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Abstract

A computational procedure is presented to study
fluid-structural interaction problems for three-dimen-
sional aerospace structures. The flow is modeled using
the three-dimensional unsteady Euler/Navier-Stokes
equations and solved using the finite-difference ap-
proach. The three dimensional structure is modeled
using shell/plate finite-element formulation. The two
disciplines are coupled using a domain decomposition
approach. Accurate procedures both in time and space
are developed to combine the solutions from the flow
equations with those of the structural equations. Time
accuracy is maintained using aeroelastic configuration-
adaptive moving grids that are computed every time
step. The work done by aerodynamic forces due to
structural deformations is preserved using consistent
loads. The present procedure is validated by comput-
ing the aeroelastic response of a wing and comparing
with experiment. Results are illustrated for a typical
wing-body configuration.

Introduction

In recent years, significant advances have been
made for single disciplines in both computational fluid
dynamics (CFD) using finite-difference approaches!
and computational structural dynamics (CSD) using
finite-element methods (see Chapter I of Ref. 2). For
aerospace vehicles, structures are dominated by inter-
nal discontinuous members such as spars, ribs, panels
and bulkheads. The finite-element (FE) method, which
is fundamentally based on discretization, has proven to
be computationally efficient to solve aerospace struc-
tures problems. The external aerodynamics of aerospace
vehicles is dominated by field discontinuities such as
shock waves and flow separations. Finite-difference

* Research Scientist, AIAA Associate Fellow
1 Research Scientist, MCAT Institute, AIAA Member

Copyright © 1993 by the American Institute of Aer-
nautics and Astronautics, Inc. No copyright is asserted
in the United States under Title 17. U.S. Code. The
U.S. Government has a royalty-free license to exercise
all rights under the copyright claimed herein for Gov-
ernmental purposes. All other rights are reserved by
the copyright owner.

(FD) computational methods have proven to be effi-

" cient to solve such problems.

Problems in aeroelasticity associated with non-
linear systems have been solved using both uncoupled
and coupled methods.® Uncoupled methods are less ex-
pensive but are limited to very small perturbations
with moderate nonlinearity. However, aeroelastic prob-
lems of aerospace vehicles are often dominated by large
structural deformations and high flow nonlinearities.
Fully coupled procedures are required to solve such
aeroelastic problems accurately.

In computing aeroelasticity with coupled proce-
dures, one needs to deal with fluid equations in an
Eulerian reference system and structural equations in
a Lagrangian system. Also, the structural system is
physically much stiffer than the fluid system. As a re-
sult, the numerical matrices associated with structures
are orders of magnitude stiffer than those associated
with fluids. Therefore, it is numerically ineflicient or .
even impossible to solve both systems using a mono-
lithic numerical scheme.

Guruswamy and Yang> presented a numerically
accurate and efficient approach to solve this problem
for two-dimensional airfoils by independently model-
ing fluids using FD-based transonic small perturbation
(TSP) equations and structures using FE equations and
coupling the solutions only at boundary interfaces be-
tween fluids and structures. The coupling of solutions
at boundaries can be done either explicitly or implicitly.
This domain decomposition approach allows one to take
full advantage of numerical procedures of individual
disciplines such as FD for fluids and FE for structures.
This accurate coupling procedure has been extended to
three-dimensional problems and incorporated in sev-
eral advanced aeroelastic- codes such as XTRAN3S*,
ATRAN3S® and CAP-TSD® based on the TSP the-
ory. It was later demonstrated that the same technique
can be used by modeling the fluids with Euler/Navier-
Stokes equations on moving grids.”® The accuracy of
the coupling is maintained by matching the field grid
displacements with the structural displacements at the
surface. This new development is incorporated in the
computer code ENSAERO.?

