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Abstract

In the present paper, we introduce a novel computa-
tional method for aeroelastic stability and structural
response calculations. The entire fluid-structure system is
treated as one continuum dynamics problem, by using a
mixed Eulerian-Lagrangian formulation and switching
from an Eulerian to a Lagrangian description at the fluid-
structure boundary. This method has two important
advantages. First, it effectively eliminates the phase
integration errors associated with previous methods, where
the fluid and the structure are integrated sequentially by
different schemes. Second, it provides a systematic
method for coupling finite element structural codes to
finite volume fluid dynamics codes, in a manner that leads
to highly vectorizable overall codes. The method is applied
to transonic flutter calculations for wings and cascades,
using simple finite element models. These results suggest
that the method is capable of reproducing the energy
exchange between the fluid and the structure with much
less error that existing methods.

Nomenclature

a = speed of sound; also location of elastic axis
c = 2b = blade chord

e = total energy

f = body force

h = bending deflection, positive down

k = wb/U= reduced frequency

K, = typical section bending stiffness

Kq = typical section torsional stiffness

m  =mass per unit span of blade

M =Mach number

p = pressure

q; = generalized coordinates

r = position vector

ro = nondimensional radius of gyration about EA
t = time

T = stress vector

T = kinetic energy

xo = nondimensional CG-EA offset

u,v = velocities in x,y directions
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<

= mesh velocity vector
=UL/bwgy
= strain energy
- = freestream velocity at upstream infinity
= angle of attack; also torsional deflection
=N1-M?
= stagger angle; also node rotation
= m/npb?= mass ratio
= air density
= interblade phase angle
= circular frequency, rad/s
» = uncoupled frequency in bending
« = uncoupled frequency in torsion
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Superscripts and Subscripts

s = structure
f =fluid
oo =conditions at upstrcam infinity

1.0 Introduction

Recent advances in supercomputer technology and
computational methods are revolutionizing the ficlds of
fluid and solid mechanics. Problems that only a few years
ago were considered beyond the scope of theoretical cal-
culations are now yielding to supercomputer simulations.
The increased use of supercomputers to simulate the
behavior of physical systems has also encouraged a re-
examination of the existing classical approaches to certain
problems. Indeed, shortcomings in computational pro-
cedures are often amplified in a parallel processing
environment, because they typically prevent the generation
of highly vectorized codes.

The difficulty in formulating efficient computational
schemes for solving fluid-structure interaction problems
arises from basic differences in the method of description
and numerical schemes presenty favored in fluid dynam-
ics and in structural dynamics. In fluid dynamics, finite
difference discretization procedures based on an Eulerian
(spatial) description are firmly established, and it appcars
unlikely that finite element methods will displace finite
difference methods in the near future. In structural
dynamics, on the other hand, finite element methods based
on a Lagrangian (material) description represent the state-
of-the-art, and finite difference methods are considercd
archaic. Thus, when considering coupled fluid-structure
(acroelastic) systems, one is faced with interfacing
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inherently incompatible numerical schemes, based on fun-
damentally different methods of description.

Given these difficulties, it is not surprising that exist-
ing computational techniques for fluid-structure interaction
problems follow the “classical approach”, where the fluid
and the structure are modeled separately and then coupled
by specifying the kinematic boundary condition(s) at the
fluid-structure boundary, e.g., Refs. 1-7. The kinetic
(natural) boundary conditions provide forcing terms in the
governing equations of motion for the structure. Since the
boundary between the fluid and the structure still requires
a Lagrangian method of description, the classical approach
does not resolve all of the aforementioned problems. In
fact, in order to impose the kinematic boundary conditions
at time ¢, the location of the fluid-structure boundary must
first be determined, and this requires the solution of the
entire system of equations for the structure. But in order
1o solve the equations of motion for the structure, one also
necds to know the generalized forces transmitted from the
fluid to the structure (i.e., the kinetic boundary conditions),
which are not available until the equations of motion for
the fluid have been solved, and so on. Clearly, it is neces-
sary to adopt some form of approximation procedure in
this approach.

In the present paper, we take a new approach to the
problem. Instcad of adopting the classical computational
strategy, we formulate the governing equations for both
the fluid and the structure in integral conservation law
form based on the same mixed Eulerian-Lagrangian
description. At the fluid-structure boundary, we switch
from an Eulerian (actually, a mixed Eulerian-Lagrangian)
1o a Lagrangian description, and from cartesian to general-
ized coordinates. The entire fluid-structure system is thus
treated as one continuum dynamics problem, while still
allowing for different discretizations in the two domains
(if so desired). The same numerical integration algorithm
can then be used throughout all elements in the field
meshes covering the fluid-structure system.

In previous applications of mixed Eulerian-
Lagrangian formulations, e.g. Refs. 8-9, the idea of a mov-
ing mesh was used either 1o simplify the treatment of the
boundary nodes (since the boundary is Lagrangian), or to
provide rezoning capability of the fluid mesh. A pure
Lagrangian mesh is generally unsuited for the fluid
domain, since mesh entanglement or excessive mesh dis-
tortion occurs if the fluid motion is sufficiently large.
Because the governing equations resemble the Euler equa-
tions, they have also been referred to as Quasi-Eulerian,
Arbitrary Lagrangian-Eulerian, or Referential. In computa-
tional aerodynamics, the moving mesh idea has found
application in calculations of flows over wings and
bodies '®!!. However, in all of these earlier studies, the
fluid-structure coupling was introduced in the classical
manner.

