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An attempt has been made to explain the observed viscous bebavior of bulk pelymers. It is found that
the viscosity and diffusion may be represented by a theory which takes into account the coupling together
of the molecules. Two equivalent treatments are given. One makes use of a segmental friction factor in the
same manner as the common formulation of dilute solution viscosity of polymers. The second method
uses the concept of segmental jumping. Since both are equivalent, an expression for the friction factor is
found in terms of the segmental jumping frequency. Using this fact it is possible to calculate the segmental
jumping frequency from bulk viscosity data. A simple application leads to the result that the jumping
frequency is about 0.3 sec™ at the transition temperature in polystyrene.

In addition a simple relation is found to hold between bulk viscosity and diffusion constant. The pro-
portionality constant is easily evaluated and so one is now able to obtain self-diffusion constants directly

from viscosity data.

INTRODUCTION

ANY data are now at hand concerning the basic
flow properties of polymers over a wide range of
temperature, molecular weight, and plasticizer concen-
tration. Until now there has been no quantitative
molecular theory to explain the observed behavior.!
The purpose of this paper is to show how it is possible
to obtain at least a semiquantitative theory for the
bulk viscosity and self-diffusion of polymers.

In order to illustrate the simplicity of the concepts
involved, no effort is made in this paper to maintain
exceptional mathematical rigor. Physically reasonable
approximations are made with the understanding that a
more precise treatment is possible. It is to be expected
that a more exact derivation of the relations found
here will not alter the results to any great extent.

1. RELATION BETWEEN VISCOSITY AND DIFFUSION

The essential difference between the viscosity mecha-
nism in a solid polymer and in a dilute solution of a
polymer is that in the former case the solvent is com-
posed of polymer molecules. Since most theories of
dilute solution viscosity of polymers make no assump-
tions as to the character of the solvent, it is possible
to apply them almost directly to the case of bulk
polymers. One must only keep in mind that in this case
the polymer and solvent are identical.

There are essentially two types of calculations for the
viscosity of dilute polymer solutions. The first of these
assumes that the polymer molecule does not distort the
flow lines in the solvent.? This is often referred to as
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the “free draining” approximation since it is the case
which would apply if the solvent flowed freely through
the polymer molecule. Unfortunately, the term “free
draining” does not tell the whole story. (It is possible
to imagine instances where the molecules are far from
free draining, and still the flow lines of the solvent are
not distorted appreciably by the presence of the polymer
molecule. For this reason, it would be preferable to
refer to the calculations of that type as “zero-distortion”
calculations of viscosity.) The second type of calcula-
tion?® of dilute solution viscosity recognizes that the flow
lines of the solvent may be distorted by the presence of
the polymer molecule. In the extreme limit, such a
calculation leads to the viscosity of hard spheres in a
low molecular weight solvent.

It is apparent that if the solvent itself is a polymer,
one has the case of a bulk polymer. Moreover, since all
points in the bulk are equivalent, the flow lines in such
a *‘solution” will be essentially undistorted about any
single molecule in the “solution.” For this reason the
“zero-distortion” calculation of dilute solution viscosity
may be applied providing one recognizes that the
solvent is itself the polymer.

The theory for dilute solutions amounts essentially
to a calculation of the frictional energy loss between
polymer and solvent. One therefore needs to calculate
the product of the velocity of each segment of a mole-
cule with respect to the solvent and the frictional force
resisting this motion. The sum of all such products for
all segments of the molecule times the number of
molecules per cc gives the energy loss per cc which is
due to the presence of the polymer molecules. This
quantity is equal to the polymeric contribution to the
solution viscosity provided the velocity gradient in the
solution is taken as unity.

In a low molecular weight solvent, the frictional force
on a segment of a polymer molecule is due to the fact
that it is sliding past the solvent molecules. In addition

3W. Kuhn, Kolloid-Z. 68, 2 (1934); J. Kirkwood and J. Rise-
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to this effect, one also has another effect if the solvent
is polymeric. This second type of friction force is due to
the fact that polymer molecules may be intertwined to
such an extent that in order for one polymer molecule
to move it must drag others with it.

