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Improved Exponential Time Series Approximation
of Unsteady Aerodynamic Operators

"'Lee D. Peterson‘ﬁand Edward F. Crawleyt
Massachusetrs Institute of Technology, Cambridge, Massachusetts

A procedure has been developed for approximating unsteady aerodynamic operators as truncated exponential

L]

series in the time domain. The approximation is accomplished using a least squares minimization fit to
aerodynamic data in the frequency domain. The procedure extends previous methods by including the pole loca-
tions as unknown parametérs of the least squares minimization. In addition, the error associated with both the
real and imaginary parts of the Fourier transform of the approximation is minimized. A Newton-Raphson
search algorithm is used to find the minimum of the weighted square error in the parameter space of the approx-
imation while constraining the poles to be in the left half-plane. By freely varying the poles of the approximation
during the numerical least squares minimization, the representation of the unsteady aerodynamics is improvéd
and is comparable to existing higher-order Pade approximations. Hence, the method offers the aeroelastic
designer a more direct method of finding approximate aerodynamic states. However, because the minima of the
square error in the cost function found are not necessarily global and depend on the number of poles in the ap-
proximation, the initial trial minimum, and the details of the cost minimization algorithm, the poles found in the
search do not necessarily correspond to the theoretical poles of the aerodynamic transfer function. Example ex-

ponential time series approximations of the Theodorsen function are presented and compared with a Pade ap-
proximation and other exponential time series approximations.

Nomenclature

=curvature matrix of the cost function J

=true aerodynamic impulse response spectrum

=approximate aerodynamic impulse response
spectrum

=coefficient defined in Eq. (14)

=coefficients of the approximation

=pole locations of the approximation

=cost minimization step length

=Theodorsen circulation function

=cost minimization search direction véctor

=real part of A

=real part of A’

=gradient of the cost function J

=imaginary part of 4

=imaginary part of 4’

=weighted square error cost function

=reduced frequency

= frequency corresponding to the peak in |G|

=number of data points to be fitted

=number of terms in the senes

=nondimensional time

=Laplace domain variable

=parameter vector of the coefficients and poles

= weighting factors for the real part of the approxima-
tion error

=weighting factors for the imaginary part of the ap-
proximation error

¢ =true step response

¢’ =approximate step response
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Introduction

STEADY aeroelastic analysis relies on an accurate
representation of the generalized aerodynamic forces in
a convenient computational form. The lift and moment
aerodynamic operators for the arbitrary translation and
pitching of a vibrating wing are most often determined in the
frequency domain, even 1hough the aeroelastic analysis
usually must be carried out in the Laplace domain (for flut-
ter or control analysis) or in the time domain (for gust
response or for simulation of the aircraft motion).!"> Even
for the few cases in which analytic expressions for
aerodynamic operators are known in the frequency domain,
exact conversion to the time domain is difficult or awkward.
For the case of transfer functions determined at discrete fre-
quencies by computational or experimental methods, analytic
transformation to the time domain is impossible. It is,
therefore, necessary to perform the conversion using an
assumed approximate form that has both a convenient time
and Laplace representation. Additionally, the approximation
must be accomplished using as low an order as possible
because, in general, each additional term in an approximate
aerodynamic form adds a state to the aerodynamic operator
and, hence, adds a state to the aeroelastic formulation.
The most commonly assumed approximate forms of
unsteady aerodynamic operators fall into two categories:
Pade approximations, -for which the Laplace domain
aerodynamic transfer functions are assumed to be the ratio
of finite-degree polynomials in the Laplace domain variable,
and exponential time series approximations, for which the
time domain aerodynamic transfer functions are assumed to
be a finite series of lag exponentials. Although the two
representations are theoretically identical, they differ in thc:r
derivation.

