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INTRODUCTION In this chapter no attempt is made to
show how the theory has been built up by
This chapter presents some ' solutions mny authors over several decades.
of the bhasic equations derived in the Here, only references to primary
previcus chapter using methods which have sources will be quoted. During the
becoma rather widely used and accepted. earlier part of the - chapter many of

The flow is assumed +to be two-dimsnsion-
al, reversible, and isentropic. The
methods rely on being able to build wp
the regquired flow from simple analytical
solutions, and this can be done if either
the fluid is incompreesible or if the
flow contains only small perturbations of
a uniform flow. In the latter case the
blades are assumed to be flat plates
operating at zero incidence, so that the
effects of camber and thickness cannot be
treated.

The notation ueed is essentiall the
same as was used in the
"Linearized Unsteady Aerodynamic Theory"
by J. Verdon. But the technigue of making
all variables dimensionless, by scaling
vith respect to the blads chord (¢) and
the far upstream velocity (V,). will not
be used in this chapter because it is
felt that in this context there is a gain
of physical understanding by working with
the dimensional variables. ¢ is there-
fore the angular frequency of vibration
in radians per second, and a non-dimen-
sional <frequency paramater A will be
used, given Dby A= /v, In the
linearized theory the aymbol U will be
used as an alternative to V_, .

apter

theae references are to the work of the
author of this chapter and his students,
and this calls for some apology. But it
was felt that oaly in this way ocould this
author give a reasonably connected ac-
count of the theory. There are many

other equally valid ways of presenting

the material, and the literature is sub-
stantial.
UNSTEADY THIN AEROFOIL THEORY, BOUND AND

PREE VORTICITY

Consider a cascade of flat plates
operating at sero incidence (Pigure 1)
s0 that the unsteady effects are small
perturbations of a uniform flow. There
is a jump in vy across each blade, and
the blades are therefore equivalent to

vortex sheete. If vy, is the total
strength of the vortex sheet
Ye = Vz-=Vx+ (1)

vhere the - and + suffices refer to
lower and upper surfaces of the blade.
The total circulation round the

blade s s° Yo dx , and since this
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varies sinusoidally with time there will
be a vortex sheet shed from the trailing
edge which is convected downstream at the
mainastream velocity, U .

The whole flow may be considered as
being due to the vorticity which replaces
the blades and their wakes. The essence
of the thin aerofoil theory is to find
what vorticity distribution will give the
correct upwash velocity so as to satisfy
the boundary conditions at the aerofoil
surface and in the wake.

Although it is perfectly legitimate
to regard the total strength of the
vortex sheet vy as the primary vari-
able, there is another way which is in
practice more convenient. Consider an
element of bound vorticity y(x) éx elut
at a point (x,0) on the reference aero~
foil. Since the strength varies sinu-
soidally with time, thqic will be a sheet
of free vorticity ¢ elot ghed from the
element and extending far downstream.
During a aemall time interval §t the
strength of the elemant of bound
vorticity changes by an amount

v(x) 8x eiut {4 st .

This 1is equal in magnitude and opposite
in sign to the free vorticity appearing

in the time 4t, during which the shed
sheet moves Dback a distance U 8t.
Hence just behind the aelement of bound
vorticity, the strength of the sheet of

free vorticity is

- y{x) &x elut i, st
Dét

Since the whole sheet of free
vorticity moves back at the speed, U ,
the strength at (x; , 0) is

c(x)) elut o (2)

~ y(x) &x %2 Jlufts (x-x)/U}

At the point (x; . 0) the sheet of
free vorticity gets contributions from
all the elements of dound vorticity up to
that point. Hence

e(xy) = - # f:‘ vix) elelx-x Mgy (3

Multiplying Dby eluxy , differ-
entiating with respect to x3 and
simplifying gives

$c+ 42 (vve) =0, (4)

or

dg iw
YT Ye"0.

since the total vorticity y¢ is given by
Ye =Y+ . (s)

Writing the linearized x momentum
squation for a point just below the
blade, and for a point just above the
blade and subtracting gives

iat

3 3
(ST + VR vy = v,) e}

- - lut

]
= P

Off =

- P+) e

w {{u(y+e) + U g% + U %%} oiﬂt
- U %% .iut

from Equation (4).

Integrating, and noting that the
constant of integration is zero since

both y and (p. - py) are =zero off the
blade

(p- - py) = - BUy . (6)

It can now be seen why bound

vorticity, vy . a more convenient

primary variable than total vorticity
Y o In the wake v is gero whereas vy
is not. Also, in subsonic flow a Kutta
condition is applied so that (P_~ P.) is
zero at the trailing edge, and therefore
v is also zero there. In addition, the
force and moment on the blade are readily

obtained from vy .