As an alternate to the domain decomposition
approach. there have been some attempts to solve
both fluids and structures in a single computational
domain.'®3! This single computational domain ap-
proach is not new to the researchers dealing with fluid-



structural interaction problems. In the late 60’s, there
were several attempts to solve fluid-structural interac-
tion problems using a single FE computational domain
(see Chapter 20 of Ref. 12). The main bottleneck arose
from ill-conditioned matrices associated with two phys-
ical domains with large variations in stiffness proper-
ties. As a result, a subdomain approach was devised
where fluids and structures are solved in separate do-
mains and solutions are combined through the bound-
ary conditions similar to the domain-decomposition ap-
proach explained above. However, there have been re-
newed attempts to solve both fluids and structures in
a single computational domain for aeroelastic applica-
tions. So far. such attempts are limited to simple two-
dimensional problems and have not proven to be better
than the domain decomposition approach. Because of
the lack of comparison with other approaches and de-
tails about the computational speed, it is difficult to
estimate the scope of these alternate approaches. The
drop in the convergence rate from the rigid case to the
flexible case in Ref. 11 indicates the weakness of the
single domain approach.

In the domain decomposition approach, to date,
advanced CFD methods such as those based on the
Navier-Stokes equations are used to compute aerce-
lasticity of simple wings modeled structural equations.
The modal approach significantly reduces the number
of structural unknowns to a great extent when com-
pared to a direct use of FE equations. For simple ge-
ometries such cs isclated wings, the modal approach
can produce accurate response results. However, it can
be less accurate for complex structures such as wing-
body configurations. Since the structural properties of
the body are considerably different from those of the
wing, it is difficult to pre-select the modes to accurately
represent the full configuration. Therefore, it is more
accurate to directly use FE structural equations. Also,
by using the FE equations, stresses and other data that
are required for the design can be directly computed in
addition to displacement responses.

In this work, the capabilities of ENSAERO are
extended to compute the aeroelastic responses of gen-
eral wing-body configurations using the Euler/Navier-
Stokes equations for fluids and plate/shell finite-element
equations for structures. The coupled equations are
solved using a time-integration method with configura-
tion-adaptive moving grids. The results are validated
for wings and demonstrated for typical wing-body con-
figurations. Typical aeroelastic responses are computed
at transonic Mach numbers.

Governing Aerodynamic Equations

The strong conservation law form of the Navier-
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Stokes equations is used for shock capturing purposes.
The thin-layer version of the equations in generalized
coordinates can be written as!3

070 + 0EE+ 0;,1':"*' 0(G = Re“a.;S' (1)

where @, E, F,G, and §, are flux vectors in generalized
coordinates. The following transformations are used in
deriving Eq. (1).

r=1
€ = E(z, y,z,t)

2
n=1n(z,y,z,t) @
(= C(z’ y,z,t).

It should be emphasized that the thin-layer approxima-
tion is valid only for high Reynolds number flows, and
that very large turbulent eddy viscosities invalidate the
model. .

To solve Eq. (1), ENSAERO has time-accurate
methods based on both central-difference and upwind
schemes.!* In this paper, the central-difference scheme
based on the implicit approximate factorization algo-
rithm of Beam and Warming!® with modifications by
Pulliam and Chaussee!® for diagonalization is used.
This scheme is first order accurate in time.

For turbulent flow, the coefficient of viscosity
needed for Eq. (1) is modeled using the Baldwin-Lomax
algebraic eddy-viscosity model.}” All viscous compu-
tations presented in this paper assume fully turbulent
flow. This approximation is consistent with the high
Reynolds number assumption. For vortex-dominated
flow structures of highly swept wings, a modification to
the original Baldwin-Lomax model is required. For this
study, the Degani-Schiff modification'® to the original
model for treating vortical flows is used.

Aeroelastic Equations of Motipn

Following the formulation given in Chapter 20 of
Ref. 12, the FE matrix form of the aeroelastic equa-
tion of motion is

[M}{g} + [GN4} + [K){q} = {2} (3)

where [M], [G], and [K] are the global mass, damping,
and stiffness matrices, respectively. {Z} is the aerody-
namic force vector corresponding to the nodal displace-
ment vector {q}.

In this work, it is assumed that the wing-body
configuration can be modeled using plate/shell ele-
ments. For this purpose, it is further assumed that



the structural properties of the body and wing are rep-
resented by equivalent shell and plate elements. The
ANS4 shell/plate element is used to represent the struc-
tural properties of the wing-body configuration.!® The
ANS4 element shown in Fig. 1 is a 20 degrees-of-
freedom (DOF) element which can model both plates
and shells. It is based on assumed natural strain ap-
proach. For the wing-body configuration considered in
this work, the wing and the body are modeled using
plate and shell options of the ANS4 element, respec-
tively. At each node, the DOF allowed are the inplane
displacements u and v, transverse deflection (w), rota-
tion about x-axis (#) and rotation about y-axis (¢).

