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Theoretical Considerations of Panel Flutter at High
Supersonic Mach Numbers

Joux Ducunpir*
Massachuselts Institute of Technology, Cambridge, M ass.

The general characteristics of panel flutter at high supersonic Mach numbers are examined
theoretically. Linear plate theory and two-dimensional first-order aerodynamics are used.
The paper attempts to clarify the important role of damping, the relationship between travel-

ing and standing wave theories of panel flutter, and the effects of edge conditions.

The solu-

tion procedures and general mathematical behavior may be of interest in other stability prob-
lems characterized by the appearance of complex eigenvalues.

Nomenclature
A = coefficient of basic Eq. (135) -
A.R. = amplification ratio ;
a = length of panel
Br, Br = coefficients of basic Eq. (15)
b = width of panel
C = coefficient of basic Eq. (15)
c = wuave Sp ;
Co = reference wave speed = 1.90 cy(h/b)
ca, ¢y = speed of sound in air and in panel material
= plate rigidity = Eh3/12(1 — »?)
4 = coefficient defined by Eq. (43)
i = factor defined by Eq. (50)
G, = panel structural damping
g4 = gerodynamic damping coefficient = 0.335 {M(A2 —
2)/(M* — 1)2)(pa/pyr)ca/cs)a/h)?
gs = effective structural damping coefficient = gew;/wo
gr = total damping coelficient = g, + gs
g = actual structural damping coefficient of ith mode
= 2 X (eritical damping ratio)
h = thickness of panel
i = (—1)1?
K = elustic foundation stiffness
k = foundation parameter = Ka‘/#'D
I = wavelength
M = Mach number
m = number of half-waves in lateral direction
N, Ny = longitudinal and lateral compressive forces
Apa = smerodynamic pressure loading
Qr, Q1 = coefficients defined by Egs. (23a) and (23b)
Gn = generalized coordinate of nth mode
s = longitudinal compression parameter = N .a*/=x*D
S = parameter defined by Eq. (33)
t = time
U = velocity
w, @ = deflection of panel
z,y = coordinates along length and mdth
2m = roots of characteristic equation of Eq. (15)
& = decay rate = Re[f]
s = determinant defined by Eq. (20)
n = nondimensional coordinate = y/b
6 = response of system = & + i@
A = dynamic pressure parameter = p;U-a’/D(M’ — 1)1
v = Poisson's ratio = 0.3
E = pondimensional coordinate = z/a
pa, px = density of air and of panel material
T = nondimensional time = wol
® = complex function defined by Eq. (21)
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" and experimentally.

v = effective structural damping ratio = gws/g1an
w = frequency

wo = reference frequency = x?[D/pyhat]l’?

w; = frequency of ith mode &

& = nondimensional frequency = w/ws = Im{6}
Subscripts :

R = real

I = imaginary -

F = flutter :

Superscript

~ = corresponding nondimensional quantities for low-aspect-
ratio panels (nondimensionalization based on b rather
thanona)

1. Introduction

P.&N’EL flutter is the self-excited oscillation of the ex-
ternal skin of a flight vehicle when exposed to an air-
flow on one side, This type of aeroelastic instability has re-
ceived much study during the past 15 years, both theoretically
The early work of Sylvester and Baker,!
Nelson and Cunningham,* Fung,® Hedgepeth,* Movchan s
and Houbolt,f to mention a few names, has been supple-
mented by much recent work on the subject (see, for example,
Refs, 7-14). Today, a great quantity of literature on panel
ﬁutter exists, and the problem is reasonably understood, al-
though work still remains to be done to better correlate
theory with experiment for certain panel configurations and
Mach numbers. Fung,'®" in two excellent survey papers,
discusses the status of the panel flutter problem. See also
Dowell and Voss,!! Bohon and Dixon,!* Johns,'* Kordes,
Tuovila, and Guy,” and Shirk and Olzen.'®

The present article will review the theoretical character-
istics of panel flutter at high supersonic Mach numbers and -
will attempt to clarify some of the loose ends in the literature
regarding the role of damping, traveling-wave vs standing-
wave theories, and effects of edge conditions. It is hoped
thereby to present clearly the high Mach number panel
flutter problem and its ramifications, some of which may not
have been apparent heretofore. The present article is a
condensation of alonger report by the author.?

