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An Approximate True Damping Solution of the Flutter
Equation by Determinant Iteration

HerMaNN J. Hassic*
Lockheed-California Company, Burbank, Calif.

The difference between a true damping, or rate-of-decay, solution of the flutter equation
and the structural-damping-type of solution is highlighted. True damping solutions are
possible if unsteady aerodynamics can be expressed in terms of the complex variable p. If

the aerodynamics are given at discrete values of the reduced frequency k, an approximate de-

termination of the true damping is possible by assuming that the aerodynamic forces for har-
monic motion are a good approximation for the cases of slowly increasing or decreasing ampli-

tude.

A determinant iteration method for obtaining the solution is presented.

Results ob-

tained by different methods of solving the flutter equation are compared.

.Nomenclature

[A1],[40]
[44],[4.],14],

[Ba],[B1],[Bs] = aerodynamic matrices defined by Eq. (R)
[A k)], A (K)],

n

quasi-steady serodynamic matrices

[Aalk)] = complex aerodynamic matrix numerically
available at any discrete value of k
[A(p)] = acrodynamic matrix that is an explicit func-
tion of p z
D] = viscous damping matrix

[D4l,[Ds],[Dc] = matrices relating the control system to the

degrees of freedom

[Ds], (D] = matrices expressing local slope and local ver-
tical displacement in terms of {q}

1[F(p,k)N| = flutter determinant

[K] = stiffness matrix

[M] = inertia matrix

[Af] = inertia matrix including effective apparent
inertia of air -

{Q} = column of forces

{q} = column of degrees of freedom

{a} = column of angles of attack

a;,by,a1,b: = constants defining the lag function

Qn,Gn41 = successive amplitudes of oscillatory motion

c = reference chord

F.G = scalars ®

I = frequency in cps

Ju = scalar

g = structural damning

[ = graviiationsi wvccleration

HyHgp He = transfer functions for hydraulic controls and

: sutomatic control systems; explicit func-

tions of &

k = reduced frequency wc/V

] = differential operator (¢/V)(d/dt)

p=2d+4ik = iterated values for the root of the flutter equa-

=eah tion

8 = nondimensional time Vi/c

14 = {rue nimpeed

- = true damping coefficient

A=A+ 0\ = complex root of flutter equation

Received February 8, 1971; revision received July 6, 1971.
The author wishes to acknowledge RRobert B. Neveceral of the
Scienfific Computer Services Division of the Lockheed-California
Company whao did all the computer programing for this paper.
The work presented herein was condueled as part. of Lockheed-
Californin Company independent resenrch and development.

Index category: Aercelasticity and Hydroelasticity.

* Research and Development Engineer, Commercial Engineer-
ing. Member ATAA.

p,po = air density, air density at sea level
o = air density ratio p/po
@ = circular frequency

The p and k Methods of Solution
of the Flutter Equation

HE flutter equation can be written in the general
form

[V*/c(Mp* + [K] — 4oV (AP DI} = 0 1

[K ] defines the elastic characteristics by relating generalized
forces {Q] to generalized displacements {g}

K{q} = {Q} ()

[M ] defines the inertia characteristics by relating the inertia
forces {Qia} to the generalized accelerations

. (dul = —DM1(a) ol
[A(p)] defines the unsteady aerodynamic forces through the
equation

{Qure] = $oV2[A(0)]{g} @

In Egs. (1) and (4) p is the nondimensional differential opera-
tor (¢/V)(d/dt). If the aerodynamic forces can be expressed
as a sufficiently simple function of p, Eq. (1) defines a poly-
nomial in p with real coefficients. For nonzero solutions for
g the determinant formed by the matrix coefficients in Eq. (1)
must be equal to zero. For a given value of the speed V, the
determinant can then be solved directly for p. This leads to
conjugate complex roots

p = vk £ ik ®)

k defining a nondimensional reduced frequency we/V and ¥
defining a rate of decay

v = (1/2x) In(@as1/aa) (6)

‘ where a. and @, are the amplitudes of successive cycles.