The main effort after selecting the FE model of
the structure falls into computing the global force vec-
tor {Z} of Eq. (4). {Z} is computed by solving the
Euler/Navier-Stokes Eq. (1) at given time, t. First, the
pressures are computed at all surface grid points. The
forces corresponding to the nodal DOF are computed
using the FE nodal fluid-structural interfaces discussed
in the next section.

Fluid-Structural Interfaces

In aeroelastic analysis, it is necessary to represent
equivalent aerodynamic loads at the structural nodal
points and to represent deformed structural configura-
tions at the aerodynamic grid points: In the present
domain decomposition approach, coupling between the
fluid and structural domains is achieved by combining
the boundary data such us aerodynamic pressures and
structural deflections at each time step. An analyti-
cal moving grid technique has been successfully used to
deform the aerodynamic grid according to structural
deflections at the end of every time step.” There are
several different ways to obtain the global force vector
{Z} of Eq. (3) depending on the equations used for the
structural dynamic analysis.

A number of numerical procedures have been de-
veloped to exchange the necessary information between
the aerodynamic and structural domains.” A bi-linear
interpolation and a virtual-surface interface are used
in this study. The bi-linear interpolation is also called
the lumped load (LL) approach. In this approach, the
force acting on each element of the structural mesh is
first calculated, and then the element nodal force vector
is obtained by distributing the total force. The global
force vector is obtained by assembling the nodal force
vectors of each element. In addition, the deformed con-
figuration of the CFD grid at the surface is obtained
by linearly interpolating nodal displacements at finite-
element nodes. This approach does not conserve the
work done by the aerodvnamic forces and needs fine
grids for both fluids and structures to give accurate re-

sults.

An alternate-to the above LL approach is an im-
proved approach based on virtual surface (VS). In this
approach, a mapping matrix developed by Appa?° is
selected to accurately exchange data between the fluid
and structural interface boundaries. The reason for se- -
lecting Appa’s method is that the mapping matrix is
general enough to accommodate changes in fluid and
structural models easily. In addition, this approach
conserves the work done by aerodynamic forces when
obtaining the global nodal force vector. This method
introduces a virtual surface between the CFD surface
grid and the finite element mesh for the wing. This
virtual surface is discretized by a number of finite el-
ements, which are not necessarily the same elements
used in the structural surface modeling.

By forcing the deformed virtual surface to pass
through the given data points of the deformed struc-
ture, a mapping matrix relating displacements at struc-
tural and aerodynamic grid points is derived as

[T] = (%} (6 (K} + [T l) 7" 0T (9)
where

[K]): the free-free stiffness of the virtual surface
¥,: displacement mapping from virtual to
structural grids
¥a: displacement mapping from virtual to
aerodynamic grids
§: penalty parameter

Then, the displacement vector at the aerodynamic grid,
{¢s}, can be expressed in terms of the displacement
vector at the structural nodal points, g,, as

{a} =1T) {¢:}.

From the principle of virtual work, the nodal force vec-
tor, {Z,}, can be obtained as

{2} = 11" {Z.)

where {Z,} is the force vector at the aerodynamic grids.
This procedure is illustrated in Fig. 2.

The aeroelastic equation of motion, Eq. (3), is
solved by a numerical integration technique based on
the constant-average-acceleration method.

Aeroelastic Configuration Adaptive Grids

One of the major difficulties in using the Euler/
Navier-Stokes equations for computational aerodynam-
ics lies in the area of grid generation. For steady flows,



advanced techniques such as blocked zonal grids' are
currently being used. However, grid-generation tech-
niques for aeroelastic calculations which involve mov-
ing components, are still in the early stages of develop-
ment. In Ref. 7, aeroelastic configuration adaptive dy-
namic grids were successfully used for computing time-
accurate aeroelastic responses of wings using a C-H grid
topology.