2, Basic Panel Flutter Equation and Its
: Solution

Consider a flat, rectangular panel, simply supported on all
four edges and subject to & supersonic flow over one side (see
Fig. 1). The panel additionally is subjected to midplane
compressive forces N'. and N,, rests on an elastic foundation
K, and has a structural damping G,. The governing differ-
tial equation for this situation is
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Fig. 1 Basic panel configuration. Panel rests on elastic
foundation K (lb/in.?) and has viscous structural damping
G; (Ib-sec/in.?).

o ST
Dv*we = Aps — puh — o =N, FRR
. 0w ow
.-\,,ayz —K‘w—G.a—t (1)

The aerodynamic pressure for high supersonic AMach numbers
V[ > 1.7) can be reasonably described by two-dimensional,
st-order theory approximations®3:
Apa = — [p U3/ (A2 = V2] X
[@u/22) + (1/D)ERAHAI — /(1 = 1] @)

This assumes that the pressure on the bottom side remains at
the freestream value p..

Combining Eqs. (1) and (2) and introducing nondimen-
sionsal coordinates £, 5, 7 results in the basic partial differ-
ential equation for panel flutter:

dw , ,fa\* d% a\i d'w dw

w2 (5) st () SerE

: 9 o
Lw-{-n"?‘,"a'g -+

a\? 0w
Ty (3) g};; =0 (3
where the following nondimensional parameters have been
introduced:
A = paU%DAL = 1)¥2
(dynamic pressure parameter) (4)

o
w‘gra—:o+1r
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Fig. 2 Magnitude of aerodynamic damping.
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gr = g4+ gs (total damping coefficient) (3)
ga = 0.333{M(M* — 2)/(M* — 1)} X
(pa/pu)(ca/cx)(a/h)?

(aerodynamic damping coefficient) ™)

gs- = giwi/w (effective structural damping
coefficient) (7)

a/b (aspect ratio) (8)
k . = Ka'/x'D (foundation parameter) ()]

r: = N.a*/=D
(longitudinal compression parameter) (10)

ry, = Nga*/xD -(Iateral compression parameter) (11)
In the foregoing, the reference frequency w, represents the
lowest natural frequency of a two-dimensional simply sup-
ported panel (a/b — 0) with no airflow, elastic foundation, or
midplane compressive forces present. Also, the total damp-
ing coefficient gr is the sum of an aerodynamic dampihg

. coefficient g4 and an effective structural damping coefficient

gs. The g4, first introduced by Houbolt,® is shown in Fig. 2
for different panel sizes, altitudes, and panel materials.t
The gs is a consequence of the assumed constant structural
damping G,, which can be expressed as

G, = giw |‘PM’| t]-z)

where g; = 2{; = 2 X (critical damping ratio) of any mode
w;. The form of Eq. (12) implies that, for any other mode
wj, the actual structural damping coefficient g; will be given
by g; = giwi/w;. For typical panels, g; ranges from 0 to
0.03 approximately. The consequences of using other
values of g; for the higher modes is explored in Sec. 5. .

The basic partial differential equation for panel £ Y
Eq. (3), is solved subject to the simply supported bourn. .y
conditions:

at £E=0,
at 7=0,

" d%w/df?
duw/on?

1—-w =0,

0 (13a)
0 (13b)

l-w=0,

The ‘solution procedure begins by seeking solutions in the
form 3

w(t, 9, 7) = w(¢)[sinmmwn)e’ (14)

where, in general, § = & + i&. Placing Eq. (14) into Eq.
(3) 3'1e1da the ordinary differential equatlon

d4p dup div

&7+CE§+‘*E+(B“+"B’)‘I'=° (15)
where
g = 7*[—2(ma/b)* + r.] (16)
A =2 a7
" Br + iB; = w*[(ma/b)* + k —

(ma/b)’ry + grf + 6%] (18)

This ordinary differential equatiun, Eq. (15), subject to the
boundary conditions, Eq. (13a), is now solved thmoughl)
The general solution of Eq. (15) is

W(E) = g™t 4 coe™t + o™ + oo’ (19)

where the c,, are arbitrary complex constants, and the - e
the four roots of the complex characteristic equation ¢ 4.
(15). Upon inserting @ into the boundary conditions, Eq.

+ The Mach number factor in braces is often assumed to be its
aerodynamic piston theory value of 1. See Ashley and Zartarian.®
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(13a), the following determinant A must equal zero for
nontrivial solutions:

1 1 1 1 f
hllers Zy by TE S Y F
Ace e=t er: e5s e i 0 (20)

z)%e®  z,% 2% 2%

For a given C and A, various values of Bz and B are selected,
and the four roots zy, 2, z3, 2, are found. Then the complex
function @ is evaluated, where} :

P = Az — )z —z)(n — )z — 0= — 2)(z — 2)

21

The combination of Br and B; which makes $(Bg, B;) = 0
is a solution (eigenvalue) of Eqgs. (15) and (13a) for the given
C, A combination.