The Pade approximation has probably been more wld_ely
used, however, because the minimum of its approximation
square error cost function can be analytically found in some
simple cases. Vepa$ developed such a Pade approximation
procedure for finding unsteady aerodynamic - operators.
However, as pointed out by Dunn,” an application of the
analytical Pade approximation to complicated systems, such
as those having more than two flexible modes or having an
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imprecise aerodynamic description, can result in an unstable
representation. For this reason, Dunn has developed a Pade
approximation procedure that insures stability by constrain-
ing the poles of the aerodynamic transfer function to be
negative. That procedure used a constrained numerical
search to identify the Pade coefficients.

The exponential time series representation, whose
parameters include the aerodynamic poles as the inverse of
the time constants and the coefficients of the corresponding
terms, can be superior and preferable to Pade approxima-
tions in aeroelastic analysis, as indicated by Dowell.® The
aerodynamic states—the poles of the aerodynamic transfer
function—are explicit parameters of the exponential time
series approximation, but can be determined only implicitly
from the parameters of a Pade approximation. In addition,
the least squares derivation of a Pade approximation gives
undue numerical weighting to data at higher reduced
frequencies.

The exponential time series representations result in a
square error cost function that is quadratic in the coeffi-
cients, but not in the poles. As a consequence, the minimum
error approximation must be found by a numerical search if
both the poles and the coefficients of the series are
parameters. In the past, this difficulty has been avoided by
choosing pole locations for the exponential representation a
priori and finding the coefficients by analytically minimizing
the resulting square error cost function. Desmarais'! used
the calculated poles of the continued fraction representation
of the Theodorsen function. Dowell® generalized this pro-
cedure for an arbitrary aerodynamic transfer function for
which Fourier domain data are available at discrete frequen-
cies. The poles of the approximation were placed at or near
the reduced frequencies corresponding to peaks in the imagi-
nary part of the transfer function. The coefficients of the ap-
proximation were then chosen by a constrained minimization
search for the least square error in the imaginary part of the
approximation. The sum of the coefficients of the approx-
imation, equal to the high-frequency asymptote on the real
part of the approximation, was numerically constrained to
be the same as the corresponding high-frequency asymptote
on the aerodynamic data. Only by carefully choosing the
poles of the approximation could this yield a comparable ap-
proximation to that of the Pade approximation.

As with a Pade approximation, a numerical minimization
will be necessary to formulate an exponential time series ap-
proximation for a complex system. Heuristic choices of the
pole locations are not available and, hence, the poles of the
aerodynamic transfer function are free parameters of the ap-
proximation. Both Refs. 8 and 11 suggested that the inclu-
sion of pole locations as free parameters in the approxima-
tion would lead to better approximations and, indeed, as
shown in this paper for a simple approximation to the
Theodorsen - function, this is the case. The algorithm
developed here includes in the cost function both the real
and imaginary parts of the aerodynamic transfer function. A
Newton-Raphson nonlinear programming algorithm
minimizes the cost function in the combined parameter space
of the coefficients and poles subject to the inequality con-
straint that the poles lie in the left half-plane.

The resulting procedure is compared with the Pade ap-
proximation of Vepa® for the Theodorsen function.? In ad-
dition, the effect of the order of the approximation (the
number of terms in the exponential series) is examined. A
third-order exponential approximation found using this pro-
cedure will be shown to more closely approximate the
Theodorsen function than a fourth-order Pade approxima-
tion of Vepa.b

Unlike the algorithm of Ref. 8, however, the equality con-
straint on the sum of the coefficients is not imposed because
the high-frequency asymptote for experimental data is not
necessarily known. In contrast with the Pade approximation
method in Ref. 7, the stability constraint is imposed explicitly
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on the parameters of the approximation, while for the Pade =
approximation the poles of the denominator polynomial mug
first be found before the constraint can be imposed. This
greatly complicates the application of a numerical seargy -
routine to Pade approximations and is another advantage of =
exponential time series. =5

This method was applied in Ref. 5 for determining the jm
pulse response of the pressure distribution for a thres 5
dimensional wing. The doublet-lattice method was used tp &
provide values of the pressure transfer function at discrete 38
values of reduced frequency. By applying the numericg ¥
search algorithm individually to each entry in the double.
lattice aerodynamic operator, this algorithm yielded a com-
plete time domain representation of the wing pressure
response. :