In this work, an H-O type grid topology is used
(H in the streamwise and O in the spanwise directions)
for wing-body configuration. This type of grid topology
is more suitable for a general wing-body configurations.
It gives better surface grid resolution on the body when
compared to the C-H grid topology used in Ref. 7. The
base surface grid is generated using the S3D code.?!
From the surface grid, the field grid is generated us-
ing an analytical approach. In this approach, grid lines
in the radial direction away from the surface are gen-
erated line by line in the planes normal to the x-axis.
The new grid lines are generated in such a way that
the radial lines are approximately normal to the previ-
ous line. For example, the first line from the surface is
generated such that the radial lines are approximately
normal to the surface. In this process the spacing be-
tween lines are exponentially increased away from the
surface. This base grid is used for computing pressures
on the rigid configuration. For aeroelastic analysis, the
displacements at structural nodes are computed first
using Eq. (3). These displacements are then mapped
onto the surface grid points by the interface approach
discussed above. Finally the field grid is analytically
generated starting from the new deformed surface.

Results
Computations on Wing Configuration

To demonstrate aeroelastic computations, a typ-
ical fighter type wing of aspect ratio three and taper
ratio 1/7 with the NACA 65A006 airfoil section was
selected. The sweep angle at the quarter chord line
(Acyq) is 45 deg. The transonic flutter characteristics
of this wing are available from wind tunnel tests>? for
various flow parameters.

In this computation, the flow field is discretized
using a C-1I grid topology of size 151 x 30 x 35. The
20 DOF ANS4 shell/plate element!® was used for the
FE modeling of the wing structure. The wing is mod-
eled as a flat plate. Considering the wing structure
used in the experiment, variation of mass density is al-
lowed along both chordwise and spanwise directions.
However, the thickness of the finite element model is
kept constant. This is based on assumptions that the
stifiness of the wing is dominated by the aluminum-

alloy insert and the mass distribution of the wing is
significantly changed due to plastic foams covering the
aluminum-alloy insert. This finite-element plate model
predicts natural vibration modes of the wing that com-
pare well with the experiment. The first three modal
frequencies computed by using the finite element model
are 21.8, 78.1, and 126 Hz and corresponding values
measured in the experiment are 21.6, 79.7, and 121 Hz,
respectively.

This is the first time a shell/plate FE model
has been directly coupled with the Euler/Navier-Stokes
equations. As a result, the validity of the coupling ap-
proach will be verified by comparing the FE results with
those from the previously well-validated modal analy-
sis. In this calculation, the FE computations were made
using 36 plate elements and the modal computations
were made using the first six modes of the wing. Six
elements each were assigned along the chordwise and
spanwise directions, respectively. Figure 3 shows the
identical displacement responses of the leading edge at
the tip obtained by both FE and modal analyses for
My, = 0.854, p = 0.70 psi and a = 1.0 deg. Dy-
namic aeroelastic computations were made setting a
high value for the damping coefficient so that the final
results would approach to steady state conditions. The
VS approach was used to calculate nodal forces for both
FE and modal analysis. Results in Fig. 3 demonstrate
the validity of the coupling of plate elements with the
Euler/Navier-Stokes equations. The FE approach gives
displacements about 0.1 % higher than the modal ap-
proach. Such results are expected since the modal ap-
proach yields a structure that is stiffer than the actual
one, whereas the FE approach represents the actual
structural stiffness.

The accuracy of the results can depend on the
type of interfaces between fluids and structures. In
the following calculations the simple lumped load and
the more accurate virtual surface interfaces are com-
pared to each other and the results are shown in Fig. 4.
The wing structure was modeled using 100 ANS4 el-
ements. Ten elements each were assigned along the
chordwise and spanwise directions, respectively. For a
given dynamic pressure of 1.0 psi and initial accelera-
tion of 1.0 x 10% in'ches/sec, the time history of total
lift on the wing is presented in Fig. 4. The total lift ob-
tained by integrating the pressure coefficients at CFD
grid points is also shown in the figure. The total lift us-
ing CFD grid points is more accurate than those from
VS and LL methods. Both VS and LL approaches ob-
tain the total lift by summing the forces at the FE nodal
points, which was transformed from the pressure coef-
ficients through interfaces. ‘The VS approach transfers
pressure data more accurately than the LL approach.
The LL approach shows that the response around peaks



deviates from the CFD solution. For this case the LL
approach shows favorable agreement with the VS ap-
proach.