Equations (15) and (13a) were solved numerically by an
IBM 1620 computer. Since many eigenvalues Bg, B; can
be found for each C, A combination, it was necessary to trace
out continuously the proper eigenvalue branch by increasing
A continuously from zero for a fixed value of C. For low
values of A, the eigenvalues are real (B; = 0), but above &
certain value of A, they become complex (B; = 0). Figures
3a and 3b show the real eigenvalues (B; = 0), whereas Figs.
4a—4c show the complex eigenvalues. Only the most eritical
eigenvalue branches for this problem are indicated (largest
By for a given C, A combination).

It remains to relate the general coefficients C, 4, Bz, B:
to the pertinent physical parameters A, gr, a/b, k, rs, 1, 6
of the problem.§ It is convenient to rewrite Eq. (18) as

6* + grf — (Qz + Q) =0 (22)

where
Qr = Bgp/n* — (ma/b)* — k + (ma/b)*r, (23a)
Q: = By/m* ' (23b)

Equation (22) can be solved fcu; 6 to give

6 = [—gr/2 + Re{(T)V?}] + ilIm{(D)*}]  (29)

where

Re{(D)'?) = +(1/@"](+{[(0r/2)* + Qal +

[Q:)%}2 + (g7/2)* + Q=)' (258)
Im{([)*?} = Qi/2 Re{(I')*} (23b)

For a configuration defined by given values of A, gr, a/b, %,
r., and r,, Egs. (16) and (17) are used to find C and 4. From
the appropriate Figs. 3 and 4, values of Bg and B; are found.
Then Qz and Q; are evaluated from Eqs. (23a) and (23b).
Finally, § = & + i is solved from Eqs. (24, 25a, and 23b).

The complete panel behavior is characterized by plotting
the & + iw variation with increasing dynamic pressure A.
Instability occurs when & becomes positive (static type if
also @ = 0, dynamic type if also @ = 0). Some typical
plots are shown in Fig. 5. For the case of no damping, gr =
0, instability does not set in until after two undamped nat-
ural frequencies_have merged (hence, the term “frequency
coalescence flutter”). For some damping present, gr > 0,
the instability sets in at a somewhst higher value of A.
This occurs when & = 0 in Eq. (24). By routine algebraic
manipulation, this flutter condition occurs at the value of A
when

LY

Q:/(—Qr)"* = gr (26)

t The function &, rather than A itself, is evaluated to prevent
repeated roots from causing the determinant to approach zero.
Also, @, unlike the A, will preserve its sign if one replaces z, by
2., ete.

§ The mode parameter m is taken as m = 1. Actually, all
results come out in terms of an effective aspect ratio ma/b.
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Fig. 3 Real eigenvalues (B; = 0 case).

At this flutter condition, the corresponding flutter frequency
is

Yy T @n

Frequently, only the flutter condition is determined. How-
((eve;', the violence of the flutter can also be obtained from Eq.
24).

The deflection shape w(£, 3, 7) for any physical situation is
found from real part of the right-hand side of Eq. (14).
The w(¢) is given by Eq. (19), where the roots z,. are those
for the given situation, and the complex constants ¢, are
found from the boundary conditions, Eq. (158). This results
in

w(t, 1, 1) = [sinmryled (g cosar — W, sinwr)  (28)

This can be plotted for various times during one cycle (Gr =
27) to give a clear physical picture of the deflection shape.
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Some deflection shapes at flutter conditions (& = 0) are given
in Figs. 6a-6h for various C, 4 combinations and the most
critical eigenvalue branch (largest B; for this given C, A
combination). For A = 0, the deflection shapes are simple
sine shape standing-wave types. As the coefhicient . ‘n-
creased for a fixed C, the deflection shape changes i._.a 2
standing-wave type at low values of A, where purely real
eigenvalues (B; = 0) are present, to a traveling-wave type
at high values of A, where complex eigenvalues (B, = 0) are
present.

The solution procedures used here represent’ an exact solu-
tion rather than a modal solution of the differential equation
and hence do not possess convergence difficulties. These
procedures are analogous to those used previously by Du-
gundji and Ghareeb?! for solving a related differential equa-
tion (see also Movchan®??).