The sliding friction force may be represented as usual
as a constant times the velocity of the segment. This
may also be done for the second force just mentioned.
However, if the molecule is undergoing rotation as well
as translation, this second friction constant may depend
upon the position of the segment in the molecule as
well as upon its velocity. Whether this positional de-
pendence is important or not is intimately related with
the manner of coupling between molecules. It may be
shown that if the coupling is not extremely rigid this
variation will not cause very serious trouble. For the
present purposes we shall agsume that the friction
constant per chain segment is the same for all segments
of the chain.

If this is done, one may follow through Debye’s iree
draining calculation of viscosity to give the following
expression for the bulk viscosity:

R*NpA

=——, (1)
M 36

)

where R? is the average square end-to-end chain dis-
tance, N is the number of chain segments per molecule,
A is Avogadro’s number, p is the density of polymer,
M is the molecular weight, and f is the friction con-
stant, which is evaluated more critically in Sec. IL

Since N and R? are both proportional to M, one might
at first thought assume that the bulk viscosity should
vary proportionally to the first power of M. This is not
found to be true experimentally. The reason for this
is that f, the friction factor, is also a function of the
molecular weight. This functionality will be derived in
a later section.

Fortunately, it is possible to obtain a relation be-
tween the diffusion constant D and the bulk viscosity,
which does not contain f. This is done most simply by
remembering the classical Einstein relation, which says

D=FkT /molecular friction constant.

The molecular friction constant is defined as the
force needed to pull a single molecule through the
solvent with unit velocity. From the definition of f one
sees that this will be just V. Therefore,

D=FT/N. (2)
Taking the product between D and » one obtains
Dy=(ApkT/36)(R*/M). 3

Since R?/M is essentially a constant for any bulk
polymer and since its value is readily found from light
scattering or dilute solution viscosity measurements
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near the precipitation point? it is possible to predict D
if # is known. This is of considerable interest since,
although D is the more easily interpreted physical
quantity, 7 is far easier to measure.

The diffusion constant D has been measured along
with n over a wide variety of conditions. These data
are given in the preceding paper. They confirm the
above relation within the experimental error of the
measurements. Incidentally, this also shows that the
assumption made concerning the friction factor f is
really not too bad.

II. THE FRICTION FACTOR

If one considers a particular molecule of the solid,
it is possible to imagine that a sedimenting force F
could be applied to that molecule alone. As a result of
this force the molecule will move with a velocity v just
such that the viscous force will equal the sedimenting
force, i.e.,

F=Nfu. @

The above relation gives the same meaning to f which
was used above. In order to find out what the physical
basis for f really is, it will be necessary to calculate
the viscous force by a more detailed method.

When the sedimenting molecule moves, it is re-
strained by two types of forces. The first of these is the
ordinary friction experienced by each chain segment as
it slides past the other surrounding segments. This
force per segment may be represented by the product
of a sliding friction constant f, and the velocity of the
segment.

A second restraining force must be considered when
the “solvent” is polymeric. It arises as a result of the
fact that from time to time a “solvent’” molecule will
be hooked into the moving molecule in such a way that
the two molecules must move more or less together.
Mathematically, this may be described by assuming
that a chain of molecular weight M will have KM
molecules coupled to it. One would expect the coupling
constant K to vary from polymer to polymer but to
be independent of molecular weight. For polystyrene
one would have K equal to 0.0001 if there were one
coupled chain for every 200 chain atoms.

It would be wrong to think that each coupled chain
moves with the same velocity » as the sedimenting
chain. In fact, it may be shown from a consideration of
the simple problem of ropes sliding over each other in a
viscous medium that the coupled chain will move with
an average velocity equal to (4/9)v. If the chains may
not be considered smooth, this factor may be somewhat
larger. It is possible to express this behavior by a
slippage factor s, defined by the fact that on the average
a coupled molecule will move with a velocity sv. It is
expected that s will be a constant for any one polymer
and should have a value of about 0.1 to 0.5.