Cost Function Derivation

The approximation algorithm will be developed in two
parts. First, the exponential representation and the cor-
responding quadratic cost function are formulated. Then,
the cost function minimization algorithm used to obtain the
results in this paper is described. p

Following Dowell’s description in Ref. 8, the aerodynamic
operator is assumed to be represented by an impulse §&
response spectrum A (k), which is available at M values of §
k, the reduced frequency, in the form o

A(kp) =F(k,) +iG(k,), m=12..M o E

where A(k,,) is the complex spectrum of the aerodynamic
impulse response and F(k,,) and G(k,,) its real and imag-
nary parts, respectively. These values might be obtained
from analysis, computation, or experiment. In general, A (k)
can be one entry in a large aerodynamic operator matrix for
a lifting surface. The values of the reduced frequency k,, are §&
not necessarily evenly spaced or ordered and may themselves E==
be experimentally observed. The impulse response at zero
frequency F(0) must be known and is designated a;. %
The exact time domain step response ¢(f) and the exact
impulse response A (¢) are most conveniently related through
their Fourier transforms' '

A(k) =ik (k) @
An approximate step response ¢ () is assumed to be of the_ s
form B
N s
o' ()= ), a,e’™ (€]
n=0

r

where N is the number of aerodynamic states included in the-
approximation, ¢ the nondimensional time (dimensional time
times the free stream air velocity divided by the wing
semichord), and a, and b, the unknown parameters of the
approximation, the coefficients and pole locations, -respee=,
tively. Only real b, are considered; that is, only first-ordel
lags in the aerodynamics are allowed. Complex pole paifs-
which would correspond to second-order resonances in the
aerodynamics, are usually excluded. This choice has bee? §-
justified by experimental observation and, most recently, by §- -
analysis.®!! In particular, the analysis of Ref. 11 obser\'“.!._ Im
that the Theodorsen circulation function, although it has 09, g
exact analytic poles, may be expressed as a truncated approX’; *‘
imation with poles along the negative real axis, which is the, [!a;
branch cut of the Theodorsen function. As the approximé; hy
tion improves, the poles will become infinitely dense. Thi "l
first pole b, is constrained to be zero, so that the first coe '};! Par
cient of the series is the known low-frequency asymptote 00'.; H
The remaining poles b, (n=1,2,...N) are restricted to bf-.:_‘ 8
less than zero. Otherwise, the approximation would repre. g
sent an unbounded growing aerodynamic force. If these &
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o :iﬁd b, are chosen so that the spectrum of ¢’ closely fits the

: Pad, : :
®  EBigpown spectrum of the aerodynamic transfer function, an

Ir; ‘pproximate aerodynamic transfer function in the time do-

;ear'c_ﬁ" jinain would be given by Eq. (3) and the Laplace domain

age of ) presentation could be readily derived. From Egs. (2) and
#03), the Fourier transform for the impulse response of the

hei 5 approximation series representing the step response is

he im-- 4

three- : g N ika,
sed to - A" (k) =ik’ (k) = Eﬂ
liscrete g - n=0 A
mnerical N ;

tka
oublet- = P B 4
1 com- ° E —b,+ik
ressure : ) ) :
Zsnce b, is identically zero. The corresponding real and
imaginary parts of the approximation are
N

. a k:
in two F'(k)=a,+ ® 5
e cor- & s E b, +k? )
Then, = L -

i - G’ (k)= ke S S 6
ainthe % (k) EL T O]
;na;?;: EEThese series have been guaranteed to satisfy the low-
Llul:s of % frequency asymptotic behavior of the known aerodynamic

+ data,

(1:) 5 F'(0)=a,
lynamic G'(0)=0 U
Ib1tr'nam-  because of the choice of a, and b.
| i [_,_ The 2N-dimensional vector of the approximation
. t,rix-wr par. eters
vk are :
mselves xT = [a,a,a5...ayb, by by...by] (8)
at zero |- ek ]