3. Applications

The general theory presented in Sec. 2 is applied to various
physical panel configurations. Generally, only the flutter
condition (& = 0) will be examined, but an example of the

. complete panel behavior will also be given.

a. Pure Aspect-Ratio Effects, a/b

For this series of panels, one considers k = r, = r, = 0.
Here, only dynamic-type instability is possible. Figure 7
shows the dynamic pressure parameter at flutter Ap ve
damping coefficient gr for different aspect ratios a/b. The
Ar becomes large for low aspect ratios (high a/b). Also,
Ar becomes independent of gr at low values of gr and roughly
proportional to gr at high values of gr. This indicates ¢
change of panel flutter from a constant dynamic pressure
phenomenon at low values of damping to a constant ve-
locity phenomenon at high values of damping (thi tht
panels in dense air). This also permits one to use the _.atic
airforce approximation”*forgr < 1.

The flutter frequencies &p are indicated in Fig. 7. The
deflection mode shapes for the point marked with a heavy
dot are given by Figs. 6a-6c (a/b = 0; Ar = 370, 2000,
20,000) and Fig. 6e (a¢/b = 10; Ap = 60,000). The modes
are seen to change from standing-wave types at low values
of gr to traveling-wave types at high values of gr. Also, the
modes become of very short wavelength, the deflections tend
to be concentrated at the rear end, and the flutter frequency
becomes high at large values of gr and low aspect ratios (high

wig 5,71 W (£ [sinmmy]e@HiOT

' s
Qy=0
a /;V
'
F
. ' C e
Berepad __3\\ A
\—g.>0 \
Al
'y =0 2
Frequency
R T—— ” Coolescence
Y /“ S~ FLUTTER Flutter"
‘4
p——— _,--"’-‘\_q, >0

A
Fig. 51 Typical plots of panel behavior.
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a/b). The first-orderZaerodynamics equation_ (2) may be the rear end, and the flutter frequency becomes high at large
somewhat inaccurate at the higher @¢’s. values of gr and &. :
b. Pure Elastic Foundation Effect, k c¢. Pure Longitudinal Compression Effect, r.

Here, one considers ¢ = r, = r, = 0. Only dynamic Here, one considers a/b = k¥ = r, = 0. Figure 9 shows
instability is possible. Figure 8 shows Ar vs gr for different Ar vs gr for different longitudinal compression forces r,.
elastic foundation parameters k. The Ap increases with The Ar increases with increasing tension (negative 7.) and
gr and with k. The presence of small damping gr is impor- also with increasing damping gr. Again, the flutter phe-
tant at high values of %, since it raises Az well above the gr = nomenon changes toward a constant velocity rather than a
0 value of A7 = 343. Again, the flutter phenomenon changes constant dynamic pressure phenomenon as gr becomes large.
toward & constant velocity rather than a constant dynamic For compressive forces r. > <+ 1, static instability may also
pressure phenomenon as gr or  becomes large. oceur. The nature of these curves for positive r. is better
r The flutter frequencies @p are indicated in Fig. 8. At illustrated by a cross plot, Fig. 10, which shows A for in-
high values of %, the &p becomes the simple natural fre- stability plotted vs r.. The regions of dynamic and static
quency of the section mass-on-spring foundation. The de- instability are readily apparent here. The point A = 0,
flection mode shapes for the points marked with heavy dots r: = 1 represents the Euler buckling load of the panel. The
are given by Figs. 6a-6¢ (any value of k; Ap = 370, 2000, aerodynamic forces may stabilize an otherwise statically un-
20,000). Again, the modes change from standing-wave stable panel. _
types at low values of gr and k to traveling-wave types at The flutter frequencies @r are indicated in Fig. 10. The
high values of gr and k. Also, the modes become of very deflection mode shapes for the points marked with a heavy

short wavelength, the deflections tend to be concentrated at dot are given by Figs. 6a—6c (r- = 0; \r = 370, 2000, 20,000)
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Fig. 7 Pure aspect-ratio effect (k = r= = ry, = 0).

and Fig. 6h (r. = +35; A = 370). Again, the modes change
from standing-wave types at low values of gr to traveling-
wave types at high values of gr. Also, the modes become of
very short wavelength, the deflections tend to be concen-
trated at the rear end, and the flutter frequenc} becomes high
at large values of gr and negative r,.