4P. J. Flory, J. Chem. Phys. 17, 303 (1949).
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With the above definitions in mind it is possible to
calculate 77, the force needed to pull a molecule through
the polymeric solvent with a velocity v. It will be

F=9N fo+CN fosv+CoN fos?v4- - -,

where C; is the number of first-order coupled chaing
(i.e.,number of chains coupled to the primary molecule),
C, is the number of second-order coupled chains, etc.

A crude approximation would be to set Cy=KM,
Cs=(KM)2, etc. This cannot be correct since it would
predict that at a value of M such that KMs=1, the
force will become infinite. The reason that such is not
actually the case is that not all couples can be effective.
There are two reasons why a coupling may be in-
effective. The coupling may be made to a chain which
has been previously coupled and so would be moving
with a velocity larger than the required velocity ; or two
couplings of the same order may be made to the same
molecule, in which case each would exert only one-half
its normal force.

Therefore,

F=uN fo{14Cis+Cos>+- - }. (5)

It is apparent that the only remaining obstacle to the
calculation of F is the evaluation of the C,.

Qualitatively it is possible to see quite readily what
the values of the C, will be. One would expect the first-
order couplings to be nearly all effective and so Cy will
be KM. However, if we represent the sedimenting
molecule as a sphere, the number of effective second-
order couplings will be decreased within that sphere,
because there is a possibility that some of the couplings
will be made to chains already coupled as first-order
chains. From this, Cy should be less than (KM)? and
similarly for Cs:-+Cyn. In fact, it will eventually be
true at some critical coupling order, say the mth order,
that essentially no uncoupled molecules will exist inside
the sphere available for couplings. At this value of
m=g, the C, will decrease fairly rapidly since effective
couplings may only be made at the surface of the
coupling sphere.

The calculation of the C, may be carried out reason-
ably rigorously, as is shown in the appendix. When
this is done, one arrives at the result that

F=vfN* or Nj=N*f, (6)

where N* is an effective number of chain links. The
behavior of N'* is shown in Fig. 1 where logN *~logn is
plotted against logV~logM. Tt will be seen that N is
proportional to N* for small values of N. However,
when NV becomes large enough so that on the average
one chain is coupled to one other chain, i.e.,, KM=21,
the effective number of segments N* varies as some

higher power of V. The exact power is chiefly dependent -

upon the value of the slippage factor s, as shown in
Fig. 1. At very large values of N, the quantity
N*~N25,
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F1c. 1. The variation of viscosity with molecular weight for
polystyrene according to theory. For these curves the coupling
constant K was taken as 10~% The slippage factor s has the values
indicated on the curves.

In order to compare this theoretical viscosity with
that found by experiment, the values for R? and p have
been chosen to approximate those known for poly-
styrene.

The value used is that for a very poor solvent
(R?/M =0.50X10718) since Flory* has shown this to be
the proper value to use in concentrated polymer
systems.? Using this value, the family of curves plotted
in Fig. 1 were obtained. The quantity K was chosen as
107, Choice of other values of K merely shifts the
break in the curve along the axis since the break
always occurs at the place where KM=<1.

Since Fox and Flory® have found experimentally that
the data exhibit a break much like the one shown by
theory at M = 50,000, one would estimate that K must
have a value of about 2 X107%. This would mean that a
couple exists for each 500 chain units, which is not at
all unreasonable.

Also, since experiment shows that the high molecular
weight portion has a slope of about 1.5 units higher
than the low molecular weight region, it is apparent
that s must be about 0.3. This again is about the ex-
pected value. However, this value is uncertain due to
the following fact.