: must be chosen to minimize the difference between the ap-
— proximations F’ and G’, and the exact aerodynamic data F
:hrough and G, which are known at the M discrete values of k. This
’ error is expressed mathematically by the weighted square er-

ror cost function J(x):
2
= : M
ofthe |- )= Y (@ [F—F (Xkp) 12 4B (G =G’ (x,k) 1"
’ L : m=12 ]
: M N b 2
2 k 2
©) = [ ( e _L)
I_ % mE-] % \Fn =00 nZ::l Rl s A

i in_thei 4 N ﬂ‘,,b,,kmz 2
al time +8,, (G_.,, + E _z—kz) ] )
e Wiﬂg . - n=|\ bﬂ +Km

of L::_ where o,, and B,, are weighting factors. The minimum of J
res:) der | '™ the x space will indicate the best approximation to the true
;t-oairs transfer function evaluated at a finite number of reduced
' il:l che frequsncies.

\ n e .

;stlybe;y Cost Minimization Algorithm
3se1:\f6d The approximation procedure centers on the nonlinear

h . { Proeramming problem of finding a minimum of J(x) in the
I = { Parameter space x, subject to the constraint that the poles of
T it ¢ approximation b, are less than zero. A standard Newton-

oxima-- § -2Phson search method will be used to find this minimum.

e. The {§ :"this recursive search procedure, an initial point x, satisfy-

coefﬁ'.’- g the constraints is chosen, and second-order steps in the

ote o~ Parameter space are made in the direction of locally decreas-

1o be § M8 cost to form the recursion sequence,

repre”

1ese n X, =x;+cd;, i=0,12... (10)
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where ¢; is a calculated step length and d; the 2N-
dimensional step direction vector calculated using the ap-
proximation x;. Under some circumstances, the constraints
require that the search direction be modified to avoid
violating the constraints. Figure 1 is a graphic representation
of a typical minimization search.

The starting point x; is chosen by a procedure similar to
the procedure of Ref. 8. Consider the single-term exponen-
tial approximation to the step response, ae®. The cor-
responding imaginary part of the approximate impulse
response G’ is

G’ (k) = —ak?/(b? + k?) (1)
The absolute value of this function has a maximum at
k=kg,=—b 12)

and the value at that peak is —a/2. This information is used
to set the values of the initial approximation x,. The first
pole b, is set to the value —k,,,, corresponding to the peak
value of 1G(k,)!, the imaginary part of the aerodynamic
frequency data. The remaining b, are equally distributed
between 0 and —k,,, the largest discrete frequency at which
data are provided. The initial a, are likewise based on F and
G. The first coefficient a, is set to twice the value of
G (kpax). The remaining a, are chosen so that the sum of all
the a, equals the high-frequency asymptote of F(k), approx-
imated in the data by F(k,). The a,(n=2,3,...N) for the
starting point, then, are assumed to form a geometric series

a;,,=a(- %Yy, j=0,1,2,..N-2 (13)
where
3/2
a=[F(ky) —ﬂo—a;]m)—&—_]— (14)
This can be shown to satisfy the relation
N
Y a,=F(ky) (15)

n=0

from the rules for the evaluation of a partial sum.'? Thus,
the initial approximation satisfies the high-frequency asymp-
tote constraint imposed on every approximation in Dowell’s
method.?

The principal search direction is the Newton-Raphson step

d=-A-g - ae)

in which g is the gradient vector of the cost function 8J/dx,
and A the Hessian (the second derivative matrix) of the cost
function 82J/8x*. When the cost function is quadratic, this
search direction vector d will point to the exact minimum.
The cost function J(x), however, is not quadratic, so more
than one step will be needed to find the minimum. Occa-
sionally, the cost function will be locally convex, meaning
that the Newton-Raphson step will point away from the
minimum and toward the convex maximum. In such a case,
a simple gradient step, although computationally less effi-
cient, would be more appropriate:

d=-g ‘ (17)

Local convexity is detected when the computed Newton-
Raphson step points toward increasing cost. Since —g
always points toward decreasing cost, the Newton-Raphson
step is not chosen when the numerical projection (vector dot
product) of —A~'g on —g is negative.
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Fig. 1 Diagram for a typical parameter search for the minimum of
the least squares cost function. The minimum is reached here in five
steps. The constraint that the aerodynamic poles be less than zero is
imposed between x; and x; by the restriction on the search direction
vector d.