d. Combined Compression and Aspect-Ratio Effects

Here, one considers k¥ = 0, r. variable, 7, = 0, a/b = 2.
The results are shown in Figs. 11 and 12 and are similar in
nature to those given by Figs. 9 and 10, except that now a
zero flutter dynamic pressure condition occurs at r. = 413,
which is before the onset of static instability at r. = +16.
This Ar = 0 condition can readily be removed by addition of
a small amount of damping gr. In fact, it can be seen from
Fig. 11 that this anomalous A, = 0 condition merely implies
that flutter occurs at a constant velocity rather than at a
constant dynamic pressure here. The deflection mode
shapes for the points marked with a heavy dot are given
by Figs. 6a-6c (r. = 8; Ap = 370, 2000, 20,000) and Figs.
6g and 6h (r. = 13; Ar = 20, 370). The same general re-

100000

$5000 o/bsrg =1, =0 300

Unstable e
20,000

200 —

(T NN T, (T Rl O O 1 P O T
T 2 5 1 2 . s 10 20 50 100
T

Fig. 8 Pure spring effect.
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marks as for the pure longitudinal compression effect de-
scribed in Sec. 3¢ apply here.

Other combinations of compression and aspect-ratio effects
are possible. For example, for £ = 0, r, variable, r, — =,
a/b = 2, the A = 0 condition will occur at r, = +13, h
is after the onset of static instability at r, = +35. =

" e. Boundary Support Effect

Here, one considers ¥ = r. = r, = 0, but with different
aspect ratios and different boundary support conditions on the
front and rear edges of the panel. The basic equation (18)
must be solved subject to the different boundary conditions
present. Such calculations were performed for clamped-
clamped panels by Movchan?®? and for clamped-free panels by
Dugundji and Ghareeb.2* The resulting plots of Ar vs gr
are shown in Fig. 13. In general, the clamped-clamped case
gives a higher Ar than the simply supported case. However,
at either low aspect ratios (high a/b) or high values of damp-
ing gr, the two Ag’s approach each other. This is due prqb-
ably to the shorter wavelengths present in the flutter de-
flection shapes here and, hence, a lesser influence of the end

_boundary conditions (=ee flutter deflection shape discussion

in Sec. 3a). Also shown is a clamped-free beam from the
results of Ref. 21, which also approaches the simply supported
case at high values of gr.

f. Complete Panel Behavior

The series of panels examined in Sec. 3a was reinvestigated
to give the complete panel behavior instead of merely the
flutter condition. Here,k = r, = r, = 0. The variation of
8 = & + i@ vs the dynamic pressure parameter A\ was deter-
mined for different a/b and gr configurations. Instead of
plotting @ and @ vs A, the amplification ratio (A.R.) defined
as the ratio of amplitudes during one cycle of oscillatio s
introduced. This indicates the violence of flutter a.. is
given by

AR. = e2ra/ (29)

Figure 14 shows A.R. vs A for a/b = 0, 4 and several values
of gr. Flutter (A.R. > 1) sets in sharply for a/b = 0 and
low values of damping gr. For low aspect ratios (a/b =

=3 x TTIT
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Fig. 9 Pure longitudinal compression effect.
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and also for high values of gr, the flutter condition comes in
more mildly. Also shown are some values of the frequency
w associated with these amplification ratios. The first-order
aerodynamics equation (2) may be somewhat inaccurate at
the high @'s.

4. Traveling Wave Analysis

One might consider a low-aspect-ratio panel as an infinitely
long strip of finite width b and seek traveling wave solutions
of the basic partial differential equation.? Although the use
of first-order aerodynamics, Eq. (2), has certain limitations
when applied to traveling waves,* it will be used anyway to
assess the differences between the traveling wave analysis
and the finite panel analysis of the same mathematical

equation.
50,000— * ! [ R [TTHT] T [ T 7 |
E 60-777
P > o e 50-, =
a/b= r s = i
20,000 -— o Hointly _— 4?‘90\ > ]
10,000 - 20
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T TTTTI
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50: = Instability is possible B
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L See Fig. 12 =

20 -]
1ol Loeadeenad g b v g bl et easlaged

0! o2 [s}-] 1 2 5 10 20 - 50 100

9

Fig. 11 Combined compression and aspect-ratio effect.

% This traveling wave approach for low-aspect-ratio panels
was investigated by Dowell?* using the complete linearized
aerodynamic theory. Also, this traveling wave approach is
often used in problems of evlindrical shell flutter.1

PANEL FLUTTER AT HIGH SUPERSONIC MACH NUMBERS 1263

1 T H
ofb = 2 = O k=0
2000 =
e
1500 — e & =
.
e
1ooo - —
unstabie
Dynamically
500 . 2 =
Stabie A Unsiabie
£ /7‘Smmnny
° ] i Wty o i
(+] 5 1o 15 20 25 30

h

Fig. 12 Combined compression and aspect-ratio eflect

(cross plot).