The agreement between experiment and theory is not
very good below M =50,000. Whereas it is found here
that the slope should be unity, experiment leads to a
rather complex curve with slope near two. Such a dis-
crepancy Is to be expected since we have not considered
the important fact that the presence of chain ends acts
to “loosen” the structure. This is treated a little more
fully in a later section where it is shown that the dis-
crepancy is most likely due to a change in segmental
jumping frequency when the number of chain ends
becomes large. Unfortunately, this fact ceases to become

5 Quter, Carr, and Zimm, J. Chem. Phys. 18, 830 (1950).

8T, G. Fox and P. J. Flory, J. Phys. Colloid Chem. 55, 221
(1950).
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important at M =50,000 (as shown by transition tem-
perature and density data), and so a decrease in slope is
superposed due to this effect. Therefore, a good value
for s is not easily obtained until the chain end effect is
better known. It is reasonable to assume that this
chain end effect is largely responsible for the molecular
weight dependence of Flory’s data” on the viscosity of
low molecular weight polyesters.

III. SEGMENTAL MOBILITY

It is possible to calculate the diffusion constant in
another way which gives us direct information con-
cerning segmental mobility. In addition, this second
method leads to a more easily visualized picture of the
actual diffusion process.

As a first approximation, consider the polymer mole-
cule to be composed of N freely jointed segments.
Further, suppose each chain link to have a probability
P of jumping in either the positive or negative x direc-
tion in unit time. Call the average length of each
jump a. One then knows that the number of links of a
given chain jumping in the x direction in time Af is
N PAt.

Now if A¢is taken short enough so that the number
of jumps is small compared to N, each of these will be
essentially independent, and so one has n=VPA! steps
in a random walk.

From the theory of the random walk one may obtain
a distribution function for the excess number of steps
taken in the positive x direction. Call it D(pa) where p
is the number of excess steps and a is the length of each
step. For a particular p the center of mass of the
molecule will move a distance pa/N=X. To get (X%
one must evaluate

f X*D(pa)dp.
0

This then gives
(X =na*/N2.
Now if the value of (X?) in the next instant Af is
independent of its previous value, one may show that?
D=(X?/2At. 7

The required independence of (X?) may be shown to
" be approximately true for particular types of chains,
and if one assumes it to hold closely enough for present
purposes in all practical cases, one obtains

D=a?P/2N. (8)
But it was found above that
D=FET/foN*.

To bring these two relations into agreement one must

replace N by the effective number of chain segments N*.

7P. J. Flory, J. Am. Chem. Soc. 62, 3036 (1940).
8 G. Joos, Theoretical Physics (Hafner Publishing Company,
Inc.. New York, 1934), p. 565.
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After that is done one obtains the interesting result
fo=2kT/a*P. )

This equation relates the friction coefficient to the
easily estimated quantities P, the jumping frequency,
and @, the average x component length of each jump.
Using this fact it is now possible to express the previous
equations for D and 7 in terms of either f, or Pa’.

Before leaving this section it should be pointed out
that it is easy to derive the above equations without
recourse to Einstein’s relation. This is accomplished by
calculating the sedimentation velocity for both ways of
considering the process—a viscous drag and a directed
walk—and comparing results.?

Since it is now possible to relate the bulk viscosity of
a polymer directly to the segmental jumping frequency,
it would be of interest to calculate the jumping fre-
quency at the volume expansion transition temperature.
Fortunately, Fox and Flory® list the approximate
values of the bulk viscosity which one would find experi-
mentally at the transition temperature in the case of
polystyrene. They list the values of 5 at Ty for several
molecular weights between 3000 and 300,000. To avoid
the errors involved in the estimation of V we shall use
the data for M =230,000 where N*=N. There one has
n=10L

Upon combining Egs. (1), (6), and (9) it is found
that

R?pA kT

f=——— (10)
M 16 a*P

Taking R2/M =0.50 X107, ¢*=10"1, and N*=300,
one finds that P should be about 0.3 sec™.

According to this, if a sample of polystyrene of
molecular weight= 30,000 is held at its transition tem-
perature, each chain segment makes one jump every 3
seconds on the average. Such a frequency is about what
one would expect if the transition temperature repre-
sents the temperature at which the chain segments are
just able to adjust to the most favored position in a
reasonable length of time.

