Algorithms
Histogram Construction
Wavelet Synopses

Basics of Algorithms

[Jagadish, Koudas, Muthukrishnan, 
Poosala Sevcik Suel:VLDB’98]Poosala, Sevcik, Suel:VLDB 98]
[Guha, Koudas, Shim:STOC’01]
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Algorithm Analysis

Running time of an algorithm almost alwaysRunning time of an algorithm almost always 
depends on the amount of input: More input means 
more time. Thus the running time, T, is a function 
of the amount of input, N, or T(N) = f (N).
The exact value of the function depends on

the speed of the host machine;
the quality of the compiler and optimizer;q y p p ;
the quality of the program that implements the 
algorithm;
the basic fundamentals of the algorithm

Typically, the last item is most important.

Worst-case Vs. Average Case

Worst-case running time is a bound over all inputs ofWorst case running time is a bound over all inputs of 
a certain size N. (Guarantee)
Average-case running time is an average over all 
inputs of a certain size N. (Prediction): Difficult to 
define the distribution to compute the average cases
Best case running time: Can be used to argue that 
the algorithm is really badthe algorithm is really bad.
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Running Time Functions

C bi QuadraticCubic Quadratic

O( N log N )

T

Several common functions; for small inputs some are somewhat faster than 
others.

Linear
N10050

Definitions

Big-Oh for upper bound:Big Oh for upper bound: 
T(N) = O(f(N)) if there area positive constants c and n0 
such that T(N) <= c f(N) when N >= n0.

Big-Omega for lower bound:
T(N) = Omega(g(N)) if there are positive constants c and n0 
such that T(N) >= c g(N) when N >= n0.

Big-Theta:
T(N) Theta(h(N)) iff T(N) O(h(N)) and T(N)T(N) = Theta(h(N)) iff T(N) = O(h(N)) and T(N) = 
Omega(h(N)).

Small-Oh:
T(N) = o(p(N)) iff T(N) = O(p(N)) and T(N) is not 
Theta(p(N)).
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Properties of Big-Oh

If T1(N) = O(f(N)) and T2(N) = O(g(N)) thenIf T1(N) = O(f(N)) and T2(N) = O(g(N)), then
T1(N) + T2(N) = max(O(f(N)), O(g(N))

Lower-order terms are ignored

T1(N)*T2(N) =O(f(N)*g(N))

O(c f(N)) = O(f(N)) for some constant c
Constants are ignored!

In reality constants and lower-order terms mayIn reality, constants and lower-order terms may 
matter, especially when the input size is small.
Can you prove the above properties with the 
definitions?

For large inputs, some running time functions are 

Running Time Functions

completely unusable.
Cubic

Quadratic

O( N log N )T

Linear

N100005000
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Types of Functions; Big-Oh

Cubic: dominant term is some constant times N3 WeCubic: dominant term is some constant times N . We 
say O( N 3 ).
Quadratic: dominant term is some constant times N2. 
We say O( N 2 ).
O( N log N ): dominant term is some constant times 
N log N.
Li d i t t i t t ti N WLinear: dominant term is some constant times N. We 
say O( N ).
Example: 350N 2+ N + N 3 is cubic.
Big-Oh ignores leading constants.

Dominant Term Matters

Suppose we estimate 350N 2+ N + N 3 with N 3.Suppose we estimate 350N + N + N with N .
For N = 10000:

Actual value is 1,003,500,010,000
Estimate is 1,000,000,000,000
Error in estimate is 0.35%, which is negligible.