This method of solving the flutter equation will be called
the p method. It can be used in the tase of quasisteady aero-
dynamics when [4 (p)] assumes the simple form

[A(@)] = [Ai]p + [4a] @

but alao in the case of simple forms of unsteady acrody-
namics. ]

Mazelsky and O’Connell! formulated approximate un-
steady aerodynamics that accounted for apparent mass, aero-
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Fig.1 Comparison between p method and k method for
a twin-jet transport airplane.

dynamic lag, and aerodynamic coupling between different
strips on the wing and which were a relatively simple function
of p. With their formulation, the flutter equation tukes the
form ~

] + /VYIE] + o/ + b)pH A + plA:] + [4o]] +
o/ + b)[p*[B:] + p[B:] + [Bolll{g} = 0 (8)

The quantities b, and b, are from the two-exponential lag
function

1 — ge~b® 4 ge—bn 9)

The matrices Ag,A;,A2 and By,B;,B: contain the lift curve
slope, aerodynamic influence coefficients, the aerodynamic
-center and rotation center (corresponding to the § chord
point in two-dimensional theory) for each strip, and the damp-
ing in pitch. Equation (8) has been used at the Lockheed-
California Company since the middle fifties and has been
routinely solved by determinant iteration since 1960 for roots
p = vk + 1k of interest.t

More sophisticated formulations of the aerodynamics, such
as follow from the kernel function or doublet lattice approach
or the supersonic Mach box, lead to aerodynamic matrices
valid only for harmonic motion, p = ik. In that case, Eq.
(1) takes the form

|- Ao+ 5 &I 5 aan] |0 = 0 a0

This is the traditional American form of the flutter equation.
At chosen values of k, complex roots for 1/V2, A, + t\, are
found and interpreted as

A+ i = (1/V3)A + i) (1n

where g is the structural damping required for harmonic mo-
tion. This method of solving the flutter equation is here
called the k method.

Several authors have discussed the differences between the
p method and the k method and variations thereof.2~* The
significance of the difference between the rate-of-decay
damping, ¥, found with the p method and the structural
damping, g, found with the k method is, in general, well under-
stood. The numerical differences have been demonstrated
by direct calculation by Richardson,* Rodden and Stahl® A
result obtained by this author is shown in Fig. 1. It is found

t Credit for the original determinant iteration program goes
to R. F. O’'Connell and G. E. Smith of the Lockheed-California
Company.
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by formulating the flutter equation for a twin-jet transport
- according to Eq. (8) and solving it according to the »p method

and the £ method.

The upper part of Fig. 1 shows the frequency-vs-speed rela-
tion obtained with the two methods. Each of the curves
numbered 14 corresponds to a root of the flutter equation
and en associated flutter mode. The lower part of Fig. 1
shows how the damping obtained with the two methods varies
with speed.

For the k method g is plotted; for the p method the com-
parable quantity

2y = (1/x) In(aas1/a.) (Ref. 6)

The numbering of the curves corresponds to the numbering in
the upper part of the figure. One can see that the p method
solution shows flutter in the first mode; the k method solution
shows flutter in the second mode. Even the modal coupling
seems different. Yet at the flutter speed, both methods of
solution give identical results.

It is generally conceded that it is desirable to formulate and
solve the flutter equation such that the solution leads to a
value for the rate of decay. Ideally, this requires the formu-
lation of the unsteady aerodynamics matrix as a function of
the complex variable p = vk 4+ 1k. Some of the approximate
formulations of the aerodynamic matrices have made this
possible.?45  An attempt to develop Theodorsen-type aero-
dynamies as a function of p = 4k + 1k led to a dispute as to

« whether the formulation was valid for a motion with decaying

amplitude.”™* The only published application of generalized
Theodorsen aerodynamics is by Stiimke.*® No such attempt
for kernel function aerodynamics or supersonic Mach box
serodynamics has come to the attention of the author.

In general, then, when one wants to work with exact
theoretical acrodynamics one must work with a formulation
for harmonic motion and devise approximate methods to de-
termine the rate of decay.