Fortunately, another check is available on this point.
The volume expansion and 3000-cycle dielectric proper-
ties of a single sample of polyvinyl chloride have been
measured in this laboratory. The volume expansion
transition temperature was found to be 83°C. The di-
electric properties were essentially the same as for a
sample studied extensively by Fuoss,'' so his much
more complete data were used. By extrapolation of his
data one is able to show that the dielectric resonance
frequency for this polymer is about 0.05 cycle when
the sample is held at 83°C.

Since the dipoles of polyvinyl chloride are attached

9 Originally the calculation was made in just that way. I am
indebted to Professor P. Debye for pointing out this simpler
approach.

1o T, Fox and P. J. Flory, J. Appl. Phys. 21, 581 (1950).

1R, M. Fuoss, J. Am. Chem. Soc. 63, 378, 369, 2410 (1941).
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directly to the chain, the average rotation frequency of
the dipoles should be about equal to P, the jumping
frequency. Moreover, the dielectric resonance frequency
should be approximately equal to the average dipole
rotation frequency. From dielectric measurements one
would conclude that P should be about 0.05 at the
transition temperature for polyvinyl chloride. This is
to be compared with the value of 0.3 found for poly-
styrene at its transition temperature. Considering the
inaccuracies of the extrapolations, the leeway in assum-
ing values for the calculations, and the fact that the
two polymers are much different, the agreement is
quite acceptable. In fact, if one remembers that & is
the number of freely orienting chain segments instead
of actual segments as assumed here, the agreement can
be made perfect. However, the author feels that the
actual uncertainty in P is too large to justify perfect
agreement.

It is also interesting to notice that the data for the
molecular-weight dependence of Tg as given by Fox
and Flory!® seems to support the statement made
previously concerning the molecular-weight dependence
of 7 at low molecular weights. For if one calculates P
for each molecular weight they have used, one finds

dv,
X
7\
Fie. 2. Diagram illus- , /7 \
trating the quantities used ¥ \r-
in the text. /

/ \
Z \
o a A

that P is essentially constant at the transition tempera-~
ture. Therefore, it would seem that the transition tem-
perature represents a state of constant segmental
jumping frequency. This, of course, fits in very well
with Fox and Flory’s!® supposition that Tg is an iso
free volume state.

APPENDIX

It is shown in the text that in order to calculate the
force needed to pull a molecule through the solid with a
given velocity one must know the value of C,. This
quantity is defined as the number of the nth-order
couples which are effective. In order to calculate it, one
must know the spatial distribution of coupling points
for any coupling order. This may be found as follows.

The distribution of segments of a molecule may be
taken as!

~exp[ — Bore® Irodro,

where By is 9/R? and r, is measured from the center of
mass of the molecule.

Since this is also the distribution function for the
coupling points, the probability that a second molecule
having its center at a distance a from the first will
have a couple in the volume element dV (see Fig. 2) is

1963
0 a A
\ //
\ %
Fic. 3. Diagram illus- \ /
trating the quantities used r i
in the text. \ Y
dv,
given by

wexpl'_'— ﬁorog'”" 61?’12](”/1.

Integrating this over all elements of volume gives the
probability that a molecule with center at 4 is coupled
to the original molecule:

(constant) exp(—a?[ BoB1/ (Bo+B1)]).

Since the molecule with center at A has the proba-
bility given above of being first-order coupled, the
above expression may be used to represent the density
of centers of first-order coupled molecules as a func-
tion of a.

The density of segments from first-order coupled
molecules in a volume &V, is found by summing the
contributions of all such molecules as A.

The density of segments in dV, due to first-order
coupled molecules at 4 will be proportional to (see
Fig. 3)

BoB

exp[ — az( ) - ,Brf].
Bot 81

Integrating over all positions of 4 one obtains for the
distribution of segments of first-order coupled molecules
and therefore of second-order coupling points

BL(BBY/ BotB1)] ]
B+ (BoBy/ BotB1)

But 1= 8= B.=«, and so the distribution of nth-order
coupling points is

72,

Dwexp{

D= (constant) exp[ —ray,]

where vi=1, yp=1, ++, vu=1/Q2n—1).
But one also knows that

f D.dV=1.