For large N, dominant term is usually indicative of algorithm's 
behavior.
For small N dominant term is not necessarily indicative ofFor small N, dominant term is not necessarily indicative of 
behavior, BUT, typically programs on small inputs run so fast 
we don't care anyway.
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Running Time Calculation

1 Summations for Loops1. Summations for Loops
for  i = 1 to n do { for  i = 1 to n do {

. . . . for j = 1 to n do {

. . . . . . . . . .
} }

(a) } (b)If the loop of (a) takes ( ) times,  
If the loop of (b) takes ( ) times,   
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2. Sequential and If-Then-Else Blocks

Running Time Calculation

q
for i = 1 to n do {

A[i] = 0;
}
for i = 1 to n do {

for  j = 1 to n do {
A[i]++;

}
}

T n n n n( ) ( ) ( ) ( )= + =Ο Ο Ο2 2

if (cond)
S1

else
S2 T n max T n T ns s( ) ( ( ), ( ( ))= 1 2
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Actual Running Time

For N = 100 actual time is 0 47 seconds on aFor N  100, actual time is 0.47 seconds on a 
particular computer.
Can use this to estimate time for larger inputs:

T( N ) = cN 3

T( 10N ) = c(10N)3 = 1000cN 3 = 1000T( N )
Inputs size increases by a factor of 10 means that 
running time increases by a factor of 1,000.running time increases by a factor of 1,000.
For N = 1000, estimate an actual time of 470 
seconds. (Actual was 449 seconds).
For N = 10,000, estimate 449000 seconds (6 days).

Histogram Construction Algorithms

[Jagadish, Koudas, Muthukrishnan, 
Poosala Sevcik Suel:VLDB’98]Poosala, Sevcik, Suel:VLDB 98]
[Guha, Koudas, Shim:STOC’01]
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Histograms and Wavelets

Assume that the input is aggregated i e weAssume that the input is aggregated i.e., we 
get <i,f(i)> and we want to approximate the 
fn f by B piecewise constant functions.

An Example of Histograms

Data Distribution

Location (i) 1 2 3 4 5 6 7

Value (Xi) 12 10 2 8 14 28 16

Data Distribution

Optimal Histogram

Range [1,4] [5,5] [6,6] [7,7]

Representative 8 14 28 16
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Sum of Squared Error Measure 

Error for a range of [i j]
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Idea: V-Optimal Algorithm

Within “step/bucket”: Mean is the bestWithin step/bucket : Mean is the best.
Assume that the last bucket is  [j..n].

What can we say about the rest  k-1 ?

K-1 buckets Last bucket

]1..1[ −jMust also be optimal for                 !
Dynamic Programming !!

1−j1 j n
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The Optimal Algorithm

F i 1 t dFor i=1 to n do
For K=1 to B do

For j=1 to i-1 do (split point for the last bucket)

T[ 1…i, k] = Min[T[1…i, k],T[1…j,k-1]+ERROR[j+1,i] ]

Give a O(Bn) space O(     ) time optimal algorithm.Bn2

The Approximate Algorithm Idea

Sum of two functionsSum of two functions
Decreasing: the last bucket
Increasing: error from first k-1 buckets

Part 2Part 1
Wh t if pp xim t  th  What if approximate the 
increasing function ? 

(By a histogram !)
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Approximating Increasing Fn

h h)1( δ+
a bj

ba j

Algorithm by Picture

2=k

Works for piecewise small degree poly.



2009-02-13

13

Optimal V-Optimal Construction: 
O(Bn2)

Jagadish, Kouda, Muthukrishnan, Poosala, Sevcik, Suel, VLDB 1998

b+1

Jagadish, Kouda, Muthukrishnan, Poosala, Sevcik, Suel, VLDB 1998
OPT(i,k) = min1≤j<i{OPT(j,k-1)+VAR(j+1,i)}

n

b

n

Approximate Histograms
: O(BnP)

Guha, Kouda, Shim, STOC 2001

b+1

δ = ε /2B

Guha, Kouda, Shim, STOC 2001
SOL[p+1,bj

p] = min1≤j<i{SOL[p,bj
p]+VAR[bj

p+1,n+1]}

n

a b cb

P

(1+δ)a ≥b

(1+δ)a < c P = O((B/ε)logn)
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Enhanced Approximate 
Histogram - O(BP2logn)