The main objective of this paper is to demonstrate
the technical feasibility of the proposed approach. First,
we demonstrate how the integral form of the governing
equations, applied to either a fluid or a solid element, can
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be used to couple finite difference Euler CFD codes o
general purpose finite element codes for the structure.
Second, we illustrate how the proposed computational
strategy can be implemented to carry out aeroclastic calcu-
lations, and present a number of representative results.

Finally, we emphasize that the method presented in
this paper applies to a wide class of fluid-structure prob-
lems in aeronautical, mechanical, civil, and marinc
engineering. Here, we focus on aeroelastic problems
encountered in aircraft wings, helicopter rotors, and tur-
bomachinery rotors.

2.0 Mixed Eulerian-Lagrangian Formulation

2.2 Governing Equations

The principles of classical mechanics can be stated
in terms of three conservation laws: conservation of mass,
conservation of momentum, and conservation of energy. In
the present formulation, the last two are actually "balance
laws™ that specify how momentum and cnergy change
under the influence of external forces.

Consider a finite region of a continuum, represented
by a finite volume element (cell) of instantancous volume
V, as illustrated in Fig. 1. Let the instantancous position ol
the surface of this cell be given by the equation

S(xy.z1) = 0 N

That is, a point P with coordinates (x,y,z) at time ¢ that
satisfy Eq. (2.1) lies on the surface §. The motion of the
finite volume cell will be specified independently from the
motion of the continuum; hence the cell does not constitutc
a material volume but rather an arbitrarily moving refer-
ence frame, The motion of the cell is specified by the velo-
city U of the boundary §:

U=R=xi+yj+zk 2.2
where R(x,y,2,t) is the position vector of a point P (x,y,z,!)
on the surface.

The conservation laws for mass, linear momentum,
angular momentum, and energy for the volume V of the
continuum enclosed by § can be stated in integral form as
follows:

oavefp@-vynas=0 e
ary s

3)

aijpudv+,fpu (u—U)-ndS=prdV+JTdS 2.4)
Ly s v s



—a—jprxudV+jprxu(u—U)~ndS= 2.5)
aty S

[prxfav+[exTads
\'4 N

—aa-‘-jpedV+jpe(u—U)-ndS= ' 26)
v N

[pu-tav+[u-Tds
v S

The scalar variables p, p, and e are the density, pressure,
and the specific total energy, respectively. The vectors
u, T, and f are the velocity of the continuum, the stress
vector on the surface, and the body force per unit mass,
respectively. Here, r denotes the position vector from an
arbirary fixed point in the inertial reference system
(x,y.2), and n denotes the outward unit normal to S.

The physical interpretation of Eqs. (2.3-6) is as fol-
lows. The first term on the left-hand side in each equation
represents the change of the material quantity (mass,
momentum, or energy) inside the cell, while the second
term on the left-hand side represents the flux through the
boundary S. The terms on the right-hand side represent
source terms for momentum and energy. If we set U=0,
we revert back to an Eulerian description, When U = u, we
recover the Lagrangian form of the equations of motion.
Finally, when U=u, we obtain the so-called mixed
Eulerian-Lagrangian formulation. Note that from a
mathematical standpoint, the equations resemble the Euler
equations because of the presence of convective fluxes.
Also note carefully that two reference frames are used in
this formulation: an inertial system relative to which the
velocities u and U and the position vectors are measured,
and an intermediate frame defined by the finite volume
cells relative to which the left-hand terms in Egs. (2.3-6)
are evaluated.

It is convenient to resolve the stress vector into nor-
mal and tangential components

T=Tan+T}s=G,,N+ CpS$ Q.7

where o,, and o, are the normal and shear stresses at the
surface. In the cartesian system, the components of the
stress vector can be written in terms of the (cartesian)
stress tensor 0;; and the unit normal as

T? =0;;n; (2.8)

For an inviscid fluid, we set

T,=0 ; Ty=-pn 2.9)

At this point, we specialize the equations to the
two-dimensional case, which is implemented in the present
paper. Using Eqgs. (2.3-6), and observing that the unit vec-

tors normal and tangential to § can be written as

__dl'_____dx' )

n= dsl j (2.10)
dr. dy.

= —_— B

S dsts" @1

we obtain the following set of matrix equations:

9 [Waxdy+ | Fdy-Gary=0  @.12)
arg a

where Q is an element area with (moving) boundaries d$2
and

p
W =4 PU
pv

pe

(2.13a)

pu-U)
pu (u —U) — Cpn
pv (u —U) — Cps
pe(u-U) -G u -0,V

F= (2.13b)

p(v-V)

pu(v-V)+ o,
pv (V_V) — O
pe(v~V) + G u ~ G,V

G = (2.13¢)

and u,v and U,V are the cartesian components of u and U,
respectively. These equations can be applied to each finite
volume cell of the continuum. For a cell occupied by an
inviscid fluid, we set 6,, = ~p, 6,, =0, and use the perfect
gas relation to eliminate p through the equation
1

p=py-Dle - -2—u-u] (2.14)
For a solid cell, such an elimination is not generally possi-
ble, because the internal energy depends on all six com-
ponents of the stress tensor:

t'..
pe=U0+TO='ro,-jdeij + %p( u?+v?) (219
0

where Uq and T, are the strain energy density and the
kinetic energy per unit volume, respectively.

It should be noted that the conservation law for
angular momentum leads to the conclusion that the stress
tensor is symmetric, but does not contribute additional dif-
ferendal equations of motion in the small; that is, when




applied to an infinitesimal volume, However, when a finite
~ volume cell is considered, the conservation law for angular
momentum in effect defines the motion of the material par-
ticles about the center of mass of the volume, whereas the
conservation law for linear momentum defines the motion

of the center of mass of the cell. For example, if we apply”

Egs. (2.3-6) to a rigid-body cell, we expect to obtain six
cquations of motion: three governing the motion of the
center of mass of the cell, and three govemning the rota-
tional motion of the body about the center of mass.