In evaluating the search direction vector d, the exact
analytic expressions for g and 4 may be used. These are
derived in Ref. 5 by a term-by-term differentiation of Eq. (9).

The constraints can be explicitly imposed on the search
direction d because they are homogeneous in the parameter
vector x. Each constraint b, <0 can be treated geometrically
as a barrier to the search. As a particular b, approaches zero
and the search nears the corresponding constraint boundary,
the computed component of the step vector d that moves
toward the constraint barrier is set to zero. A numerical
switch makes that constraint ‘‘active.”’ Similarly, the com-
ponents of the search direction vector d corresponding to
any and all active constraints are set to zero, thereby moving
any motion in the next step toward any of the nearby bound-
aries. All other components of d are unchanged. If the
search ever moves to a point with any particular active con-
straint’s component of d pointing away from its correspond-
ing constraint boundary, the constraint is made once again
inactive and its component in d is set to the computed value.

The scalar ¢ determines the size of the step to be taken.
Since the formulation of d involves a great deal of computa-
tion, ¢ should be as large as possible for overall computa-
tional efficiency. In the search algorithm, ¢ is chosen to be
the smaller of two possible computed values: that which
specifies a quadratic minimum along d and that which
reaches a constraint boundary. Both may be calculated
without computing g and A at intermediate points. The step
length that specifies a quadratic minimum along the step
direct is estimated using three evaluations of the cost J along
the direct d. To do this, successive evaluations of the cost are
made at equally spaced intervals along d until the cost
minimum is bracketed. A parabolic fit is made to the values
of J based on the last three values of c.

The iterative search process continues until the stopping
criteria are satisfied. At a minimum of J, the gradient of the
error function g would be identically zero, unless the
minimum is on a constraint boundary, for which the compo-
nent parallel to the boundary would be zero. The primary
convergence test, therefore, is that the computed magnitude
of g falls below a threshold, typically on the order of 10-5.
Other stopping criteria are also considered. If the incremen-
tal change in the cost for each step falls below a small
threshold consistently for a given number of steps (typically

J. AIRCRAFT

Table 1 Discrete values of the exact Theodorsen function
used in the approximations

Reduced frequency, K Real part F Imaginary part G £

0.0 1.000 0.000
0.025 0.965 —0.090 =
0.050 0.911 —-0.132 =
0.1 0.846 —0.163
0.2 0.728 -0.189
0.3 0.665 —0.180
0.4 0.624 —0.166
0.5 0.603 —0.151
0.6 0.579 —0.138
0.8 0.554 -0.116
1.0 0.539 —0.100

10), then the steps are not greatly improving the cost and the
search is halted. If the first two criteria are never satisfied,
the search is stopped after a specified number of steps
(typically 50). *

Consider the typical search for a two-pole approximation
as graphically presented in Fig. 1. The migration of the
search through the b, and b, space is plotted; the a, and a,
coordinates of x have not been shown. The search begins at
the initial location x,. At this point, the gradient and Hes-
sian of the cost function are evaluated. The Newton-
Raphson step is found to have a positive component along
-g, so that it is chosen to become the step direction d. The
algorithm then begins to determine the step length c. In this
example, the value of ¢ that is found would make the value
of b, at the next point x, positive. The value of ¢ used is
reduced from c;, so that the value of b, at x; is just inside
the constraint boundary. This constraint becomes active and
for the next step, to x,, the component of the search perpen-
dicular to the constraint boundary is set to zero. At x, the
search direction points away from the constraint boundary
and the constraint is made inactive so that the b, component
of d can be used. The procedure repeats until x5, where the
gradient calculated is very small and the search is converged.