Guha, Kouda, ICDE 2002

b+1 a b

(1+δ)a ≥b

(1+δ)a < b+1

Guha, Kouda, ICDE 2002
Binary Search

n

b

P

Can we approximate in less space 

[Guha Koudas Shim:STOC’01] show that indeed we[Guha, Koudas, Shim:STOC 01] show that indeed we 
can. The algorithm takes                 space,                
time with        times more error than optimal.
Combined with results from [Guha, Koudas] 
Approximating a data stream for Querying and 
Estimation, ICDE, 2002, an extended version of the 
above shows that in space M (M> ) we

)log( 12 nBO −ε )log( 13 nnBO −ε
ε+1

)log( 1 nBO −ε ε+1above shows that in space M (M>                ) we 
can get an approximation in time
A smooth tradeoff. 

)g( ε+1
)log( 223 nB

M
nnO −+ ε
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Wavelet

A useful mathematical tool for hierarchicallyA useful mathematical tool for hierarchically 
decomposing functions
Represent a function in terms of

A coarse overall shape
Details that range from broad to narrow

Haar waveletHaar wavelet 
The Haar basis is the simplest wavelet basis
Fastest to compute and easiest to implement

Haar wavelet

Given a one dimensional data with aGiven a one dimensional data with a 
resolution 4, [9 7 3 5]

Recursive pairwise averaging and differencing at 
different resolutions

Resolution Averages 
Detail 

coefficients

4 [9 7 3 5]

The wavelet transform of the original data is given 
by [6 2 1 -1]

[ ]

2 [8 4] [1 -1]

1 [6] [2]
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Error Tree

6

1 -1

2

9 7 3 5

c0

c1

c2 c3

Wavelet

Coefficients

Original data values9 7 3 5

d1 d2 d3 d4

Path(u) : The set of all nodes in T that are proper ancestor of u 
with nonzero coefficients (definition in [GG02])

Reconstruction

The reconstruction of any data value d using ErrorThe reconstruction of any data value di using Error 
Tree

Where if left leaves of cj , or j=0, and 
otherwise

∑ ∈
⋅=

)( ij dpathc jiji cd δ

1+=ijδ ∈id
1−=ijδ

Ex) in previous error tree
d3 = c0 – c1 + c3 = 6 – 2 + (–1) = 3 
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Compression

Wavelet compressionWavelet compression
A large number of the detail coefficients turn out 
to be very small in magnitude
Removing these small coefficients introduces small 
errors
Lossy compression

Ex) from [6 2 1 -1], take two coefficients, 6, 2, that 
is [6 2 0 0] then 
original data = [9 7 3 5]
reconstructed data = [8 8 4 4]

Normalization

In order to equalize the importance of allIn order to equalize the importance of all 
wavelet coefficients

Normalizing the coefficients is needed

If the coefficients have the same importance
We could choose the coefficients in order of 
absolute magnitudeabsolute magnitude
Then we could achieve the best approximation of 
original data
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Example error tree
c0

c4 c5

c2

d1 d2 d3 d4

c1

c6 c7

c3

d5 d6 d7 d8

Level = 0

Level = 1

Level = 2

d1 d2 d3 d4 d5 d6 d7 d8

Remove

c2 -c2 -c2 c2 c2

L2 error

4*c2
2

c5 -c5 c5 2*c5
2

c2,c5 -c2 -c2 c2-c5 c2+c5 4*c2
2+2*c5

2

Haar wavelet normalization

Assume we use L2 errorAssume we use L2 error
If we remove c2, then it affects four values d1, d2, 
d3, d4 and results in 4*c2

2 L2 error
If we remove c5, then it affects two values d5, d6
and result in 2*c5

2 L2 error
If we remove c2, c5, then it result in 4*c2

2+ 2*c5
2 

L2 error
Removing each coefficient affects the L2 error 
independently
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Haar wavelet 
normalization(cont’d)