If one applies Eq. (2.12) to an infinitesimal volume
and uses the divergence theorem, one obtains the differen-
tial equations of motion in cartesian coordinates. If
applied to a "finite volume", Eq. (2.12) provides a con-
venient framework for obtaining space-discretized equa-
tions for the fluid domain. For the solid domain, one
obtains Newton's equations in cartesian coordinates,
which are scldom a convenient framework for studying
structural dynamics. It is typically more efficient to use
generalized coordinates and Lagrange’s equations or
Hamilton's principle to obtain the discretized equations of
motion for a solid element (cell). However, the conserva-
tion laws expressed in integral form by Eq. (2.12) are still
uscd as the basis for coupling fluid and solid cells.

2.3 Boundary Conditions

The kinematic boundary condition of tangent flow
can be stated as

-Q£=O,or

0B
—_ .V =
. uvB =0

5 (2.16)

where B (x,y,z,1)=0 defines the instantaneous locus of the
fluid-structure boundary. In the classical formulation, the
kinematic boundary conditions are not enforced explicitly;
that is, one does not enforce local force equilibrium
beitween a fluid and a solid element at the boundary B, nor

does one equate the energy flow or power at the common
boundary.

In the present study, we enforce both kinematic and
kinctic boundary conditions at the fluid-structure boun-
dary. Since the mesh is attached to the structure and moves
with it, we switch from an Eulerian to a Lagrangian formu-
lation at the boundary. On the structural cell side, the velo-
city of the cell boundary coincides with the material velo-
city,

w=U 2.17)

On the fluid cell side, the fluid velocity normal to the
boundary is equal to the velocity of the solid boundary
normal to itself,

vn=uv'n=Un (2.18)

It is obvious from Egs. (2.3-6) that enforcing Eq. (2.18)
eliminates all convective fluxes across the edge of the solid
element aligned with the boundary. The same must neces-
sarily hold for the adjacent fluid element, because
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[ W, - Uas
N

[w@-Uynds = (2.19)
Q

obviously vanishes when the kinematic boundary condi-
tion, Eq. (2.18), is imposed. The reverse is also true; if the
solution vector W is nonzero, then the vanishing of the
convective fluxes through the boundary edge implics
tangent flow , uf = U,. Thus the kinematic boundary con-
dition can be imposed by zeroing out the convective fluxcs
at the fluid-structure boundary, leaving only the pressure
terms in F and G.

In the far field, the boundary conditions must allow
outgoing disturbances to pass with minimum reflection,
and must also correctly describe the global behavior of the
flow-field. At the upstream and downstream far-field boun-
daries we use nonreflecting boundary conditions of the
type formulated by Hedstrom ‘2. In the cascade calcula-
tions, phase-lagged periodic boundary conditions are
applied at the boundaries of the reference channel.

3.0 Finite Volume - Finite Element Discretizations

3.1 Finite Volume Method

A practical and widely used discretization procedure
for the Euler equations is the finite volume scheme intro-
duced by Jameson, Schmidt, and Turkel '3, This and other
finite volume approximations based on the integral form of
the equations of motion permit us to construct the solution
in the physical plane, much in the same manner as is done
in the finite element method. The method for constructing
the discretized equations is different, however, and
reduces essentially to central differencing in the space
variables. The method is second-order accuraie on a
smooth mesh,

In this study, the computational domain is divided
into quadrilateral cells, Fig. 1. If we apply the integral
form of the conservation laws, Eqs. (2.12), to each fluid
cell, we obtain a system of coupled ordinary differential
equations of the form

d .
E(SUW.’,‘) +Q;-D;=0 (2.20)

where §;; is the cell area, W;; is the vector of unknowns
for cell (i,)), and Q;; is the net flux out of the cells, contri-
buted by the integral over 0Q in Eq. (2.12) and calculated
asin Ref. 13. D;; is a dissipative operator added to damp
out numerical oscillations and to prevent decoupling of
even and odd cells. The dissipative fluxes are constructed
according to the idea of "adaptive dissipation" developed
by Jameson and Baker ', Essentially, D;; is a carcful
blend of second and fourth differences in the flow vari-
ables, or first and third order terms compared to the con-
vective fluxes Q;; . The first-order terms are only needed in
the vicinity of shock waves, and are turned off in the
smooth regions of flow, thus preserving the second-order
accuracy of the scheme over most of the flow-field.




The acroelastic code is based on a cell-centered
scheme for the fluid domain, where the flow variables are
assumed constant over each cell and are stored at the cell
centers. When calculating fluxes, the flow variables at a
cell cdge are taken as the average of the values in the cells
on either side of the edge. Thus, although no formal inter-
polation functions arc used as in the finite element pro-
cedure, the variables are interpolated in an approximately
linear manner between cell centers.

If Eq. (2.12) is applied to each solid cell, a similar
set of discretized equations would be obtained. Since the
mesh is Lagrangian in the solid domain, and it is rcason-
able to treat the solid as incompressible in comparison to
the fluid, the mass conservation equation can be dropped.
The momentum equations reduce to Newton's second law
for a particle:

L ($pu)y ~ | 1i(Gp+0.)dy - j(G,m=0,)dx1 =0 (221)
dt an

Unless we use a very fine mesh, the particle approximation
is unacceptable, since it only defines the motion of the
center of mass of the cell. We can augment Eq. (2.21) with
the balance law for angular momentum, Eq. (2.5), and
obtain a system that would be exact for a rigid element,
and would model the rigid-body motion correctly for an
clastic element. But much better tools exist, based on
finitc clements and Hamilton’s principle.