(-] <
£, = (p.-p,) ax = -7 [ yax, (7)
and

c [
ne- Io (p_- p,) xdx = - pU ]o yxdx . (8)

Since bound vorticity is equivalent
to pressure Jjump across the blade,
theories presented in terms of pressure
dipoles, or dipoles of acceleration
potential, are formally equivalent to
theories presented in terms of bound
vorticity.

If an element of bound vorticity
v(x) dx at the point (x,0) on the
reference blade 1is considered, together
with corresponding elements on all other
blades, and also the sheets of free

vorticity shed from all these elements,
then the velocity 1in the y direction
induced at the point (x',0) may be
written
(x') =L (B—X

vy{x ) S K 4 < Jy(z) ax . {9)

Integrating for all elements along
the chord

1 © X' - x

vy(x-) - Io K (&—z=)v(x) ax . (10)

.The evaluation of the kernel func-
tion K will be the main concern of the
next six sections, but for the present it
may be assumed to be known.

The upwash velocity wvy(x') 1is aleo
known. There are two %ll.l of main
interest.

For bending vibration normal to the
chord, 1if the blade displacement is
hyelst then velocity must match the up-

sh velocity, so that




vy(x') = lah = By . (11)

Bending vibration parallel to the chord
has no effect in thin aerofoil theory.

For torsional vibration of the
blades about the origin at the leading
edge, if the angular displacement is
a elot (anticlockwise positive), then the
velocity normal to the blade at a
distance x' from the axis is

{vy(x') - al} .1ut = gf (x'a oi"t) R
Hence
vy(x') = q (U + iuwx') . (12)

There are other upwash velocity
distributions which are often of
interest, due to incoming acoustic waves
and incoming vorticity waves. These
waves are considered in the sections
“"Fundamental Acocustic Wave Solutions™ and
"Vorticity Wave Soclutions”.

In Equation (10) therefore the v
function and the K function are known.
Equation (10} is therefore an integral
equation for the unknown bound vorticity
distribution y . It will be solved
numerically by specifying Y at N
suitably chosen points along the chord,
and then making the upwash wvelocities
match at N other suitably choasen
points. More particulars of a solution
procedure will be given in the sections
“Solution for Bubsonic Cascade® and
"Solutions for Supersonic Cascade", but
first the calculation of the kernel
function will be consgidered.

KERNEL FUNCTION POR INCOMPRESSIBLE FLOW

If the fluid is assuymed to be
incompressidble, the velocities induced
by vortices may be calculated by the
Biot-Savart law. The vy velocity in-
duced at the pgint (x* ;, 0) by a vortex
of strength I, elut at the point (xp, Ypy)

is
v -;E (x' - x!ri
b 4 L) [ 2 2 °
{x xm) A

If the vortex on the reference
blade at (x , 0) has strength [, , then
the strength of the corresponding vortex
on the mth blade ie given by

where '] is the inter-blade phase
angle. The position of this vortex is

given by
Xy = ms sine + x ,
Ym = W8 cos 6 .

Summing the effect for all Dblades
gives

+» .md(xn

- .0 - x - ms sing)
vy ﬁ;-—- (X'

-X-me nins)z+(ml cosd)?

33

This may ba written

r .
v, = —2 v—355) (13)
where
Vi{z) = %_ * ei®? (3 _ m sine s/c)

h 4

== (g-m llnel/c)z+(m cosés/c)?

This series can be summed analyti-
cally. The result for 0 ¢« g < 2¢ is

vizg) = (14)

The case of gzero phase angle is
special because a row of unsteady vor-
tices produces non-zero induced veloci-
ties far upstream and downstream. In
order to deal with this case, and have
gero induced velocity far upstream of the
row of vortices, it is necessary to re-
place V(z) by {V(g)=V(-w)}.

Equation (13) may be used to evaluate
the upwash velocity induced bDy both the
elements of bound velocity +vdx, and
also the corresponding sheets of free
vorticity given by equation (2)

VY(R') - lg_x v (;';X)

_ iw gx I. elulx-x,)/U y¢ x'-xl)dxl
1 i}_. . .

c

Comparing this with equation (9) and
rearranging gives

K(z) = v(g) - ire”irE (B oldg, v(g,)asz,
(15)

where ) = wc/U is the frequency para-
meter. This is the required expression
for the kernel function 1in equation (10).
The first term gives the effect of the
bound vorticity, and the second term
gives the effect of the shed sheets of
free vorticity.