Application of the Procedure to an Approximation
of the Theodorsen Function

Two assessments of the effectiveness and value of this ap-
proximation algorithm were carried out. In the first, the sen-
sitivity of the approximation on the number of poles NV and on
the initial approximation x, was studied by numerical
examples. In the second phase, the accuracy of the approxima-
tions was compared with that of other well-known exponential
time series approximations and with the Pade approximations. -

As a basis for this study, an exponential time series approx-
imation of the Theodorsen two-dimensional incompressible
circulation function was sought. Table 1 shows the analytical
evaluations of F and G.° Thirteen example approximations:
are presented in Table 2. In deriving all these examples, the
weighting factors a,, and 3, were set to one. In order to study”_
the effect of increasing the order of the approximation,
cases 1-7 correspond to 1-7 pole approximations. The initif'tl
approximation x, was chosen by the method outlined in
Eqs. (13-15). The effect of different initial approximations X
are shown in cases 8-13. Case 8 used as its initial approxima-
tion the well-known two-pole Jones approximation.'? Cases 9
and 10 have starting points corresponding to two of Dowell’s
best three-pole fits.. Cases 11-13 have arbitrarily chosen
starting points. ¥

Figure 2 shows the cost in the approximation [Eq. (9)] of.
each example as a function of the number of poles. There 35__.
general improvement in the approximation up to four poles,’
but little additional improvement in the approximation abové
four poles. In fact, case 4, a four-pole series, and case 7, 3
seven-pole series, have almost the same cost. Note that the’
five- and six-pole approximations actually have a higher cost;
than the four-pole case. Clearly, monotonic decrease in cost-
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Table 2 Approximations of the Theodorsen function

Initial conditions

Converged approximation

Case a b Jo a b i
1 -0.377 -0.2 0.132 —0.4542 —-0.1660 0.0215
2 -0.377 -0.2 0.0881 - 0.4027 -0.1297 0.0109
-0.0833 -1.0 -0.1343 - 1.2660
3 -0.377 -0.2 - 0.0507 -0.1524 —0.0490 0.00102
-0.167 -0.5 -0.2212 —0.2385
0.0833 -1.0 —0.1088 -0.3576
4 -0.377 -0.2 0.0439 —0.1058 -0.0367 0.000420
-0.111 -0.333 -0.2877 -0.1853
0.0555 —0.667 -0.000912 -0.5681
-0.0278 -1.0 -0.1002 -0.5914
5 -0.377 -0.2 0.0343 -0.2919 -0.1038 0.00732
-0.133 -0.250 -0.1167 -0.2270
0.0666 -0.5 -0.1060 —1.2649
-0.0333 -0.75 —-0.0853 - 1.6161
0.0167 -1.0 0.0899 —2.4435
6 -0.377 -0.2 0.0254 —0.0491 -0.0769 0.00811
-0.121 -0.167 -0.3354 -0.1292
0.0606 -0.333 0.0343 —-0.1682
—0.0303 -0.5 —0.0268 -0.2452
0.0151 -0.667 —0.0303 —0.2948
-0.00757 -1.0 -0.1230 -1.1911
7 -0.377 -0.2 0.0253 —-0.2349 —0.02994 0.000415
-0.127 —0.167 0.1331 —-0.02614
0.0635 -0.333 - 0.000027 -0.1807
-0.0317 -0.5 -0.2896 -0.1827
0.0159 - 0.667 —-0.000113 —0.5848
—0.00793 —-0.833 —0.1026 —0.5856
—0.00397 -1.0 —0.000272 —0.5848
8 -0.165 —0.0455 0.0126 —0.1644 —-0.05187 0.00119
—0.355 —-0.300 -0.3173 -0.2819
9 -0.187 -0.0594 0.00138 —0.1058 -0.0367 0.000420
-0.236 —-0.254 -0.2876 -0.1853
-0.0769 —-0.652 -0.1011 -0.5912
10 —0.358 -0.1 0.0044 —0.1644 —-0.05187 0.00119
0.142 -0.2 0.000012 -0.05187
-0.284 -0.4 -0.3173 —-0.2819
11 -0.2 -0.2 0.07135 —-0.1644 —-0.05187 0.00119
-0.3 -=0.1 -0.3173 -0.2819
12 -0.1 -0.1 0.1200 -0.1615 -0.0510 0.00118
-0.1 -0.3 -0.3110 -0.2772
-0.2 -0.5 —0.00902 —0.3688
13 0.1 -0.5 0.00745 -0.1170 —0.04897 0.00118
-0.2 -0.2 -0.0507 —0.06095
-0.2 -=0.1 0.002445 —0.07344
-0.2 -0.6 —0.3165 —-0.2824
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Table 2 as a function of the order of the approximation. Also shown