3.2 Finite Element Method

For the solid clemenlts, it is obviously advantageous
to usc a discretization procedure that is consistent with
modern finite element theory. In particular, it is important
that the finite element modcling of the structure be rcla-
tively gencral and not too dependent on the fluid modcling.
This would allow direct use of existing finite element pro-
grams with their extensive finite element libraries, pre- and
post-processors, and graphics capabilities. For these rea-
sons, it is convenient to use generalized coordinates
instead of the cartesian coordinates used in deriving the
conscrvation laws, Egs. (2.3-6). In addition, the formula-
tion of the space-discretized equations is placed on a
nigorous foundation, and Lagrange’s cquations or
Hamilton's principle can be used to derive the equations of
motion in the new coordinates. If the same underlying
assumptions are made, then the conscrvation laws
expressed by Eq. (2.12) will be satisficd for each element,
and the interpolation errors inside each element are also
minimized by the variational principle.

From a kinematic standpoint, the "closest" finite ele-
ment to the cell- centered finite volume cell would be an
element based on linear shape functions, that is, a
constant-strain element. The simplest triangular element is
of this type, but for a rectangular element the basic ele-
ment is based on bilinear shape functions. Two or more
constant-strain triangles can be joined to form a quadrila-
teral element that is "patch-wise” linear in the displace-
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ments, as illustrated in Fig. 1b. In cither case, if the cle-
ments arc close to rectangular in shape and the mesh s
smooth, the bilinear approximations in the FV and IE cells
would be kinematically compatible, or as closely conform-
ing as possible. Because two different approximation
schemes are involved, it is not clear how the conformity
requirement should be interpreted at the boundary between
a solid and a fluid cell.

Instead of interpreting compatibility in purely
kinematic terms, we propose that the concept be inter-
preted in terms of the basic conservation laws, and require
that mass, momentum, and energy be conserved (or bal-
anced) at the fluid- structure boundary, to within the
discretization error of the overall scheme. If a variational
principle exists for the coupled fluid-structure problem,
this should lead to the same compatibility requirements as
would be dictated by the variational principle. However,
these compatibility conditions can be applied to problems
where no variational principles arc know.

In most cases of practical interest, different mesh
densitics would be called for in the fluid and sohd
domains. For maximum modecling flexibility, hath the flud
and the solid element should be allowed interior nodes
with respect to the other, as shown in Fig. 2. For example,
in modeling thin compressor blades with plate clements, 1t
would be reasonable to usc a much coarser mesh for the
structure, as suggested by Fig. 2a, especially in the leading
and trailing edge regions where flow gradicnis may be
high. But even in regions of smooth flow, more of
constant-value FV cells would be required to approximate
the cubic deflection and velocity ficlds of the FE plate ele-
ments at the fluid-structure boundary, This would also be
the case in the modeling of typical aircraft wing structures,
where beam and plate elements would be used extensively,
as suggested in Fig. 3. We are then faced with the ques-
tion of interpolating or transferring physical and kinematic
variables between two different mesh densities at the
fluid-structure boundary. Incidentally, this situation also
arises in the implementation of multigrid solution algo-
rithms for the fluid domain.

Consider a beam or plate clement of unit width, as
used in the present study; see Fig. 3b. The transverse dis-
placement w(E,t) inside a typical clement is written in
terms of the nodal coordinates g, as follows:

(2.22)

4
w(E,0)= Y N(&)au(t)
k=1

where the N,’s are cubic shape or interpolation functions.
The generalized element coordinates ¢, are calculated
from the mesh coordinates x;; and y,; for the four mesh
nodes defining the structural cell, using the kinematic con-
straint appropriate for this element. Becausc we are con-
sidering flexural deformations only, only four of the cight
coordinates are linearly independent.

If a Galerkin discretization of the conscrvation {aws
or Largange’s equations are applied to each finite clemen,
discretized equations of a form similar to Egs. (2.20) arc
obtained in the generalized clement coordinates {g}". In



the present paper, we use a nodal scheme for the structure,
and write the discretized equations in terms of the nodal
coordinates (q};;:

L mlla))+ 10515~ 107)y=0 223

Here, the i,j subscripts refer to the (i,7) node, while ele-
ments are labeled with superscripts. For the wing structure
in Fig. 3, the structural elements are at j=1, and we can
drop the j-subscript and write

(9} ={w: 6) (2.24)

where w; and 6; are the transverse and rotational displace-
ments at node (i, 1), Fig. 3b. Here, [m];; is the "nodal"
mass matrix,

(m)i=(mls+[mlii’ (2.25)
in terms of the lumped element mass matrices for elements
i and i+1, if the ith element matrix is partitioned into four
2x2 submatrices in the usual way. The generalized fluid
pressure forces associated with the (i,j) element, {QF}¥,
are calculated by equating the corresponding virtual work
expressions in the cartesian and the generalized coordi-
nates. In terms of the fluid pressure on the lower and
upper surface of the element, p; and p,,,

L
0Ll = [ N®p®) - pu®1dE (226)
0
In the nodal scheme, we set
ofi =i + off (2.27a)
Q%5 =050 4+ ofi (2.27b)

The elastic forces {QF);; forces are calculated in a
similar manner, using the partitioned element stiffness
matrices at the local element level:

{QF ) = (T oo+ k1D g )
+[k 151 (q)ica+ k)3 ()i

(2.28)

That is, we do not need to assemble the structure and form
global stiffness (or mass) matrices; only local assembly at
the element (node) level is required, precisely as in the
fluid domain. Another advantage arises from the fact that
the solid mesh is Lagrangian and moves with the structure;
this automatically accounts for geometrically nonlinear
terms and the local linear stiffness matrices for the ele-
ments may be used, for sufficiently small elements.