If the values of c c are the same inIf the values of c2, c5 are the same in 
absolute magnitude

Removing c2 increases L2 error more than 
removing c5

To compare the importance between c2 and 
c5 directlyc5 directly

we need to normalize the coefficients
If 4*c2

2 = 2*c5
2 , c2= c5

c2 and      c5 have the same importance
2

1

2
1

Haar wavelet 
normalization(cont’d)

The coefficients in the same level have theThe coefficients in the same level have the 
same importance
Between two coefficients which has one level 
difference

The higher level coefficients have       times 
importance of the lower level

2
1

importance of the lower level

To normalize coefficients
Divide each wavelet coefficient by       , where  
denotes the level
Ex) [6 2 1 -1]                    [6 2 ]

l2 l
Normalization

2
1

2
1

−
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Minimize L2 error in Haar wavelet 
compression

Compressing the original N data using B(<<N)Compressing the original N data using B(<<N) 
wavelet coefficients

Normalize the coefficients
Choose the B wavelet coefficients with the largest 
absolute value
This is an optimal method of minimizing L2 error p g
using B wavelet coefficients

Wavelet-Based Histograms forWavelet Based Histograms for 
Selectivity Estimation

Yossi Matias, Jeffrey Scott Vitter, 
Min WangMin Wang
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Motivation

One important task in query optimization isOne important task in query optimization is 
selectivity estimation
We need quick approximate answers to OLAP 
queries

When the exact answers are not required

Histograms give very good approximationsHistograms give very good approximations 
with limited space usage

Overview

Wavelet based HistogramsWavelet-based Histograms
Based on a multi-resolution wavelet decomposition
Approximate the frequency distribution using 
given limited space
Built on the cumulative data distribution

Haar waveletHaar wavelet 
The Haar basis is the simplest wavelet basis
Fastest to compute and easiest to implement
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Introduction

bXa ≤≤ : Range predicates is a non negative attribute of theX

The domain    of     is the set of all possible values of XD X

Value set            is the set of values of    that are actually present in )( DV ⊆ X R

Let                         , where          when }1:{ DivV i ≤≤= ji vv < ji <

bXa ≤≤ : Range predicates,    is a non negative attribute of the 
domain of a relation    and a and b are constants

X
R

The frequency    of     is the number of tuples         withif iv Rt∈ ivXt =.

The cumulative frequency    of     is the number of tuples

with , i.e., 

ic iv Rt∈

ivXt ≤. ∑ =
=

i

j ii fc
1

Introduction(cont’d)

)}()(){( fffΤ )},(),...,,(),,{( 2211 DD fvfvfv=Τ

: The data distribution of     in X R

)},(),...,,(),,{( 2211 DD
C cvcvcv=Τ

: The cumulative data distribution of      in X R

Th l ti d t di t ib ti f d t d bX +CTThe cumulative data distribution of      , denoted by  X CT
: the cumulative data distribution of       extended over the entire 
domain       by assigning a zero frequency to every value in 

CT
D VD −
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Histogram construction algorithm

1 Form the extended cumulative data1. Form the extended cumulative data 
distribution       of the attribute X

2. Compute the wavelet decomposition of 
Obtaining a set of N wavelet coefficients

3. Keep only the m most significant wavelet 
coefficients

+CT
+CT

coefficients
m(<<N) is given by user
The choice of m coefficients depends upon the 
particular thresholding method

Wavelet Decomposition

Suppose that the data distribution T of attribute X isSuppose that the data distribution T of attribute X is
{(0,2),(2,5),(3,2)}

Then, the cumulated values are
{(0,2),(1,2),(2,7),(3,9)}

Perform a wavelet transform on the extended 
cumulative frequencies

Resolution Averages 
Detail 

coefficients

4 [2 2 7 9]

2 [2 8] [0 1]

1 [5] [3]

Wavelet transform -> [5 3 0 1]
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Error measures