Zisfein, Frueh, and Miller!!-1? have shown that under sim-
plifying assumptions, the rate of decay as a function of speed,
assuming zero structural damping, can be obtained from the
traditional k-method solution. If g, w, and V are found with
the k method, then, according to Ref. 12

1. Gupr V dw

Landahl® plots the real and imaginary part of the flutter de-
terminant as a function of w and obtains approximations for
v and w. Such a plot must be made for each speed to obtain
compleic frequency damping-velocity disgrains. Natke® also
describes a method of obtaining rate-of-decay from what isin
principle a k-method type solution. These methods are ap-
proximate and indirect. Indirect in the sense that they re-
quire the availability of the k-method solution.

The p-k Method

Equation (1) suggests an approximate method of finding a
rate-of-decay type solution directly. Writing Eq. (1) in a
form indicating that the aerodynamic matrix is only available
for harmonic motion, and computing [A (ik) ] for an estimated
value of k: <

[(V/eDMp* + K] — 3oV*AGH)]](g} = 0 (13)

one can solve for p = vk; + tk;, compute [A(ik1)], solve Eq.
(13) again which leads to p = qkz + ks, etc., until the imagi-
nary part of the solution equals the k value of the aerody-
namics. This method of solution is here called the p-k
method. The rationale for this approach is that for sinu-
soidal motions with slowly increasing or decreasing amplitude,
aerodynamics based on constant amplitude are a good ap-
proximation. ;
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The method is shown in an actual flutter analysis by Irwin
and Guyett'*$ and is mentioned by Natke? .and Dat and
Muerzec.! Recently, Jocelyn Lawrence and Jackson' de-
voted an ARC report to & comparison of methods of solving
the flutter equation and they presented the method of Ref.
14 in detail, calling it the “British Method” in contrast to the
“American Method” (k method).§

In Refs. 14 and 15, a graphical method is presented to
match the imaginary part of p with the k value of the aero-
dynamics. This author has shown the feasibility of finding
roots directly. Figure 2 compares p-k method results-and p
method results obtained by applying Eq. (8) to the same case
of a twin-jet transport as in Fig. 1. Corresponding curves in
the upper and lower halves of the figure have like symbols.
At all rates-of-decay of significance the p-k method gives a
very good approximation of the true rate-of-decay as found
with the p method.

In judging the significance of Fig. 2 it must be considered
that the aerodynamics implied by Eq. (8), although contain-
ing most important aspects of unsteady aerodynamies, is in a
rather simple form. It does include aerodynamic lag and

steady-state aerodynamic coupling between strips, but not
the signal delay between strips. However, Fig. 2 represents
the most general comparison known ‘to this author at the
moment.

In view of the good agreement shown in Fig. 2, a computer
program was developed that makes it possible to find roots
according to the p-k method by determinant iteration.

Matrix Iteration Applied to the p-k Method

When the p-k method symbolized by Eq. (13) is pro-
gramed for the digital computer, significant advantages are
gained by generalizing the equation. The equation used in
the Lockheed-California Company program is

v 5
[5G e+ 0170+ a+inlk) -
GV’%ML[A(k)} — Hy, (:;H ‘p) [Da]l — Hs (g P) [Ds] —

He (%’ p) wc}] g} = 0 (4

or

[F@p,K)){g) =0 (15)

[D] represents viscous damping; c.g., due to flutter dampers.
Ha, Hg, and Hc are transfer functions for hydraulic controls
and automatic control systems; they mre related to the de-
grees of freedom by [D4], [De], and [Bel- 1/go and fi are
e20' re inteoduced for convenioics.

All matrices in Eq. (14) are real and uniquely defined, ex-
cept [A(k)], which is complex and must be given for a suffi-
cient number of k values. Equation (14) is solved at several
values of ¥ and o, or combinations thereof, for complex roots
p associated with modes of interest. Modes of interest are
determined from vibration analysis or from previous flutter
analyses.

The process of determinant iteration is completed mode by
mode for one speed and then at successive preselected speeds.
For one mode at one particular speed, the process is started by
initial trials for p:

=& + itk P2 = 8 4+ ths (16)
[A(k))] and [A(k;)] are computed by interpolation. Using

$ This author’s attention was directed to this method by
P.R.Guyelt when he was visiting the Lockheed-California Co.

$§ This author favors identifying methods by names that say
something about the method, if it can be cone without using un-
duly long names.
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Fig. 2 Comparison between p method and p-k method
for a twin-jet transport airplane.