Combining the governing differential equations (1) and (2)
and introducing new nondimensional coordinates £, 7, 7 results
in the alternate partial differential equation for panel flutter:

a‘w_!_z o ow

D_.E‘ aéaq:'i' + x g “49-1"'3-:"'
2 2w
w4£+ﬁ«;w+ﬁ 56 tFhgs =0 ()

where new nondimensional parameters have been introduced,
\, §ir, §a, s, k, 7=, 7y,  These are similar to Egs. (4-11) except
that now all nondimensionalizations are based solely on the
width b.

Traveling wave solutions of Eq. (30) are sought in the form

w(f, , F) = wolsinmwyle?~lct—2/t (31)

where [ is the wavelength and ¢ is the wave speed, which, in
geperal, may be complex, ie., ¢ = ¢z + ;. Placing Eq.
(31) into Eq. (30) will yield the algebraic equation

(c/co)? — (Grl/4b)(c/co) — S* + i(Al/8z%) = 0 (32)
where

S = 1(mi(l/2b)* 4+ 2m* + 1/(1/2b)* +
k(/2b)* — 7. — mr,(1/20)2]2  (33)

co = 2bap/m = 1.90 cy(h/b) (34)
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Fig. 13 Boundary support effect.



1264 J. DUGUNDIJI

100 2
L b kzp=r, 20
- ————— o/bsa _—
SR
: Numbers on Points Refer to Frequency &
20—
10—
. - 216
o =
P
(-] - -~ '&
& =2 7
Bal .
z urLt  J
el f o < /
e € e e L
EE /
< S ’I
B pos

l

e N e B W e S e
‘IIOO 200 500 1,000 2000 5000 10000 20000 50000 100,000

Dynamic Pressure Parometer ~ X

Fig. 14 Amplification ratio vs dynamic pressure param-
eter.

The reference wave speed ¢o ¢an be interpreted physically as
the minimum vacuum wave speed possible for a panel with
k=r.,=1r,=0.

Solving Eq. (32) for the wave speed c in the presence of air
forces and damping gives

c/co = [Re{(D)2}] + i[(grl/8D) + Im{(T)'}] (35)
where .
Re[ (1)}
Im{(T)v2}

[}

—(AI/167%)/Im{(T)22} (368a)
=[1/@Y)(+{[S* — (grl/8D)°] +

_ [A/873b]2} V2 — {S* — (grl/8D)*})V* (36Db)
The complete panel behavior is characterized by plotting the
¢r + ic; variation with increasing dynamic pressure A for
various wavelengths 1/2b. Instability is assumed to occur

when ¢; becomes negative. Using Egs. (35) and (36b), the
flutter condition (c; = 0) can be shown to be

Ar = 273857 - (37)
or, equivalently,

Ur = 1.90[(M2 = 2)/(3* — 1)]Scu(h/b) = (38)
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Fig. 15 Low-aspect-ratio effect.
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At the flutter condition, the corresponding wave speed and
frequency at flutter become

Cr = —{-SCo f39}-
wr = 2w8cy/l = 2(2b/0)San )

For a panel with no spring foundation and no midplane
compressive forces (k = r. = r, = 0), the minimum value
of S is Spia = 1 and occurs for m = 1 and I/2b = 1. Plac-
ing these values of S and I/2b into Eqs. (37—40) gives the
condition for the first onset of flutter for such panels.

Figure 15 shows the dynamic pressure parameter at flutter
%r vs the damping §r for the infinite panel traveling wave
theory. Also shown for comparison are the results of the
previously obtained finite panel analyses (Fig. 7). The
traveling wave analysis gives a lower ¢ than the finite panel
analysis, particularly at low values of §r. At the higher
values of gr, the agreement and trends are better between the
two theories. The flutter frequencies wr/@, are also indi-
cated, and the agreements are fair. The deflection mode
shapes for the traveling wave analysis are simple sine-shaped

_ traveling waves of wavelength I = 2b, traveling at a wave

speed ¢ = ¢co, and having a frequency wr = 2ws. The cor-
responding deflection mode shapes of the finite panel for
the points marked by a heavy dot are given in Figs. 6e and
6f (a/b = 10; gr = 0.036, 0.80). They clearly resemble
traveling waves and are qualitatively similar in wavelength,
wave speed, and frequency to the infinite panel, particularly
at high values of §r. These finite panels, though, show large
deflection amplitudes toward the rear of the panel, as com-
pared with the uniform deflection amplitudes of the infinite
panel, traveling wave analysis.