Use the following three error measuresUse the following three error measures
1. Absolute error : ei

abs = |Si – Si’|
2. Relative error : ei

rel = ei
abs/Si = |Si – Si’|/Si ,

Si > 0
3. Combined error :

ei
comb = min{αⅹei

abs, βⅹei
rel}, α, β>0

if S = 0, ei
comb = αⅹei

abs

Where Si is original value of query qi, and Si’ is 
estimated value of query qi

Error measures(cont’d)

Combined errorCombined error
For very small frequencies 

It may be good enough if the absolute error is small

For large frequencies
The absolute error may not be as meaningful as the 
relative error

p-norm average error

Where p > 0, Q is the number of queries

p

Qi

p
ip

e
Q

e /1

1
)1( ∑

≤≤

=
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Thresholding methods

The first step is normalizing coefficientsThe first step is normalizing coefficients
Here, use haar basis normaization

2-norm average absolute error
There is an optimal method for choosing m best 
wavelet coefficients

Other than the 2-normOther than the 2-norm
No efficient technique is known for choosing m 
best wavelet coefficients

Thresholding methods(cont’d)

1 Choose the m largest (in absolute value) wavelet1. Choose the m largest (in absolute value) wavelet 
coefficients

Optimal for 2-norm error

2. Choose the m wavelet coefficients in a greedy way
First, choose the m largest coefficients and then repeatedly 
do the following two steps m times
(a) Choose the coeff. whose inclusion leads to the largest ( ) g

reduction in error
(b) Throw away the coeff. whose deletion leads to the smallest 

increase in error

Or do the above two steps repeatedly until a cycle is 
reached or improvement is small
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Thresholding methods(cont’d)

3 Start with the m/2 largest (in absolute value)3. Start with the m/2 largest (in absolute value) 
wavelet coefficients

Choose the next m/2 coefficients greedily

4. Start with the 2m largest (in absolute value) 
wavelet coefficients

Throw away m of them greedily

Method 2 does best overall in terms of accuracyMethod 2 does best overall in terms of accuracy

Thresholding methods(cont’d)

Time complexity of naïve algorithmTime complexity of naïve algorithm
Reconstructing of wavelet coefficients takes O(N) time
Each iteration of the greedy method requires O(N2) time
Thus the total time is O(mN2)

Using error tree, we can reduce the time to 
O(N(logN)logm) time

Store the error change introduced by adding or deletingStore the error change introduced by adding or deleting 
wavelet coefficients
In each iteration, we just need to update value of the error 
change

Which is an ancestor or descendant of added or deleted nodes
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Thresholding methods(cont’d)
c0c0

c4 c5

c2

d1 d2 d3 d4

c1

c6 c7

c3

d5 d6 d7 d8

c2

d1 d2 d3 d4

c1

c4 c5

d1 d2 d3 d4 d5 d6 d7 d8

If c2 is deleted in greedy choice

The error change value of c0, c1, c2, c4, c5 have to be updated

Assume that we use method 2

d1 d2 d3 d4

Thresholding methods(cont’d)

Suppose thatSuppose that
At the ith step of the greedy choice of method 2, the node ni
is deleted
The subtree rooted at ni has k’ leaves

Then update cost is k’ⅹlogN
The worst case is m deleted or added coeff. are in 
the top logm levelsthe top logm levels
So there are m terms of k’ⅹlogN

The sum of the terms in the same level becomes NⅹlogN
Thus overall time complexity is O(NⅹlogNⅹlogm)
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Probabilistic Wavelet Synopses

Minos Garofalakis, Phillip B. Gibbons

Motivation
Take 8 coefficients from 16 values 
using L2 error minimize method

Similar data values have widely different approximations

original
values

127 71 87 31 59 3 43 99

100 42 0 58 30 88 72 130

wavelet 
answers

65 65 65 65 65 65 65 65

100 42 0 58 30 88 72 130

using L2 error minimize method

30 and 31 have approximations 30 and 65

Widely different values, 3 and 127, have the same approximate 
answers 65
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Motivation