In the present nodal scheme, Egs. (2.23) have two
degrees of freedom per node. However, since we need to
know the actual nodal displacement vectors in order to
move the mesh coordinates x;;,y;; in a Lagrangian fashion,
we also need to perform another integration to get from
{q} to {gq}. This is all done simultaneously in the five-
stage Runge-Kutta scheme, by writing the equations in
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state-variable form by appending at each node the matrix
identity
d = (g 2.29
'd—t{q]ij"{q}ij (2.29)

Finally, the energy equation for the structure is
discretized and integrated as follows

L Eu)=Eu=S@T (07 @30

where
Elal = E(T, + U,) (231)
T;+ U= () Tm1i1a)i + 5 (@) Tk )i () @3D)

Note the obvious similarities between the structural equa-
tions, Eqs. (2.23), and the FV fluid equations, Egs. (2.20).
This allows us to use the same five-stage Runge-Kutta
integration scheme for the entire fluid-structure domain
and to treat the individual cells (i,j) the same, irrespective
of whether they are solid or fluid cells. Of course, the vari-
ables calculated for solid and fluid cells differ, on account
of our choice of generalized coordinates, but this is of no
real concemn to the computer.

4.0 Results and Discussion

4.1 Typical Section in Transonic Flow

A typical section isolated wing model has been
implemented as indicated in Fig. 3. Here, a section of unit
width in the spanwise direction is considered, in the spirit
of the original ideas of Theodorsen and Garrick, but with
two important differences. First, the section is allowed to
have camber bending, and this "chordwise" flexibility is
modeled by using plate-type finite elements of unit width;
see Fig. 3b. Each element is allowed a hollow core, by
specifying the effective structural skin thickness z, for each
element. Second, since the method of calculation is at the
element level, an attempt is made to model the distributed
restraining stiffness from the remainder of the wing on
each element, by introducing bending and torsion springs
at the element nodes.

The distributed bending and torsion stiffness
coefficients are scaled proportional to the cube of the ele-
ment thickness. In addition, the structural stiffness of the
front and rear spars are superimposed, with numerical
values tailored so as to place the elastic axis in the desired
location, and to provide the desired values for the bending
and torsion natural frequencies, ®, and w,. The chord-
wise mass distribution is similarly tailored to get the sec-
tional center of gravity in the desired location, by adding
two tuning masses at the spar locations. Using this pro-
cedure, it is possible to construct our strip model for the
wing structure such that, if it were constrained to two
degrees of freedom (h and o) by letting the chordwise
stiffness approach infinity, it precisely matches a giving




typical section model in all dynamical and structural pro-
perties. This careful construction of our model permits us
1o make direct comparisons between previous classical
flutter calculations and calculations based on the present
method, and also to assess the importance of camber bend-
ing in transonic wing flutter. It is recognized, of course,
that in the case of low-aspect-ratio lifting surfaces, the
present model cannot adequately account for the
transverse (spanwise) effect and two-dimensional plate-
type deformations must be modeled.

The NACA 64A006 typical section studied by Ash-
ley '3 and also by Kousen and Bendiksen **¢ was used as a
starting point. In the notation used here, it has the follow-
ing nondimensional parameters:

a=-02
X =02 (e = 0)
ry =029 (P} = 0.25)

04/ 0 = 03434 (0, /wg =V0.1)

To avoid confusion, the corresponding equivalent parame-
ter values in Ashley’s notation have been indicated in
parcenthesis. Table 4.1 summarizes the various acroelastic
cases calculated. Except as noted, we have used S finite
elements in the chordwise direction; 3 elastic elements and
two small rigid-body elements at the leading and trailing
cdges. An all aluminum structure was assumed, with ,/¢ =
0.05, except as noted.

Table 4.1 Aeroelastic Cases: NACA 64A006 Wing

No. | M U | u | Stability Behavior

| 0.87 | 2.00 | 10 | Limitcycle

2 087 | 2.25 | 10 | Limitcycle

3 092 | 2.02 | 10 | Stable

4 092 § 2.20 | 10 | Limitcycle

5 092 | 2.05 | 10 | Limitcycle

6 092 | 2.50 | 50 | Stable

7 092 | 3.00 | 50 | Stable

8 092 | 5.00 | 50 | Limitcycle

9 0.87 | 5.00 | 50 | Explosive flutter
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Figure 4 shows comparisons of the short- and long-
term flutter behavior of the NACA 64A006 wing model
for Case No. 1, as predicted using the present method of
calculation and compared with predictions based on the
classical approach, as implemented in Refs. 4-6. To pro-
vide meaningful comparisons, the fluid domain was
modeled and solved in exactly the same manner as in Refs.
4-6, using the same mesh and the the same five-siage
Runge-Kutta integration scheme. However, in the carlicr
method the structural equations were integrated separately,
after the fluid equations had been advanced to the next
stage within the multistage scheme. This necessitated an
approximation for the lift and moment for the next time
step, and a linear extrapolation was used in Refs. 4-6. In
the present approach, no such approximation is necessary,
since the entire domain of the continuum and all its cclls
are advanced simultaneously in time. That is, no distinc-
tion is made between solid and fluid cells during the actual
time integration process.