This is as far as the incompressible
solution will be taken, since it is
regarded as having baen superceded by the
methods for subsconic compreseible flow.
Techniques for solving. the integral
squation will be discusssd in the section
*Solution for Subsonic Cascade". A series
method for evaluating the infinite
integral in equation (1%5) has baen given
by Whitehead (1960).
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FUNDAMENTAL ACOUSTIC WAVE SOLUTIONS

The equation governing the unsteady
velocity potential for small deviations
from a uniform mean flow has been derived
in the previous chapter by Verdon (equa-
tion 133) and is

-u2) 328, 2% 21w 3¢, 82
(1 Hz) axz'.'ayz A Ha‘"‘Az.-O'

where x and y are measured parallel
and perpendicular t6 the mean flow.
Referraed to the axial and circumferential
axes, coordinates £ and n , this
squation becomas

_np2)22e M2 22 2
(1-mg )3€2 + (1-Mp )g;% - 2MgMp %E§;

2
-2 2 2., 3+ e =0 (6

3t n
where
Mg = M cos 0,
and Mp = M sin 8.

The required solution is of the form
b= ei(ak + fn) (17)

where a and 8 are the wave numbers in
the axial and circumferential directions.

Substituting this in equation (16)
gives

aZ + 82 - (Mg + My + 0/A)2 =0 . (18)

The solution being loovked for has a
phase angle ¢ between any blade and its
next above neighbour, so that all vari-
ables are multiplied by exp(io) on
going a distance s in the circumferential
direction. Hence g is always real and
is given by

8= (g - 2er}/s (19}

where r is any integer.

Equation (18) 4is then a quadratic
equation for @ , and the solution for
a is

a = [Mg(sMn + o/A) & ((8Mn + w/A)? -
4
(1-Mg2)82) 1/ (1-Mg2) . (20)
If (8Mp + w/A)? - (1 - Mg2)e2> 0 (21)

there are two real roots for a . This
corresponds to waves propagating with
constant amplitude, and it will be shown
that one root corresponds to waves
travelling upstream and the other root
corresponds to waves travelling down-
stream (provided M{ < 1).

If (My + w/A)2 = (1 -~ Mg?)g2c 0 (22)

there are two complex roots for a . Ons
root corresponds to a disturbance which
grows exponentially in the axial (posi-
tive ¢ ) direction, and the other root
corresponds to a disturbance vhich decays
exponentially in the axial direction.

I (BMy + w/A)2 = (1 = Mgl)g2 = 0 (23)

or
A = My £ (1-mg?)PRV/(1-M2) (24)

then the wavaes are Jjust on ths verge of
propagating. This is Xknown as the “cut-
off® or "resonance” condition.

In order to apply the boundary condi-
tions correctly it is necessary to deter-
mine the direction in which the propagat-
ing acoustic waves carry enexrgy. To do
this it is convenient to consider azxes
0¢'n' , which are parallel to the QOgn
axes, but which move with the mesan velo-
city of the fluid. Relative to these
axes, the wave propagates at a speed A
and at an angle 3 as shown in Figure 2.
The velocity potential is therefore of
the form

¢ ela'(t = £' cosy/A - n' sine/A) (25)

where o' is the intrinsic frequency, the
frequency seen Ly an observer moving with
the fluid. Note that the angle ¢ gives
the inclination of the wavefronts, and is
not the Adirection of energy propagation
relative to fixed coordinates.

On switching to fixed axes, £ = t' +
MeAt, n = o' + MpAt , so that the poten-
tfal is

¢ elat = o el{ut + af + Bn)
= p el{(w + aMgA + BMyA)Lt + ab' + 8n'} ,

Camparing this with equation (25) gives

w' ® g + aMgA + BMpA (26)
a= - w'cosp/A , (27)
8 = - w'sing/A . (28)

1f a and 8 are eliminated from these
equations the result is

w' = /(1 + M cos (b-9)} . (29)

This equation shows that in subsonic flow
w' is always positive, but that in super-
sonic flow there are some directions of
wave propagation (for instance ¢ = 8+v)
for which «' becomes negative.

| wave
crests

~

Fig. 2. Wave Propagation.




The group velocity in the axial
direction, which is also the rate of
axial transfer of wave energy, is then

given by the sum of the convection
velocity and the axial propagation
velocity, and is

Qg = MA + Acosy (30)

= MpA - AZa/u’ (a1

=3 {(o+ 8 M2 = (1-Ng2)p2A2) 1/ Y/0,
where equations (26) and (20) have been
useqd.

