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after several algebraic manipulations, we obtain

L(uy, ) = e ~®ayi(uy) — ie =%y (), w0 (7)
L(uy,uz) = [2(m) /T W)k /2)*k, (k)
+ ie® iy, (juy|) — ie ="y (), <0 (8)

Equations (7) and (8) give a simple and direct way for the |

evaluation of the nonelementary part of the supersonic Ker-
nel, in terms of the real function F,(u).

Conclusions

Simple and direct expressions for the evaluation of the
nonelementary part of the Kernel function of the integral
equation relating the pressure and the normal wash distribu-
tion in supersonic nonstationary flow has been presented. It
has been shown that the solutions presented are related to the
same functional solutions of the subsonic Kernel. The expres-
sions presented here can provide the basis for the development
of numerical nonstationary interfering lifting surface methods.
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Introduction

N order to account for unsteady aerodynamics in first-or-
der, time-invariant state-space formulation of aeroelastic
equations of motion, the aerodynamic forces have to be de-
scribed as a rational function in the Laplace domain. The
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Minimum-State (MS) aerodynamic approximation method'*
was designed to minimize the number of aerodynamic states in
the resulting aeroelastic model. References 2 and 3 applied the
MS method to subsonic aeroservoelastic problems with one
flutter mechanism and demonstrated a reduction of about
75% of the number of aerodynamic states relative to other
methods with the same level of accuracy. The effectiveness of
the MS method was increased by the introduction of a physical
weighting technique®* which weights each aerodynamic input
data term according to its relative importance. Reference 4
used the MS formulation for additional reduction of the
model size by dynamic residualization of high frequency struc-
tural states. The MS and the physical weighting procedures are
extended in this Note to expand their efficiency and generality
and to improve the dynamic residualization. Even though the
formulation and numerical examples deal with structural-
mode-related aerodynamics only, the extensions are applicable
to control surface and gust related aerodynamics as well.

Minimum-State Approximation Procedure

The MS method approximates the Laplace domain general-
ized aerodynamic force coefficient matrix by:

[O:(@)]=[Aol + [A1]p + [A:1p* + [D)p ] - [R])'[Elp (1)

where p is the nondimensionalized Laplace variable p =sb/V,
where b is a reference length and V is the true airspeed. The
resulting time-doffiain state-space aeroelastic equations of mo-
tion are presented in Ref. 2. The number of aerodynamic
states m is equal to the order to [R].

The input data are unsteady aerodynamic complex matrices
[O: (k)] =[F (k)] +i[G(k))], calculated at several p =ik,
points where each k;=wb/V is a tabulated reduced fre-
quency. The approximation problem is to find the combina-
tion of the real valued [Ay], [4.], [4.], [R], [D], and [E] of
Eq. (1) that best fit the tabulated data. The m X m aerody-
namic lag matrix [R] is diagonal with distinct negative values
to be chosen by the analyst. The applications of Refs. 2 and 4
indicated that the results are not very sensitive to the lag values
when they are spread over the range of tabulated k; values.
Three approximation constraints are applied to each term of
[Q;] in order to reduce the problem sjze by explicitly determin-
ing [4gl, [4,], and [4,]. The formulation of Ref. 2 is extended
here to allow more flexibility in constraint selection without
increasing the problem size. The three constraints are: 1) data
match at &, =0, which yields

A, =F.(0) 2
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Fig. 1 Comparison of root loci generated by minimum-state and the
p-k methods, flexible wing at M =0.9.
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Table 1 Maximal weighted magnitudes of the aerodynamic data terms

i= 1 2 3 4 b1 6 7 8 9 10
j=1 0.098 0.126 0.086 0.012 0.000 0.018 0.007 0.001 0.006 0.005
2 0.137 1.000 0.707 0.038 0.007 0.129 0.104 0.008 0.079 0.045
3 0.085 0.722 0.622 0.052 0.003 0.091 0.039 0.003 0.029 0.015
4 0.010 0.059 0.044 0.022 0.001 0.006 0.003 0.000 0.002 0.000
5 0.001 0.003 0.004 0.002 0.043 0.002 0.001 0.000 0.001 0.001
6 0.027 0.132 0.115 0.013 0.002 0.377 0.026 0.003 0.012 0.060
7 0.013 0.079 0.053 0.006 0.001 0.042 0.274 0.004 0.028 0.066
8 0.001 0.008 0.005 0.000 0.000 0.003 0.003 0.018 0.002 0.001
9 0.011 0.070 0.041 0.006 0.001 0.023 0.031 0.003 0.135 0.090
10 0.007 0.046 0.021 0.007 0.001 0.087 0.087 0.000 0.098 0.291