From Fig. 4 it is evident, perhaps not surprisingly,
that the aeroelastic response predicted by the two different
methods of calculation do not stay the same for very long.
It should be mentioned that the same stcady solution was
used as a starting point for the unsteady calculations, using
exactly the same initial conditions (h = 0.01wgb). Part a)
of the figure shows the transverse w-displacements at the
leading edge (LE), midchord (MC), and the trailing cdge
(TE), during the first ninc cycles of oscillation. Part b
shows plots of the local rotational amplitude 0 at the same
three locations (note that 6 = —a in the absence of camber
bending). Part c) shows plots of the nondimensional tolal
energy of the wing section (kinetic plus strain cnergy) vs.
time, and the work done by the fluid pressurc on all the
finite elements making up the airfoil. Parts d), ¢) and f)
show the aeroelastic behavior some 16 cycles later.

Since the structure has been modeled without damp-
ing, the difference between the total energy and the work
should equal a constant, namely the initial energy of the
structure (EQ). By integrating the energy equation, wc
obtain an independent check on the accuracy of our
method and the Runge-Kutta integration scheme. Note the
excellent agreement between the initial energy and the
difference (ETOT - WORK), represented by the diamonds
for the present method, over the 34 cycles of oscillation
covered in Fig. 4. These plots cover more than 20,000
time steps (each diamond represents 200-500 ume steps).
This attests to one of the main advantages of our method
of calculation; namely, the fidelity by which the transfer of
energy (and therefore also momentum) between the fluid
and the structure is reproduced. Needless to say, this pro-
perty is of utmost importance in aeroelastic calculations.

However, for the classical method of computation
this (ETOT - WORK) difference, represented by squarc
symbols, shows a systematic divergence away [rom the
initial energy value EQ. This error grows with increasing
time, as is clear from the long-term plot, Fig. 4f. Also note
that the long-term amplitudes differ by a considcrable
amount, roughly a factor of two, with the classical method




predicting larger amplitudes. According to earlier calcula-
tions, Fig. 3 of Ref. 6, a limit cycle is approached at
roughly ¢ = 85-90. It should be noted that the time scales
differ by a factor of 5.673, since Ref. 6 nondimensional-

ized time with respect to wy, while here the following non-

dimensional time ¢ is used:
STa..
2b

where T is the physical time, 2b = ¢ is the airfoil chord, a.,
is the speed of sound at infinity, and § is a scale factor
introduced by the mesh routine. Here, § =0.15274.

The relatively rapid growth of phase and frequency
crrors (or phase differences) between the two response
predictions is also disconcerting and in need of an explana-
tion. It seems plausible that the reason for the classical
method predicting a higher flutter frequency, for example,
is that it overestimates the energy flux from the fluid to the
structure.

Figure 5 illustrates the stability behavior for the
same wing section when the reduced velocity is increased
to 2.25, while keeping the Mach number constant at 0.87.
If Fig. 4b is compared to Fig. 4b in Ref. 5, we note that in
this case, the present method predicts a larger limit cycle
amplitude than does the classical method. Also, a definite
structure emerges in the transverse and rotational displace-
ment Ume traces, suggesting (perhaps) that a bifurcation to
a periodic motion (limit cycle) with twice the original
period has occurred. The energy traces for both total
cnergy and work become very regular and display a
periodic pattern containing four peaks. This fine structure
did not show up in the "classical" calculations carried out
in Ref. §.

Case No. 3 was found to be stable by the present
mcthod of calculation, see Fig. 6, while the calculations by
classical methods yielded a limit cycle, as indicated by the
bifurcation diagram calculated in Ref. 5; see Fig. 7. Case
No. 5 is very close to the linear flutter boundary according
to the present method of calculation, as is evident from the
slowly growing time traces in Fig. 8. When this case was
calculated by the classical method, the corresponding
flutter amplitudes were roughly five times as large at any
given time ¢,

The mass ratio was then increased to = 50, to get a
representation of high-performance aircraft wings, and the
structural thickness fraction was increased to /¢t = 0.5.
Using Fig. 9 of Ashley’s study !5 of the same typical sec-
tion model as a guide, calculations were made at various
reduced velocities, in an attempt to locate the flutter boun-
dary. Calculations at U = 2.5 and 3.0 (Cases 6 and 7) were
found to be stable (at M = 0.92) and are not plotted. Case
No. 8, at U = 5.0, yielded limit cycle flutter. This case was
run both with five and with eight finite elements, Fig. 9,
with no difference in the aeroelastic response predictions,
to within plotting accuracy. The predictions using the
classical computational method do, however, show
- significant differences, both in the flutter amplitudes as
well as in the energy flow to the structure; see Fig. 10,

t= 4.1)
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Note that in this case, in contrast to Case No. 1, the classi-
cal method underpredicts the response and the energy flow
to the structure (i.e., the strength of the instability). Again,
there is that troublesome discrepancy in the calculated
work done by the fluid on the structure, which in this case
is being systematically underestimated.

It is interesting to note that the flutter mode that
eventually emerges and settles into a limit cycle has w and
O essentially in phase with each other at all chord loca-
tions. An examination of Fig. 8 for case 5 shows the same
to be true in that case as well, but in Case No. 1, therc is a
small phase difference present between the local bending
and torsional motions. Thus, although some of the data
suggests that the shock-dominated limit cycle flutter that
occurs may be a predominantly single-degree-of freedom
phenomenon, further investigation of this point is called
for.