At the resonance or cut~off condition

given by equation (23)
My 4+ cosy = 0

so that equation (30) shows that cgp = @,
and the wavas carry energy in a purely
circumfsrential direction, so that in a
machine the energy propagates round the
machine but none is lost by radiation in
an axial AQirection. It will be found
that at thia point ths acoustic waves can
reach large amplitudes and the solutions
become singular.

In subsonic
acoustic waves

flow, propagating
occur over the range of ¢

given by
M -(1 - Me?)}/2 ap Mg #(1 - M2 ":32)
1 - M2 o 1 - M2 *
outside this range decaying waves occur.
within this range, esince u' is always
positive, equation (31) shows that the
upper sign in equations (20) and (31)

corzresponds to waves carrying energy up-
stream, with negative cx .

1£f the flow is supersonic (M>l), but

with subsonic axial velocity (M;cl),
then propagating acoustic waves occur
over the ranges of § given by
- 1 " 2)1/2
A - -
<
¢ -ﬂ—ﬁé-:-z-i- (33)
M +(1 - M 2)1/2
A Mp +(1 - Mg
> .
and uﬁ uZ o1 (34)

Between these two regimes a range of

decaying waves occurs. Assuming that
M0 , within the range given by
equation (33) some analysis shows that
a' is negative for both waves, so that

the lower sign in equations (20) and (31)
corresponds to waves carrying energy up-
stream with negative cx . Within the
range given Dby equation (34), «' {8
positive for both waves and the upper
sign in equations (20) and (31) cor~
responds to waves carrying energy up-
stream.

If the axial velocity is asupersonic
(Mg > 1} the waves always propagate, and
since cx is always positive they always
carry energy downstream and there is no
resonance condition.

For these acocustic waves the velocity
perturbations are given by

ve= 3= tas, (35)

35

vn -%"-’—- ige . (36)

The pressure perturbation may be ob-
tained from the momentum equation

3 3 3 1ap
(Fe*+Vegg+Vngy) vet g™ ® (37)
and is

© Ve . _ #Vn

R S (38)

Sinca the fluctuations are isentropic
the density perturbation is given by

» = p/AZ . (39)

If the effects of incoming acoustic
waves are to be calculated, then the sum
of the upwash velocities normal to the
chord due to the bound and free vortici-
ty, Vy(x') and due to the incoming wave
must be gero. Hence

Vy(x') - vei #iné + vpi cose = ©

vwhere the suffix i refers to the in-
coming wave. Using equation {38)

- Pi pc cos9 - ac sine
vylx') = =5 ¥ oc cos6 + pc eins °
sach of the

corresponding to a
For unit value of

This can be evaluated for
pair of the waves
given value of 8§ .

Pi/3U at the origin

fc cos8 - ac sine
A+ oc cos® + ¢ sineé ¢

Vy(l') -

(40}
oxp i(a cose + gsine)x’

VORTICITY WAVE SCLUTIONS

In addition to the acoustic wave
solutions discussed in the last section,
the continuity and momentum equations
aleo admit of solutions which include
vorticity, but have no pressure or
density perturbation. For these solu-
tions the velocity potential does not
exist and the disturbances are convected
downstream at the mean fluid velocity.
These solutions therefore have

pm0, o=0. (41)

Ths required solution is of the form
vgelut » const ei(wt + a + gn)

Putting these
(37) gives

in the momentum equation
u+V=¢+V“B-0'
so that
a= =~ (u+V, g)/vg. (42)
Since there is no density perturba-

tion, the continuity equation can be used
in its incompressible form

Ve LWy
et 0.

to give

avg + gvp = O. (43)
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Since these vorticity wave solutions
have no pressure or dJdensity perturba-
tions, . they are unaffected by compres-
sibility effects and apply at all Mach
nunbers.

The force and moment on the Dblades,
due to wakes from some obstructions up-
stream vwhich are in motion relative to
the blades, are often required in order
to- calculate the forced vibration. A
FPourier analysis of ths wake profile in
the n direction may be carried out, and
esach term corresponds to a vorticity wave
of the type considered in this section.
The sum of the upwash velocities normal
to the chord due to the bound and free
vorticity, vy(x‘') and due to the in-
coming vorticity wave must be zero.

Hence
vY(x') = Vgi sine + Vpi cosé = 0,

vwhere the suffix 1 refers to the in-
coming wave.