e (he exponential time series approximation of Jones'" and the
e approximation of Vepa.®

Number of Poles, N
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.0i0

.001

8- 2 Comparison of the square error in the approximations in

.\
ases 1-7 used the automatic choice presented in Eqgs. = or xg. Case 8 used the Jones approximation or xp. Cases 9 an
*Cases 1-7 used the ic choi d in Egs. (13-15) for xo. Case 8 used the J imation'? for xg. Cases 9 and
10 used two of Dowell’s best three-pole fits for xo. Cases 11-13 used arbitrary choices for xg.

with additional poles is not guaranteed and some judgment
must be used in selecting the appropriate number.

Several of the 13 numerical cases of Table 2 compare the
results obtained using the current procedure to well-known
exponential series approximations. Case 1 uses as its starting
point the most obvious single-pole approximation, with its
pole chosen to match the maxima in G (k) and its coefficient
chosen to obtain the correct amplitude of |G| at the max-
ima.® The converged solution in Fig. 3 shows almost an
order-of-magnitude improvement in cost over the initial
choice. Interestingly, although the choice of x; was based on
the shape of G, the fit to the real part is substantially better
than the fit to the imaginary part. Case 8 uses as its starting
point the Jones approximation.!® More than an order-of-
magnitude improvement is made in the cost and the con-
verged solution clearly tracks the actual Theodorsen function
more closely than Jones’ approximation in the reduced fre-
quency span of interest (Fig. 4). Cases 9 and 10 start with the
best third-order approximations of Dowell.® Both show
substantial improvement. The best three-pole case found is
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1.0
e F, real part data
*
— Case 1
F
5 = g
0.0 0.5 1.0
reduced frequency, k
0.0
0.0 0.5 1.0
* G, imaginary part data
— Case 1
-0.1
G
-0.2

Fig. 3 Real and imaginary parts of the single-pole approximation
in case 1.

1.0

* F, real part data

Jones® Approximation
0.5

0.0 0.5 1.0
reduced frequency, k

Qo0 : 05 1.0

x

1 ¢ G, imaginary part data

Case 8

Jones® Approximation

Fig. 4 Real and imaginary parts of the two-pole approximation in
case 8, which was found using the Jones approximation as a starting
point.

that of case 9, based upon Dowell’s initial x;. It is plotted in
Fig. 5§ and is nearly indistinguishable from the data. This
three-pole fit is actually the best fit achieved by the current
algorithm.

Having shown the dependence on the number of poles and
improvement to traditional approximations, there remains
the question of the uniqueness of the solution and its

J. AIRCRAF
1.0
* F, real part data
—Case 9
F
\_\‘
T
T
- .‘____'-\—.‘
0.5 - - & e
0.0 0.5 1.0
reduced frequency, k
0.0 o0 05 10
* G, imaginary part data .
G — Case 9 %
-0.1 1
-0.2 .

Fig. 5 Real and imaginary parts of the three-pole approximation in
case 9. The approximation is nearly indistinguishable from the
known values of F and G.

dependence on choice of starting condition x,. To explore
this, cases 11-13 were run with arbitrarily chosen initial con-
ditions. In some instances, such as cases 8 and 11, different
initial conditions converged to exactly the same answer. But
when compared with case 2, another two-pole case with a
dissimilar x;, a different converged solution is obtained.
Therefore, in the solution space of poles and coefficients,
there exist local minima that are not global minima and a
variety of initial conditions should be used to assure iden-
tification of a local minima close in value to the global
minima.