Finally, Fig. 11 illustrates the dramatic scnsitivity of
this wing model to Mach number. Here, U is the samc as
in the previous case, but the Mach number has been
decreased from 0.92 to 0.87. Explosive flutter results, and
there is no evidence of limit cycles at realizable ampli-
tudes; in fact, the twist amplitudes reached values of the
order of 20 deg within the first two cycles of oscillation.
Also note that w and 6 are not in phase, and that this phase
is largest at the leading edge and decreases towards the
trailing edge, suggesting the presence of a traveling wave.

The results from these and other calculations seem
to indicate that the aeroelastic response in the transonic
region is quite sensitive to camber bending, presumably
because of the sensitivity of the mixed subsonic-
supersonic flow-field to small changes in the airfoil boun-
dary condition in the supersonic region. However, the
actual magnitude of the camber bending was always found
to be relatively small in the wing calculations presented
here, typically of the order of 2% of 0, or less than 0.2 deg.

4.2 Cascaded Airfoils; Wing in Wind Tunnel

It is well-known that the (2D) case of a wing oscil-
lating in a wind tunnel is equivalent to an unstaggered cas-
cade oscillating with an interblade phase angle of 180
degrees. If the tunnel height is 4 and the static position of
the airfoil is at A/2, then the equivalent cascade would
have a blade-to-chord spacing s/c =h. Linear theory
predicts that the critical interblade phase angle for flutter
for an unstaggered cascade is 180 deg; that is, adjacent
blades are in anti-phase motion with respect o each other.

Here, the blades are modeled as thin isotropic plates
of unit width in the spanwise direction, with typical section
stiffness parameters except in the chordwise direction.
The chordwise flexibility is modeled with plate-type finitc
elements, is done in the wing model. The structural model
has been implemented as indicated in Fig. 3; that is, with
the solid element free to have interior nodes with respect
to the fluid element.

Although we have successfully used a one-to-one
correspondence in test calculations, i.e., by simply extend-



ing the fluid mesh through the blade, this is not optimal for
two reasons. First, since the fluid mesh requires small cell
sizes in the leading and trailing edge regions, the finite ele-
ments would also be concentrated in these regions.
Second, the extremely small structural elements that would
result in the relatively thick leading edge region would
severely limit the allowable time step in the explicit time
integration of the aeroelastic equations. For numerical sta-
bility reasons, the maximum time step is limited by the
Courant-Friedrichs-Lewy (CFL) condition, which implies
that the maximum time step is inversely proportional to the
highest characteristic wave speed in the element, and pro-
portional to the representative length of the element.

The blades were solid titanium blades, of varying
typical section stiffness in bending and torsion, nondimen-
sionalized as follows:

. 12¢3K,, 12¢K,
= X, =

T ES " ES
Table 4.2 summarizes the cases discussed in the present
paper.

3.2)

Table 4.2 Aeroelastic Cases: Cascade

No. M X, | x, | Blade
1 0825 | 4 * 1 NACA 006
2 0.850 | 3 1 | NACA 003
3 0850 | 3 1 | NACA 002

* x, arising from distributed x,

An example of "classical” flutter behavior is shown
in Fig. 12, representing the first case in Table 4.2. In this
case, the sectional stiffness is modeled by distributing the
"bending springs” over the chord, at the finite element
nodes. This results in a relatively low torsional stiffness for
the section, and flutter occurs in a predominantly torsional
mode. Closer examination of the flutter mode reveals the
presence of a bending component, which is not in phase
with the torsional component. The chordwise bending
modes, however, are not excited, although there is a small
amount of camber bending in the flutter mode.

Figure 13 shows the results of aeroelastic calcula-
tons for Case No. 2, where the bending and torsion
springs have been attached at the node at roughly 42% of
chord. The time traces at M = 0.85 indicate a subcritical
response over the first few cycles, as is evident by the fluid
doing negative work and the total energy of the structure
decreasing until ¢ is about 5, after which the mean energy
and work per cycle start increasing. At roughly ¢ = 10, the
work trace crosses zero and keeps on climbing, indicating
that flutter has occurred. In this example, the camber
bending is quite significant, as evident by the much larger
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rotational ( 6 ) amplitude at the trailing edge than at the
midchord of the blade. The presence of the chordwise
mode(s) is also evident in the time traces of the w-
displacements, Fig. 13a.

Decreasing the blade thickness further from 3% to
2% of chord would be expected to further amplify the
effect of chordwise bending on the flutter behavior of the
blades. Figure 14 illustrates the gradual emergence of the
chordwise bending mode in the flutter time traces for Casc
No. 3; see, in particular, the behavior of the 6 displace-
ment at the trailing edge vs. times, and the swong oscilla-
tions in the total energy and work traces. In this cxample,
the trailing edge region develops large-angle rotational dis-
placements wherein it moves almost like a trailing edge
flap. 1t is believed that the taper of the blade in this region
helps localize and amplify the motion in the thin trailing
edge region.

5.0 Conclusions

The main conclusions can be summarized as fol-
lows:

1. The proposed method of calculating acroclastic
response has a number of important advantages over
existing methods, and is capable of handling realistic
structures modeled by finite elements. This model-
ing can be done at the element level. :

2.  Because there is no assembly of mass and stiflness
matrices into global (system) matrices, there is no
need to introduce special procedures for dealing
with sparse matrices. Because of the Lagrangian
mesh, geometrically nonlinear problems can be
treated without the use of geometric stiffness
matrices.

3. The excellent accuracy by which it reproduces the
energy exchange between the structure and the fluid
makes the method especially suited for large-scale
(supercomputer) simulations.