Aeroelastic responses were also computed for var-
ious dynamic pressures in order to predict flutter dy-
namic pressure and compared with the experment.??
Figure 5 shows the stable, near neutrally stable, and
unstable responses of wing tip displacements at the
leading edge for dynamic pressures of 0.85, 0.80, and
0.75 psi for Mo, = 0.854. The Navier-Stokes equations
and the virtual surface interface are used to obtain the
FE nodal force vector. From the responses shown in
Fig. 5, the interpolated dynamic pressure for the neu-
trally stable condition is 0.79 psi. It is noted that the
experimental dynamic pressure measured at the neu-
trally stable condition was 0.91 psi. Considering the
lack of experimental pressure data on the wing and the
error involved in modeling the wing as a plate with con-
stant thickness, the result is a favorable prediction of
the flutter dynamic pressure.

ENSAEROQO has capability of modeling both the
Euler and Navier-Stokes equations. It is of interest to
know the effect of the type of flow equations on aeroe-
lastic responses. Such studies will lead t6 the right
choice of methods. For this purpose computations are
made at a high-transonic Mach number of 0.970. Fig-
ure 6 shows the comparison between the steady pres-
sures obtained from Euler and Navier-Stokes solutions.
Since the Mach number is high-transonic, viscous ef-
fects are dominant. As a result there are significant dif-
ferences between the Euler and Navier-Stokes solutions
near and behind the shockwave. The Navier-Stokes so-
lutions predict lower negative pressures near the shock
waves. The viscous effects on the integrated total lift
is shown in Fig. 7. The influence of viscous effects on
the aeroelastic responses are shown in Fig. 8. In this
case, aeroelastic computations are made when the wing
is pitching up to one degree angle of attack (AoA) at a
pitch rate of 0.01. Because of the reduced aerodynamic
loads, the tip response from the Navier-Stokes solution
is lower than that from the Euler solution.

Computations on Wing-Bodv Configuration

As stated in the introduction one of the main
reasons for modeling structures directly by finite ele-
ments instead of modes is to extend the fluid/structure
interaction computational capability to more complex
structures. The procedures demonstrated in the pre-
vious section are not limited to simple wing configu-
rations. In this scction, results are demonstrated for
general wing-body configurations where it is not trivial
to pre-select modes.

The selected wing-body configuration shown in
Fig. 9 was modeled using a H-O type grid topology us-
ing a grid size of 99 x 79 x 30. Earlier work indicated
that this grid was adequate for transonic flow compu-
tations at moderate angles of attack.??

In order to study the effect of structural flexibil-
ity on the flow, aeroelastic computations were made for
the above wing-body configuration. Both the body and
wing are allowed to be flexible. The wing is modeled
using 30 plate elements and the body is modeled using
90 shell elements. The FE layout is shown in Fig. 10.
Symmetric boundary conditions are applied at the top
and bottom body symmetry lines. All DOF are con-
strained along the wing-body junction. This results in
a total of 646 DOF for structures. This FE capability
is incorporated in ENSAERO Version 3.1 in a modular
way. The skyline data structure is used for the global
stiffness and mass matrices.

The structural properties required for the analysis
results in frequencies that represent a typical transport
type wing-body. Figure 11 shows the mode shapes of
the first four modes. For the current structural prop-
erty assumptions, the first four modes are dominated
by wing modes. The present 148-node FE model of the
wing-body configuration can compute up to 646 modes.

As stated earlier, an analytical moving grid ca-
pability is implemented in ENSAERO based on H-O
topology. The grid generated by the code when both
the wing and the body are deformed is shown in Fig. 12.
It is noted that the singular planes upstream of the
leading edge and downstream of the trailing edge are
deformed according to the deformed shape of the con-
figuration.

Forced Motion of Flexible Configuration

In order to verify the coupling of the surface move-
ment with the grid movement, computations are made
by forcing the motion. Computations are made at M,
=0.90, o = 0.0 deg and a reduced frequency k(= we/U)
equal to 0.50, allowing the configuration to deform in
the first torsional mode of the wing. The wing un-
dergoes a torsional mode such that the maximum tor-
sional angle at the tip is 1 deg. The unsteady com-
putations are started from the converged steady state
solution and 2400 time steps per cycle of oscillation
are required. This corresponds to a nondimensional
computational time step size Ar = 0.0058. Figure 13
shows the wing sectional lifts for various sections. As
expected, the magnitude of the sectional lift increases
towards the tip. A periodic lift response is obtained
within two cycles of oscillations.