This gives the normalization constant, and one then
knows that the distribution of #th-order coupling points
is given by

YnX H
D= ( ) expl ~—r%ayn],

T

where a=9/R% v,=1/(2n—1), and r is the distance
from the center of mass of the original molecule.
A similar expression applies for the distribution of
centers of nth-order coupled molecules. It is obtained
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by replacing v, by a new constant A,, which is equal
to 1/2n.

Now from the definition of K, each primary chain
has KM primary (or first-order) couples. This essen-
tially divides the chain into KM coupling segments.
There will be Q such segments per cc. Such a definition
does not appear reasonable at KM values less than
unity, but this is of no consequence for the present
purposes.

It is necessary now to consider what happens as M
becomes very large. In that event only a small number
of coupling segments of the secondary molecule will be
effectively pulled along by the primary couple. Call
this number £. For KM < &, we shall have ¢=KM.

Therefore the density of nth-order couples will be
approximately

pn=3a, KME" 1 exp[ — a.r®Jridr,

where o,=12.6v,4/R3. In writing this expression the
Gaussian previously used has been replaced by an
exponential to »* having the same average of #%. This is
done to facilitate later computation and is probably
not a serious limitation.

F. BUECHE

The effective number of couples may be obtained to
good approximation by multiplying p by ¢ /¢ and
integrating. One then finds

K’Mgn'—l
Com (1= %),
An

where
An= B, KME™1)/(47Q).

Now the total force is given by

F=oNfo{ 14Cis+Cas' - - -}

or

w §nEn—1

F=uNfl 1+ KM T
1

(I—e4n) ¢,

n

This may be simplified in special cases. But in general
one has F=1/f,N* where N* is defined as N{ }.

For the calculations of the text, £=35 and K=10"
The function is not very sensitive to &, and a change
to a value of £=10 does nothing but increase N*
slightly above the break.
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The symmetry for the wave functions of molecules like CH;CF; is analyzed, and a new group, Cs is
proposed. The irreducible representations in Cy are derived in the general case for the nuclear spin and
internal rotation factors of the wave function. The procedure is described for determining the symmetry
and statistical weight of any given internal rotation, vibration energy level.

AST treatments of the symmetry for internal rota-

tion in molecules like CH;CF; have utilized the
group of threefold rotations of one top alone.’? This
has led to the introduction of an artificial asymmetry
into the problem, which gives rise to certain problems
in assigning symmetry characteristics to the various
wave functions, and statistical weights to the corre-
sponding energy levels.? Actually the combined rota-
tions of both tops comprise a group, called here C,,
which must be used in considering the symmetry of the
wave functions.

If R, is a rotation of the CHj top by 120° and R: the
corresponding rotation of the CFj top, the complete set
of operations is

E; Rl; R12; RQ; R22; R1R2; R1R22; R12R2; R12R22,
where E is the identity element. The subgroup E;
R\Ry:; RPR is the well-known three-fold external

17.S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006 (1940).
2 J. O. Halford, J. Chem. Phys. 18, 444 (1950).

rotation group of the molecule, while £; Ry; R, and E;
R,; R,* are the rotational subgroups for the CH; and
the CF; tops, respectively. Each of the latter has the
representations

E R R?
A 1 1 1

1 w w?
2 1 w? w

where w=exp(27i/3).
In constructing the representation of the total group,
one can assign the characters to the rotations as follows:

Rl’\’w Rz’\’l Rl’\-‘l Rz’\’w

Rle2 Rz’\’l R1N1 R2~w2

Ri~w Ro~w - Ri~w Ro~w?
Eg‘ E4‘

Ri~w? Ro~w Ri~w?  Ro~wi,
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