Major shortcoming of deterministic wavelet
The quality of the answers varies widely
No informative guarantees on the accuracy of a 
particular answer

Overview

Propose probabilistic wavelet synopsesPropose probabilistic wavelet synopses
Based on probabilistic thresholding scheme
Assign each coefficient a probability of being 
included

based on its importance to the reconstruction of 
individual data values

Fli i t l t th iFlip coins to select the synopsis

Minimize
The expected mean-squared error
Upper bound on the maximum error in the 
reconstruction of the data
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General Approach

For each non zero wavelet coefficient cFor each non zero wavelet coefficient ci
Set random variable Ci such that

Where       is selected rounding value, 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
=

i

i

i

i
i

i Cyprobabilitwith

Cyprobabilitwith
C

λ

λ
λ

10

iλ 10 ≤< ic
λ

g ,
Let            be the probability of rounding up

The main idea of this approach
Select proper rounding value     which minimize a desired 
error metric

i
iλ

iλ

i

i
i

cy
λ

=

General Approach(cont’d)

i
i

i

i

i
ii cccCE =−⋅+⋅= )1(0][

λλ
λ

iiii
i

i
iiii ccccCECECVar ⋅−=−⋅=−= )(])[(][)( 2222 λ

λ
λ

dj is original data, dj
’ is estimate for dj and dj

’ is random variable

dCECEdE ∑∑ =⋅=⋅=' ][)(][ δδ j
dpathc

iij
dpathc

iijj dCECEdE
jiji

∑∑
∈∈

=⋅=⋅=
)()(

][)(][ δδ

∑∑∑
∈∈∈

⋅−=⋅=⋅=
)()(

2

)(

' )()()()()(
jijiji dpathc

iii
dpathc

iij
dpathc

iijj ccCVarCEdVar λδδ

Each coefficient is rounded independently
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General Approach(cont’d)

∑∑
≠≠

==
0|0|

][
ii ci

i
ci i

i
A ycWSE

λ

AWS means the number of retained non-zero coefficients

Given desired number of retained coefficients B,

the choice of ‘s needs to ensure thatiλ

BWSE A ≤][

E[|WSA|] means that expected number of retained coefficients

General Approach(cont’d)
i 0 1 2 5 11 22 45 204c0

Ci 204 -6 -4 20 4 -1 0

yi 1 2/3 1/2 1 1/2 1/6 -

λi 204 -9 -8 20 8 -6 ⊥

Coins

WS

Coin flips

S S F S S F −
204 -9 − 20 8 − −

0.7 0.4 0.8 0.5 0.1 0.3 −

-6

-4

20

4

0

c1

c2

c5

c11

d26’ = 204 – 9 – 20 + 8 = 183

(the actual value for d26 = 187)

-1

0

187

c22

c45

d26
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MinL2 Algorithm

To minimize the expected mean-squared errorTo minimize the expected mean squared error
Select      to minimize E[L2] 

Expected L2 error minimization
Minimize

iλ

∑ ∑ ≠

⋅−
=−=

j ci clevel
iii

jj
i i

ccddELE
0| )(

22

2
)(])'([][ λ

The result of MinL2 is not optimal for L2 error

BWSEccc
A

i

i
ci clevel

iii
i i

≤≤<
⋅−∑ ≠

|][|,10,
2

)(
0| )( λ
λ

MinRelVar Algorithm

Minimize individual answer errorsMinimize individual answer errors
Minimizing relative error is more important to approximate 
query answering
MinRelVar algorithm is  minimizing the maximum 
reconstruction error

Goal
Produce estimates di’ for each data value di such that for a i i 
given sanity bound S > 0, the ratio

is small with high probability

},max{
|'|
Sd

dd

i

ii −
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MinRelVar Algorithm(cont’d)