Finally, an interesting effect can be noticed by carefully
studying the converged solutions in Table 2. The optimiza-
tion algorithm has the power to effectively turn off or
eliminate a pole from the fit by driving its coefficient to
zero. Comparison of cases 10 and 12, which started as three-
pole examples with case 8, show that in each of the three-
pole cases one pole has been so reduced in contribution that
it has essentially become a two-pole fit. By comparison of
the two poles at —0.06095 and — 0.04897 in case 13 with the
one pole at —0.05187 in case 8, one can see that, in other in-
stances, two closely spaced poles effectively combine to
mimic one single pole. Thus, two-pole cases 8 and 11, three-
pole cases 10 and 12, and four-pole case 13 are in effect all
the same two-pole approximation. Likewise, three-pole case
9, four-pole case 4, and seven-pole case 7 are all fundamen-
tally the same. This can be best represented on Fig. 6, where
the cost is plotted versus the number of effective poles in the
fit. Note that there are still non-unique convergencies, and
monotonically decreasing cost is not guaranteed. In sum-
mary, as with most optimizations, much more accuraté
answers can be found, but careful interpretation of the
results are called for.

Comparison with a Pade Approximation

It is instructive to compare the exponential time scries ap-
proximations for the Theodorsen circulation function C with
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Table3 Optimal approximations of the Theo-
dorsen function in the range 0<k <1 (a’=1)

Order, N a; b;
1 —0.4542 —0.1660
2 —-0.1644 —0.05187
-0.3173 -0.2819
3 —0.1058 —0.0367
—0.2876 —0.1853
=0.1011 -0.5912

Number of Effective Poles
: 1 2 3 4 5 6 7
- 100 ; 5 . . :

.601

mal’ 1§

s*+0.761036s* +0.102058s2 + 0.00255067s
25* +1.063939s> +0.113938s% +0.0261680s

+9.55732x 10~
+9.55732x 10~

- When the Laplace domain variable s is set to ik, the cor-
- respending approximations for £’ and G” can be calculated.
“For _omparison with the above approximations, the square
“error J is formulated for this approximation using uniform
_Weighting vectors as before and is found to be 6.82x 1074,
.Which has been plotted in Fig. 2. Table 2 shows that case 9;
:a third-order approximation found using one of Dowell’s®
“dpproximations as a starting point, has a cost of 4.2x 104,
_;Thcrcforc, the fourth-order Pade approximation is slightly

accurate than an optimized third-order exponential time
“%eries approximation found using the procedure presented in
‘lhis paper. -

Conclusion

Ar algorithm has been presented for the approximate
Tepresentation of unsteady aerodynamic operators as finite-
order exponential time series. The approximation is achieved

numerically minimizing the weighted square error be-
Ween the approximate representation and known values of

|
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the aerodynamic operator in the frequency domain with both
the coefficients and poles treated as free parameters. The
parameter search is constrained to consider only poles that
lie in the left half-plane.

By including the poles as free parameters in the fit,
significantly better one-, two-, and three-pole approxima-
tions to the Theodorsen function were found than are com-
monly in use. These are summarized in Table 3. It was
concluded that a two- or certainly three-pole fit is adequate
and no advantage is obtained from higher-order fits. In addi-
tion, a three-pole fit was found to be more optimal than a
fourth-order Pade approximation in the frequency range of
study. This fact and the fact that the poles or states of the
aerodynamic transfer function are readily extractable from
the exponential time series indicate that this method is more
useful in aeroelastic analysis.

As with all nonlinear optimizations, some care must be
made in interpreting the results. The accuracy of the fit was
not found to improve monotonically with an increasing
number of poles. The converged minima was not necessarily
the global minima and is dependent on the initial approxima-
tion vector x,. Finally, the optimization has the power to ef-
fectively reduce the number of active poles in the fit, often
driving a higher-order fit to a minima found for a lower
number of poles. But with judgment in interpreting results,
superior exponential time series approximations can-be ob-
tained by this method.
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