2) real-part data-match at a nonzero k; = k;, or a zero coeffi-
cient constraint, which yields

Ay, = [Fy(0) — Fyy(kp)/k} + (D; ) T(kF 1]
+[R1P){E;} (3a)

or
A;J. =) (3b}

I
where {D;]7 is the ith row of [D] and {E;} is the jth column
of [E]; and 3) imaginary-part data-match at a nonzero k; = k,,
or a zero coefficient constraint, which yields

Ay, =Gylkg) kg + (D) Tk U+ [R1) ' [RUE; ) (4a)

or
A =0 (4b)

i

The approximation formula (1) and the constraint equa-
tions (2-4) yield an over-determined set of approximate equa-
tions which are solved for [D] and [E] by an iterative,
weighted, least-square procedure, which starts with an initial
guess of [D]. The equations and the solution procedure are
those of Ref. 2, modified to allow k,of Egs. (3) and &, of Eqs.
(4) to have different values for different acrodynamic terms,
and to allow the data-match constraints to be replaced by zero
coefficient constraints.

Approximation Constraints for Subseguent
Dynamic Residuaiization

The MS aeroelastic model is used in Ref. 4 for a further
reduction of the model size via dynamic residualization, which
eliminates the states associated with a subset of high-fre-
quency vibration modes, but retains most of their effects on
the retained states. The coefficient matrices of Eq. (1) are
partitioned into the retained r and eliminated e partitions:

[4,]= Ay A for i=0,1,2; [D]= D
L | TR oy

ler fee.

[E]=[E, E.] &)

Unlike the static residualization, which neglects all of the
e-related partitions except for the A, terms, the dynamic resid-
ualization neglects only the 4, , 4, _, A, , and A, terms. The
retained effects of A, _, 4, , D,, and E, improve the accuracy
of the residualized model without increasing its size. The
attempt made in Ref. 4 to improve the dynamic residualization
even further by constraining the neglected terms to be zero in
the preceding MS procedure (in lieu of data-match con-
straints) did not yield better results. The reason was that with
A, =0 the approximation errors are increased significantly.
This had a negative effect on the quality of the entire approx-

imated aerodynamics (including that of the retained modes)
because the MS procedure minimized a single total error pa-
rameter. The modification suggested here is to apply the least-
square solutions for [E,.] and [D,] with the data associated
with the retained modes only. The [D,] and [E.] matrices are
solved with the entire data. As a result, the approximared
[Q;,] is not affected by the inclusion of the eliminated modes
in the approximation procedure.

Physical Weighting

A physical weighting method that weights each term of the
tabulated aerodynamic data according to a ‘‘measure of im-
portance’’ is presented in Ref. 2. The measure-of-importance
matrix associated with [Q;(ik;)] is

(W], =

\N-1|T
(-[M;]kfﬂ'[B:]kf'*[Ks]+qn[Qs(fke)]) | (6)

where [M.], [B;], and [K,] are the generalized mass, damping
and stiffness matrices and g, is a nominal dynamic pressure.
As shown in Refs. 2 and 3, the variations of the measure-of-
importance terms of Eq. (6) with &k may have very sharp peaks.
In addition, the peak values of many terms may be several
orders-of-magnitude smaller than other peaks. The resulting
extreme variations of weights may cause unrealistic approxi-
mation curves. To ensure good results at k& values that fall
between the tabulated ones, and to facilitate the application of
the resulting aeroelastic model to a variety of flow conditions,
structural modifications, and control parameters, it may be
desired to widen the weight peaks and to scale up the ex-
tremely low weights. The peak widening is performed in n,,
cycies where, in each cycle, i‘:ft,-{k;) 1s changed to be
max{ Wy(k;_1), Wi(k;), Wy(kis1)) of the previous cycle. The
weights to be applied in the MS procedure are then calculated

by
o 1 Won]
Wr;r‘# = Vrﬂ-,-;(max IW W t} ) L1}
ax (W}’ Wy ),
where
W’f}=mfxi Q%(ik;] Wf'j.‘]

and where W, is defined by the analyst. In this way, the
maximum weighted absolute value of each aerodynamic term
falls between W, and 1.