Summarizing, it appears that an approximate idea of the
flutter speed, frequency, wave speed, and wavelength can be
obtained from an infinite panel, traveling wave analy  ‘or
long, narrow panels at high values of damping §r (ligh  .in
panels in dense air). However, the end effects still play im-
portant roles for panels of a/b = 10, and any accurate esti-
mation of the flutter characteristics and deflection shapes
should be made by finite panel analyses.

5. Effect of Arbitrary Structural Damping

The preceding analyses have assumed that the actual strue-
tural damping coefficient g; of any mode w; was related to
that of the fundamental mode w, by the relation g; = giw/w;.
Other relationships may be assumed or measured experi-
mentally. For example, the alternate relationship g; = gi is
commonly assumed in standard V-g flutter analyses in indus-
try.** It is of interest to examine the effect of these other
g; variations on the previous results.

To study these effects, it is convenient to solve the panel
flutter problem by modal methods. Modal solutions of the
basic equation (3) are sought in the form

AP

wE, n, 7) = Y qa(7) sinnrf sinmmy (41)
. n=1

satisfying the simply supported boundary conditions, Eqgs.

(13a) and (13b), on all edges. Placing Eq. (41) into Eq.

(3) and applying Galerkin’s method results in the set of

‘ordinary differential equations,

&'ga dgn EafAYtezodd  gen ¥
art + gr @ + E.qg. + (-rr') 3. @G- =0
2)
where

** This corresponds to structural damping of the form +
G; d%w/dzdt rather than —G,; w/dt in Eq. (1) for thea/b = k =
r: = ry = 0 panel studied subsequently. '
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E. = n* <4+ 2n*(ma/b)* + (ma/b)} + k — r.n* — r,(ma/b)?
(43)
The foregoing summation is taken over all of the s terms for
which n + sis an odd integer.
Consider, for simplicity, a two-mode analysis. The pre-
ceding set of equations becomes
(d*qi/d7?) + gr(dg/dr) + Ewgy — (8N/37%)g. = 0
(d*g=/dr®) + fgr(dg:/ar) + Exg» + (8\/37%)q = 0
In the second equation, an arbitrary factor f was introduced

to permit changing the amount of total damping gr of the
second mode. To investigate stability, one sets

ga(7) = gué®r (45)

and expands the determinant of the preceding equations to
obtain the characteristic equation:

04 + [gr(1 + N6 + [Ey + Ex + for2)6 +

lg-(E: + fE)18 + [E\E: + (8M\/379%] = 0 (46)
The roots § = & + i& of Eq. (46) are examined as \ increases
from zero for any fixed configuration. This gives the com-
plete panel behavior. To investigate only the flutter condi-
tion & = 0, one sets § = i&p in Eq. (46). Solving first the

imaginary part and then the real part gives the flutter condi-
tions

wr = wr/wo = [(E: + fE)/(1 + f)]'* (47)
o= 18.26[2(NY2/(1 + ] X
[(Es — EV)* + gr*(Es + JEDQ + fH]*  (48)

A similar equation for Ap was presented by Bolotin.?
Returning to the damping characteristics, one differentiates
between the damping in each mode,

(44)

gn = ga + g1 = gr

(49)
gr: = ga -+ gs2 = fgr

where the effective structural damping coefficient gs; of the
ith mode is given from Eq. (7) as g5; = giwi/wo. One may
then express the factor f as

f=g9r/gn =1 + (ga/g) /(1 + ¥(gsn/ga)]  (50)

Thus, f depends on two nondimensional ratios, namely,
gs1/g4 = (g1/ga)(wi/wo) (51)
¥ = gs/gsi = (gws/gion) (52)

Also, the total damping and the undamped natural frequen-
cies of this two-mode system can be expressed as

gr = ga[l + (gs1/g4)] (63)
wifwy = [E;]V® (54)