Normalized standard error(NSE)Normalized standard error(NSE)

The value of NSE means that expected relative error at di

Maximum normalized standard error minimization

},max{
)'(

)'(
Sd

dVar
dNSE

i

i
i =

cc∑ )(λ

PATHS={path(di) : i=1, …, N

BWSEc
sd

cc
Minimize A

i

i

k

dpathi iii

PATHSdpath

k

k

≤≤<
⋅−∑∈

∈
][,10,

},max{

)(
max )(

)( λ

λ

MinRelVar Algorithm(cont’d)

Formulating a dynamic programmingFormulating a dynamic programming 
recurrence

Let Tj be the sub-tree rooted at the node cj

M[j, B] denotes the optimal (i.e., minimum) value 
of the maximum NSE(dk

2)
dk is the leaf node data of Tjk j

Assume a space budget of B
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MinRelVar Algorithm(cont’d)
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PATHSj denotes the set of all root-to-leaf paths in Tjj p j

MinRelVar Algorithm(cont’d)
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MinRelVar Algorithm(cont’d)

Give constraint to the value y∈(0 1]Give constraint to the value yi∈(0,1]
If there is no constraint, yi will have infinite choice 
which is undesirable
Quantize the yi value to the number of q values
q is an input parameter
So we take yi from }1,...,2,1{

qqyi

As a result budget b∈[0,B] also has quantized 
value 

qq

},...,1,0{ B
q

MinRelVar Algorithm(cont’d)
c1

c8 c9

c4

d d d d

c2

c10 c11

c5

d d d dd1 d2 d3 d4 d5 d6 d7 d8

Assume that we already store optimal M for T4 and T5 for all possible 
budget number

Then using table M, find M[2,b]
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MinRelVar Algorithm(cont’d)
c1

/

c8 c9

c4

d d d d

c2

c10 c11

c5

d d d d

yi=1/q

M[4,1/q] M[5,b-2/q]

d1 d2 d3 d4 d5 d6 d7 d8

]}11,5[
)5(
),2(],1,4[

)4(
),2(max{],2[ 22

qq
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NORM
yVAR

q
M

NORM
yVARbM −−++=

MinRelVar Algorithm(cont’d)
c1

/

c8 c9

c4

d d d d

c2

c10 c11

c5

d d d d

yi=1/q

M[4,2/q] M[5,b-3/q]

d1 d2 d3 d4 d5 d6 d7 d8

]}21,5[
)5(
),2(],2,4[

)4(
),2(max{],2[ 22

qq
bM

NORM
yVAR

q
M

NORM
yVARbM −−++=
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MinRelVar Algorithm(cont’d)
c1

/

c8 c9

c4

d d d d

c2

c10 c11

c5

d d d d

yi=1/q

M[5,1/q]M[4,b-2/q]

d1 d2 d3 d4 d5 d6 d7 d8

]}1,5[
)5(
),2(],2,4[

)4(
),2(max{],2[ 22

q
M

NORM
yVAR

q
bM

NORM
yVARbM +−+=

MinRelVar Algorithm(cont’d)
c1

/

c8 c9

c4

d d d d

c2

c10 c11

c5

d d d d

yi=2/q

M[5,b-3/q]M[4,1/q]

d1 d2 d3 d4 d5 d6 d7 d8

]}3,5[
)5(
),2(],1,4[

)4(
),2(max{],2[ 22

q
bM

NORM
yVAR

q
M

NORM
yVARbM −++=
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MinRelVar Algorithm(cont’d)

If complete assigning y from 1/q to bIf complete assigning yi from 1/q to b
Then minimum value M[2,b] is stored in table

Compute 1 table entry takes O(q2B)
Using property that M[j,b] is a decreasing function 
of the budget B,

We can use more efficient O(qlog(qBj))(q g(q j))

Needed table entry size is O(NqB)
Thus overall running time complexity is 
O(Nq2Blog(qB))
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