4. Results from the sample calculations suggest that
camber bending can play an important role in the
transonic flutter problem, possibly because the
mixed subsonic-supersonic flow field is very sensi-
tive to the airfoil boundary condition in the super-
sonic region of the flow.

5. Calculations made on cascades with solid titanium
blades indicate that camber bending can rcach
significant amplitudes during transonic flutter of thin
compressor blades.
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Fig. 1 Typical elements

Fig. 2 Fluid-structure mesh, and examples of interior
nodes

Fig. 3 a)Typical section wing structure with camber
bending; b) basic finite element




° NACA 64A006
RACH ND. = 0.37 UBAR = 2.0
CASE NO. 1 10

TAAAR A\ n n nn i
'- v 7\ ‘
~ A. h

W-DISPLACEMENTS IN CHORDS
-0.02 0.0 .03

«0.03
A

o001

-00 3.00 12.00 13.00 18.00
NDNDIHENSI DNAL TIME

é} NACA 64A006
MACK NO. = 0.8 UBAR = 2.0
CASE ND. ! " e 10
o

0.03
L 3

THETA-DISPLACEMENTS IN RAD

2
X3
3| present method
-F
TE
3
éi
s
'0.00 3.00 $.00 9.00 12.00 15.00 18.00
NONDIMENSIONAL TIME
oy
ﬂ NACA 64A006
MACH NO. = 0.87 U!AR 20
CASE NOQ. 1
Te
o7l
-
L ]
x
g8
o7
o
k- 4
<
Ly
80
w
-
-y
zo
G
0
= [
Ye
g¢1
o
=
2
?o.oo 3.00 6.00 900 12.00 15.00 15.00

NONOIMENSIONAL TIME

(a)

(b)

0.37

NACA 64A006
MACH ND. 87 UBAR = 2.0
CASE NO. 1

d.12 0.2
X
L ]
o
z
[ 2 J
°
-
™M

0.00

EMENTS IN CHORDS .

C
-0.12

¥-DISPL

-0.28

™~
”»
1) 0 $3.00 €2.00 63.00 .o
uonmnﬁusxouu. TIHE
<] NACA 64A006
HMACH NO. = 0.87 UBAR = 2.0
CASE NO. 1 "W s 10
bt
Q
<
[- 4
z®
-6J
(%]
g
b (e)
«
z
o
83
R
«
[ )
w
£
?q
5
"‘so.oo $3.00 $4.00 59.00 €2.00 85.00 .00
NONDIMENSIONAL TIME
4
<] NACA 64A006
MACH NO. « 0.87 uan z o
CASE NO. t
2 Ref.5
b 3
x“
(=3
x07
o A A ’
x
<
-3
[=gry i
[-F5 B! A
= e
g l¢ '/ ~/‘\v/‘\'/‘\'/‘\’/‘\'/‘\', (Vr)
<
=z0
=
[ ET0T7
E MV 2
=2 €0
Se
o
= [ ] ™
'6: nnno--...........
™)

X T YR Y L L T X

NONDIMENSIONAL TIME

Fig. 4 Comparison of aeroelastic response of NACA 64A006 wing model for Case No. 1, as predicted by present

approach and compared to classical approach (Ref. 5)

1722




T ‘] (a) NACA 64A006
MACH NO. = 0.92 UBAR = 2.02
-] NACA 64A006 CASE NO. 3 w10
MACH NO. = 0.87 UBAR = 2.23 2
CASE 0. 2A W =10 o°]
3 . LE
S BN
Oot o
= 531 “““HHHAA'A'A'A'A
s <o L mmmum
: °‘ L
< oy AN
(7] wo
i GO AL ARRE
:g =
] ?.o Do $.00 10.00 15.00 20.00 25.00 30.00 35.00 «0.00
* NONDIMENSIONAL TIME
'0.00 5.00 18.00 24.00  32.00 40.00 .00
NONDIMENSTONAL TIME *
4] NACA 64A006
g (b) MACH NO. « 0.92 UBAR = 2.02
3 CASE NO. 3 Mmoo 10
-1 NACA 64A006 Te
MACH ND. » 0.87  UBAR = 2.25 =}
CASE N0. 2A m «10 .
8 -
2 | LE gg"
=3 E;
A & For
We1 n  (b) ‘;‘3 VORK
] a
29 ts
s Te g%
Z8 s
g‘;o.oo .00 10.00 15.00 20.00  25.00  30.00 35.00 40.00
3 NONDIMENSIONAL TINE
o ¥ .c YR 2. . &.
TR ousTrewsiona ke O ® Fig. 6 Stable aeroelastic response of NACA 64A006
o wing for Case No. 3
°] NACA 64A006 0.3 =~
MACH NO. = 0.87  UBAR = 2.28
CASE NO. 2A W =10 8 Ma=.92 4deg
<) i® M2 /x/
ze X Ma.B0
] a Magr  xJ0°
22, 02{¢ Mass X ¥
<° x ()
gg al.c / /
iéﬁ (©) (radians) S
5 0.1- of A8
a2 €701
23, WORK /A f
t =
s °
= €0 li
0.0 +s—¥%rer-088fr—r—r—1——
S 14 1.6 1.8 2.0 2.2 2.4 2.6
e 8.00 16.00 _ 24.00  32.00  40.00  48.00 4]
NONDIMENSIONAL TIME

Fig. 7 Bifurcation diagram for the NACA 64A006 wing

Fig. § Aeroelastic response of NACA 64A006 wing for
Case No. 2, as calculated by present method

1723

model (Ref. 5), with present calculations indicated by
flagged symbols
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Fig. 14 Evidence of chordwise bending mode in flutter
time traces of NACA 002 cascade, Case No. 3
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