Free Motion on Aeroelastic Configuration

In this section, aeroelastic computations are made
on the flexible wing-body configuration by directly cou-
pling the pressures computed solving the Navier-Stokes
equations with the FE structural equations. The LL
interface is used for this computation. The structural
properties of the wing-body configuration are selected
to represent a typical aircraft. It is assumed that the
wing-root is 256 inches long and aeroelastic computa-
tions are made at a dynamic pressure of 1.0 psi.

Demonstration computations are made for a static
aeroelastic case when the configuration is ramping up
from 0 to 5 deg AoA at M, = 0.90. The configuration
is pitched up about the axis perpendicular to the wall
and located at the leading edge of the wing-root. Start-
ing fromn the steady state solution the configuration is
pitched up at a rate of 0.0012 deg per time step. This
pitch rate was adequate to obtain a stable and accu-
rate solution. At every time step the static equilibrium
position is obtained by solving the static aeroelastic
equations. At the end of each time step a new field
grid is generated that conforms to the deformed sur-
face. Figure 14 shows the response of the leading edge
of the tip section.

Computational Resources

The current Navier-Stokes version of ENSAERO
runs at 380 MFLOPS on the CRAY C90 at Ames Re-
search Center. To run a rigid case, the code requires
33 words of central memory per grid point and 7 mi-
croseconds of CPU time per time step per grid point.
For the flexible case thete is an additional memory re-
quirement of 1000 words per node and CPU time of
25 microseconds per time step per node. A typical dy-
namic aeroelastic response such as that shown in Fig. 14
requires about 4 CPU hours and 8 million words of cen-
tral memory.

Discussions and Conclusions

A domain-decomposition computational proce-
dure is developed to compute aeroelastic responses us-
ing the Navier-Stokes flow solutions directly coupled
with finite-element structural equations. The proce-
dure is demonstrated using plate/shell finite elements.
Aeroelastic computations are made for a typical wing-
body configuration. Based on this work the following
conclusions can be made.

1. It is feasible to directly corple the finite-difference
flow equations and finite-element structural equa-
tions to obtain accurate results,; though each dis-
cipline is solved in a separate computational do-
main. This domain decomposition approach takes
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advantage of efficient methods developed for each
individual discipline.

2. The use of finite-element structures in place of
modal structures produces more accurate and de-
tailed results.

3. There is an increase in the requirement of compu-
tational time (about 8 % ) and memory for FE
structures compared to the modal structures (for
modal structures memory requirement is negligi-
ble).

4. The present domain decomposition approach wiil
be extended for non-linear structures.

5. This approach is suitable for parallel computers.
Work is in progress at the Ames Research Center
to implement ENSAERO on Intel iPSC/860 par-
allel computer under NASA’s High Performance
Computing and Communications (HPCC) Pro-
gram.
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Fig. 2 Fluid-structure interfacing using virtual surface
approach.
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Fig. 6 Comparison of transonic steady pressures from
Euler and Navier-stokes solutions.
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Fig. 7 Comparisoﬁ of total lift from Euler and Navier-
stokes solutions.

|
o
H

Displacements (inches)

1 1 1 1 1 1 i ]
0 .01 02 03 004 05 .06 .07 .8
Time (sec)

)
[=4
(-]

Fig. 5 Aeroelastic responses using a finite element
model for structures. N
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Fig. 11 First four natural modes of the wing-body.

configuration.

Fig. 9 Typical wing-body configuration with portions

of surface and field physical grids.
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Fig. 12 Deformed surface and field grids.
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Fig. 10 Finite-
figuration.




Semispan

25% -
ceee=e=50% M_, =0.90
O memim. 75% Re = 1.52 x 10° 4
M, = 0.90
Re = 1.52 x 108
23
E (=]
8 S
;Q [} o
3 g2+ ) emmmmmmesee- - 5
o S a
= 4
- a1 Displacement
------ Ramp angle
-.04 ' ' ' 4000 pren 8000
0 10 20 30 0 2000

Time (radians) Time step

Fig. 13 Comparison of sectional lift responses for wing  Fig. 14 Static aeroelastic displacements of wing-tip
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