Numerical Examples

The numerical examples deal with the mathematical model
of the active flexible wing (AFW) wind-tunnel model (de-
scribed in Ref. 4) with symmetric boundary conditions at
Mach 0.9. The doublet lattice tabulated oscillatory aerody-
namic matrices were generated at 12 k; values between 0.0 and
2.0 using the STABCAR® computer code, which was also
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employed to calculate the baseline p-plane roots using the p-k
method with 10 vibration modes. The resulting root-locus
plots are shown in Fig. 1, which indicates two flutter mecha-
nisms. The flutter dynamic pressure and frequency of the first
mechanism (second branch) are gy =1.447 psi and w,=58.94
rad/s (kpy=0.21). The flutter results of the second mecha-
nism (seventh branch) are g =4.247 psi and w; = 194.43 rad/s
(kue=0.69).

The physical weightings were performed with g, =1.2 psi. '
Two types of physical weightings are compared below. The
first type (symbolized by P-0) is with the original measures-of-
importance of Eq. (6), namely with no peak widening (n,,; =0)
and with no upscaling [W,,, =0 in Eq. (7)]. The second type
(symbolized by P-2) is with the two peak-widening cycles
(n,g =2) and with W, =0.01. The maximal weighted magni-
tudes of the P-0 aerodynamic data terms are given in Table 1.
The most important modes are 2, 3, 6, 7, and 10, which have
the highest diagonal values. The off-diagonal values associ-
ated with these modes are also higher than those of most other
terms. It can be noticed that about 50% of the terms in Table
1 are smaller than 0.01. These terms are scaled up to 0.01 in
the P-2 case. Comparison of Table 1 with the aeroelastic
behavior of Fig. 1 indicates that the weighting is reasonable
over the entire g range of interest.

The flutter characteristics of the resulting state-space mod-
els have been found by a linear root-locus analysis with vari-
able g. The quality of the approximations is evaluated by
comparing the state-space results with the STABCAR results.
An overall measure in each case is the rms value of the per-
centage errors in the four flutter parameters (gy,, wy,, gy,, and
wy,). Comparisons between rms flutter errors in nonweighted
cases (N) and physically weighted (P-0 and P-2) cases are
shown in Fig. 2. It can be observed that the P-2 cases generally
yield the best results and that they are more consistent than the
P-0 cases. Calculations at Mach 1.15 (not shown) exhibit
similar results.

The root locus of the P-2 case with six aerodynamic lags,
diag[R]={-0.2, —0.45, —0.8, —1.2, —1.7, —2.0} is com-
pared in Fig. 1 to that of the reference STABCAR solution. It
can be observed that the agreement is good over the entire
ranges of frequency, damping, and dynamic pressure. This
indicates that the physical weights calculated at g, are ade-
quate over the entire range.

All of the preceding MS cases were constrained to match the
data at k =0.0 and at the highest tabulated reduced frequency,
namely k; = k, =2.0. Data-match constraints at k; values close
to aither one of the two kp,, values caused a slight improve-
ment in the respecrive flurter mechanism, but a slight increase
of the overall rms error measure by about 1%. An error
increase of about 2% was obtained when [A4,] =[0] replaced
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Fig.2 RMS flutter errors resulting from minimum-state aerody-
namic approximations.
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Fig. 3 Effect of various methods of modal reduction on the error in
the predicted flutter dynamic pressure of the second flutter mecha-
nism.

the k;constraints. Much more significant errors resulted from
the replacement of the k, constraints by A4, =0 even when
applied to the aerodynamic terms associated with the highest
frequency mode only. These errors were reduced considerably
with the application of the new procedure for subsequent
dynamic residualization.

To demonstrate the application of the modified MS approx-
imations in subsequent flutter analysis with dynamic residual-
ization, the P-2 model with six aerodynamic states has been
extended to include the first 20 vibration modes (instead of
10). The MS approximations were performed with the special
residualization constraints assigned'to the last 10 modes. The
reference case is flutter analysis with all the 20 vibration
modes. Reduced-size flutter analyses were performed by elim-
inating a subset of high-frequency modes by either mode
truncation, static residualization, or dynamic residualization.
Variations of flurter dynamic pressure percentage errors vs
number of eliminated modes are shown in Fig. 3 for the
second flutter mechanism. Similar trends, but with smaller
errors, were obtained for the first flutter mechanism. These
results demonstrate that MS aerodynamic approximations fa-
cilitate additional high-accuracy model size reduction via dy-
namic residualization.
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