For any combination of ga,gi, g, the ratios gs,/g4 and ¢ are
first evaluated. ~The resulting values of f and gr from Egs.
(50) and (53)-may then be placed into Eq. (48) to obtain
Ar. i :
Figure 16 shows the factor f vs gsi/g4 for various values of
Y. Also shown is the parameter 2(f)¥2/(1 + f) vsf. Fora
given ¥, 8s gs/g. increases from zero, the value of f varies
from f = 1 to the asymptotic value f = 1/¢. The corre-
sponding value of 2(f)?/(1 -+ f) decreases monotonically
from unity to some other asymptotic value. Placing these
results into Eq. (48), one sees that, because of the factor
2(f)¥2/(1 + f), the addition of actual structural damping g;
may destabilize the system, particularly for systems where
the aerodynamic damping g. is small. The maximum
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amount of this destabilization possible depends solely on
and is given from the asymptotic values of f as

Ar (with structural damping)  2(¥)**
Ar (no structural damping) = (1 + ¢)

In the case of equal effective structural damping coefficients,
¥ = 1, the system is always stabilized by the addition of
actual structural damping g:.+ The crucial role of the ratio
¥ here is to be noted.

The previous theory was applied to a panel with a/b = k =
r. =1, = 0. Two types of structural damping relationships
were considered, namely, 1) g. = g, for which y = 4, and 2)
g: = +gi for which ¢ = 1. Figure 17 shows Ar vs the actual
structural damping g, present in the panel. At g, = 0.1, the
addition of actual structural damping g, = 0.05 will reduce
Ar from 274 to 238 for the g. = g, case, whereas there is a
slight increase for the g, = g case. At gy = 1, the de-
stabilization for the g. = g; case is much less. These ‘curves
of Ar vs g clearly illustrate the typical “looping back” of the
V-g curves of the standard flutter analvsis used in industry.
This “looping back” is seen to be a result of unequal effective
structural damping coefficients.}}

(55)

g, = -t g, =10

20

o

o
]

Structural Damping ~ g,

A 1 1 1 1 H -
4 250 300

Dynomic Pressure Porometer ~ g

Fig.17 Effectsof structural damping(a/b =k =r:=r, =
0). .

1t This destabilization occurring upon the addition of damping
has been pointed out by Ziegler, Bolotin,® Johns,* and others.

11 Note that, for no aerodynamic or structural damping (gr =
0), Ar = 274 for these two-mode analyses rather than the exact
value of Ap = 343. A four-mode analysis should actually be
done for numerical accuracy. Figure 17, however, does give the
proper trends.
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6. Conclusions

This paper has reviewed the theoretical characteristics of
panel flutter at high supersonic Mach numbers, using linear
plate theory and two-dimensional, first-order aerodynamics.
An exact solution of the resulting partial differential equa-
tions revealed the nature of the eigenvalues and their general
behavior. From these eigenvalues, both static and dynamic
instabilities can be physically obtained. The solution pto-
cedure eliminates difficulties associated with convergence of
modal methods and may also be of interest in other similar-
type stability problems, for example, wing flutter, flowing
pipe lines, beam buckling, ete.

For understanding panel flutter, the effect of damping is
important. At low values of gr, panel flutter occurs at
constant dynamic pressure g and has the appearance of stand-
ing waves. At high values of gr (light, thin panels in dense
air), panel flutter occurs at constant velocity ¥ and has the
appearance of traveling waves. The use of the “static air
force approximation” is adequate in some ranges but inade-
quate in others, particularly if A = 0. This A = 0 condition
merely implies that flutter occurs at constant velocity V
rather than at constant dynamic pressure g and does not mean
that the system is unstable for any airspeed.

For pure aspect ratio and pure elastic foundation, only
dynamic-type instabilities are possible, but, with compressive
forces 7., r, present, static-type instabilities (buckling) can
also oceur.

The effects of front and rear edge conditions on the plate
tend to become unimportant for low aspect ratios and also
for high serodynamic damping gr, where the resulting mode
shapes begin to appear like traveling waves.

The flutter condition appears to set in sharply for two-
dimensional panels at low values of damping gr. For low
aspect ratios and for high values of gr, the flutter condition
- comes in more mildly.

Infinite panel, traveling wave analysis can be used to ob-
tain an approximate idea of the flutter characteristics of low-
aspect-ratio panels at high values of damping gr. The
traveling wave analysis gives lower flutter speeds than the
finite panel analysis, and the details of the deflection mode
shapes are somewhat different, but the general trends are
similar.

The effect of adding structural damping g; to a finite panel
is frequently destabilizing. The amount of this destabiliza-
tion depends on the relative amount of structural damping
added to each mode of the panel and is characterized pri-
marily by the ratio . Limits on the maximum possible de-
stabilization are established for a two-mode analysis. If the
effective structural damping is added equally (¢ = 1), the
system is always stabilized.
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