Eq. (14) the values
Fy = |[F(pi,k) ]|

are determined. The Reglua Falsi method gives a first
iterated value for p:

Fy = [[F(p2ko) ]| (7

7 = (p:Fy — piFy)/(Fy = F) (18)
The process is repeated according to the recurrence formula’
Pisr = (PinFi — pFia)/(Fi — Fiyi) 19)

until a specified degree of convergence is attained. Front the
converged root p. = 8. + ik., the frequency and damping
can be computed

Vk. l Qnyy B
5o _ 2T=rh‘a...=2k_, (20)

To complete one frequency-damping-velocity diagram for
several modes, one initial trial for each mode, at the first
speed only, must be input. This trial, p;, may be given as
P2 = & + ik, if available from an earlier computation, or as

P2 = 0+ @=fc/V)i (21)

where f is the natural vibration frequency of the mode sought.
When using Eq. (21), the flisi speed, V, should be sufficiently
small such that Eq. (21) is a reasonably good trial for p..
The program computes p, as

= —Fks + iGk: (22)

where usually F = 0.01 and G = 1.00. ;
When all the desired roots at the first speed are found, they
are used in determining the initial trials for the next speed, V

p= (V/Vp: P2 = (V/P)pe (23)

and repeated application of Eq. (19) leads to converged roots
at the second speed o

The trials for the third epeed, .'F_’, are
= /Pp. 7= (/) (25)

and similarly for the following speeds.
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COMPARISON BETWEEN p-k-METHOOD & k-METHOD
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Fig. 3 Comparison between p-k method and k method
for a horizontal stabilizer with elevator.
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Features of the Lockheed-California
Company Program

The program, Determinant Iteration p-k Method, was ‘in‘o—
gramed by R. B. Neveceral for the IBM 360 Model 91 as
part of the FAMAS system.’* The existing version is de-
signed such that each iteration can be done largely within core.
Therefore, the following restrictions have been imposed: a)
maximum order: 50 X 50; b) use four [A (k)] matrices for
the interpolation of the aerodynamic matrices; c) the
matrices [D4], [Ds), and [Dc] have a maximum of 20 nonzero
elements; and d) J «, H s, and He each are the quotient of 8th
degree polynomials in (V/¢)p.

The four aerodynamic matrices used for each interpolation
are determined by the value of the imaginary part of p used
to evaluate |[F(p,k)]|. During the first three iteration steps,
the acrodynamic matrices are chosen such that two of their k
values are above and two are below the imaginary part of p.
From then on, the same four aerodynamic matrices are used;
even if during the iteration process the imaginary part of p
wanders outside the range between the inner two k values, as
long as it does not wander too far into the adjacent range.
This feature was included after it was found that, when the
final k value of the solution is close to one of the input values,
“hunting” may occur. Namely, going from one iterated
valre to the next, the imap y pavt may demand o dificrent
set of aerodynamic matrices and the next iterated value may
call the earlier four aerodynamic matrices back.

For the determinant iteration to work satisfactorily, the
initial trials that start the iteration must be reasonably good.
Thus, when going from one preselected speed to the next, a
root may vary so much that the trials provided by the pro-
gram do not lead to convergence. In that case, for the mode
concerned, the program cuts the interval to the previous
speed in smaller subintervals.

As a result of the previous feature, speed intervals may be
chosen rather large, such that when flutter occurs there are
not enough points to determine the flutter speed accurately
by fairing & curve. To get a better definition of the flutter
speed, the program will solve Eq. (14) at additional speeds in
the flutter region any time a mode becomes unstable.

There is an option to run the program at constant o (a
maximum of five o values per case) or at ¢ varying with
speed. If in the latter case o varies as defined by a constant
Mach number in the atmosphere, the program computes the
o values corresponding to the velocities chosen. The o values
for any other speed-vs-o relationship must be listed on a con-
trol card. The output of the program is arranged such that

Ay
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fvs V and 2 vs V plots can be obtained from the CALCOMP
digital incremental plotter.

Discussion

A good deal of experience with the Determinant Iteration

p-k Method Program has been gathered at the Lockheed-
California Company. Figure 3 shows one of the early check
cases for which an earlier k-method solution was available.
The k-method solution is represented by the solid lines with
computed points marked. Corresponding curves in upper
and lower half of the figure are numbered 1-4. The p-k
method solution is represented by the symbols and where it is
significantly different from the k-method solution, by dashed
lines. A case of a horizontal stabilizer with elevator is chosen
for which the original k solution can be easily interpreted in-
correctly even though the k values at which the flutter equa-
tion is solved are rcasonably close together. A sufficient
number of check cases has been done to show the agreement
at the flutter speed between k method and p-k method.

It is thought that the p-k method is economically competi-
tive with the k¥ method, although no precise comparisons have
been made. Much depends on details of the computer system
available. The p-k method has two distinct advantages,
however, the frequency-damping-speed plots are more easily
interpreted and frequeney-damping-speed plots can be ob-
tained in which the solution at each speed is for the density in
the atmosphere corresponding to that speed and the Mach
number. Thus, computer runs for several different constant
densities are avoided.

In developing the program, elements of the [A (k)] matrix
were plotted vs k, and surprisingly irregular curves were found
for the case in which g 64-degree-of-freedom system was re-
duced to a modalized 15-degree-of-freedom system, using
natural vibration modes. This has given risc to the hunting
mentioned earlier.
the same four aerodynamic matrices as long as the imaginary
part of p does not wander away too far, the problem of non-
uniqueness of the aerodynamics is introduced. A compro-
mise can be found in which hunting is virtually avoided, and
nonuniqueness of the aerodynamics is restricted to small
ranges of k values (say, 5% of each interval at each end of the
interval). i

Possibly better behaved aerodynamic matrices are found if,
instead of writing Eq. (4), the aerodynamic forces are ex-
pressed as

; {Quere} = 20V2[Aa(k)){a} (26)
from which
{Quere} = $0V2[Aa(B)1(IDs] + 2I[D:D g} (27)

However, this increases the number of matrices that must be
kept in store for the iteration; as a result, the maximum order
that can be handled will be less than 50.

At low speed and high frequency, the k values are high and
often lead to extrapolation for [4 (k)], which in turn may lead
to nonconvergence or convergence on the wrong roots. To
avoid problems, an aerodynamic matrix for an arbitrarily high
k value is included (suy, k = 50 or 100). The [4 (k)] for that
value is derived from piston theory or made equal to the
regularly computed [4 (k)] matrix at the highest k value.

The present program makes it possible to find control sur-
face rotation modes that in the k method often escape atten-
tion because, in the frequency-vs-speed diagram, they fall
between two constant k lines. Also, the stability modes,

When climinating hunting, by retaining.

except the phugoid, can be found at the same time that the _

flutter modes are found.

The program can be expanded to include computing the
effect of parameter variations on the frequency and the damp-
ing at one speed. Once the frequency and damping at that

speed have been determined, say for [M,], [D:i] or [Ki] the
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roots can be used as first trials to start the iteration at the
same speed for a slightly different matrix [Ma], [Da] or [K.].
This may have advantages in the case of the flutter analysis
of airplanes with a large number of possible external wing store
combinations, or for other parameter studies. The feasibility
of this process was recently demonstrated for the variation of
the viscous damping [D].

Determinant iteration was used for finding the flutter roots
because it was readily available. It can be used without first
putting the flutter equation in the canonical form and the
flutter determinant can be an intricate function of p. (Thus,
determinant iteration can be used if aerodynamic approxima-
tions are complicated formulas of p, such as those proposed
by Richardson.t) However, other methods of finding the
roots may be modified to suit the needs of the p-k method, and
it has already been suggested'? that a modified power method
(matrix iteration) may be used successfully.

Conclusions

1) An approximate but direct method of finding rate-of-
decay type solutions of the flutter equation, even when the
aerodynamic forces are available for harmonic motion only,
is presented. 2) A determinant iteration method is used for
solving the flutter equation which is generalized to include
viscous damping, structural damping and several transfer
functions representing automatic control systems. 3) The
validity of the method is demonstrated by comparing solu-
tions obtained by different methods. 4) Matrix iteration
(power method) and other methods, may, after modification,
provide alternate means of finding the flutter roots according
to the p-k method. :
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