Using equations (42) and (43) this
gives for a velocity v, normal to the
chord at the oxigin

vy(x') » - {-iwx'/U)
y(x Vw exp wx (44)
= - Vy exp ('11!'/@)0

showing how the waves are convected along
the chord &t the mainstream velocity.

KERNEL FUNCTION FOR SUBSONIC CABCADE

The inc ressible Xernel function
which wvae derived in the section "Kernel
Function for Incompressible Flow" of this
chapter was based on the replacement of
the aerofoils of the cascade by a nhumbsr
of bound vortices. In that case the
effect of a row of bound vortices, with
the apacing and stagger corresponding to
the cascade in qusstion, could be ob-
tained by summing the ssries analytical-
ly. The corresponding eolution in sub-
sonic compressible flow for a single
bound vortex involves Hankel functions,
and when the series for a row of such
vortices is written down it appears that
it cannot be summed analytically, and if
numerical evaluation of the series ia
attempted the series is found to converge
very badly. The approach that will bDe
used is therefore to build up the solu-
tion for the row of vortices from the
acoustic and vorticity wave solutions
given in the sections “Fundamental
Acoustic Wave Solutions™ and "Vorticity
Wave Solutions”. ' The presentation largely
follows the paper by Smith (1972).

Consider therefore a row of vortices
spread along the n axis with spacing »
and phase angle o . This may be con-
sidered as a distribution of bound
vorticity :1ong the n axis given by

-

y= J T, eimo 5(n-ms). (45)

This series of delta functions may be
transformed to a Fourier series as

follows
‘o

Y= T eina/s 1 e-i{n-ms)a/s s(n—ms)

o
= Iy eing/s | g(n-ms)

since the dslta function is only non-zero
vhen n-ma = 0 . Hence

L o
Y =To elino/s (1/8) § e—12vrn/s

re-w

by example 38 of Lighthill (1958). Hence

. To X- ei{c=22r)n/s (46)
r

Bach term of this series 1is sinu-
soidal in the n direction, and there-
fore the solutions of the sections
“Fundamental Acoustic Wave Solutions® and
“"Vorticity Wave Solutions" may be matched
to it. Upstream of the row of vorticee
only the upstream going acoustic wave, or
alternatively the wave which decays
exponentially upstream, can exist, and
this will be distinguished by the euffix
l. Downstream of the row, only the
downstream going acoustic wave, or
alternatively the wave which decays
cxfonontially downstream, can exist, and
this will be distinguished by the suffix
2, In addition, downstream of the xow
there will be a vorticity wave, and this
will be distinguished by the suffix 3.

Considering then just one term of the
series in equation (46) three conditions
are necessary to find these waves.
Firstly, continuity may be applied across
the vortex sheet at §{ = 0 , so that

(Vg + %) (3 +5,) =
(Vg + ¥y + ¥yy) (5 + 5,),

or, to first order in the perturbations,
Bvgy + Vgo) = Bvgy + B vgy + Vg 6, - (47)

Secondly, the velocity jump across
the row in the n direction must be
egual to the strength of the shest of
bound vorticity, so that, for a sheet of
unit amplitude

A\ + v - = 1. (48)

v

2 Ny "

Thirdly, the strength of the vortici-

ty wave may be related to the strength of

the sheet of bound vorticity from which

it is shed. In a time interval §t , the

circulation shed from an element of bound
vorticity y dn is

- gg (y dn) 8t = g3 dn (Vg &t)

where ¢; is the vorticity Jjust down-
stream, and this is spread over an area

dn in the n direction and (VE st} in the
E direction. Hence

€3 = - fey/vg .
But

- dVn _ 3V
¢ 13 an

- 1¢vn - ’.ﬂVE -




Hence, for a sheet of unit amplitude,

@3 Vpz - B viz = - w/Vg . (49)

Equations (47), (48) and (49) may now
be solved to give the velocity perturba-
tions for the acoustic waves and the
vorticity wave 3just upstream and down-
stream of the £ = 0 axis. Equations (38)
and (39) are used to relate the acoustic
perturbations, and equation (43) ie used
for the vorticity wave. The wave numbers
in the axial direction are given by
sgquations (20} and (42). The results are

vh, = (1% + xpc sine)/a’ , (50)
Vn, = (Be/2A') {=(Bc + 1 ein @)
+ ABc coae(-E)'l/z} . (51)
Vn, = (Bc/2A') {+(gc + 1 sin 6)
+ Agc cos8(-E)-'"%) ., (52)
where
A' = 32 + g2c2 + 2agc sine (53)
and
E = p2c? - M2 . (54)

Equations (51} and (52) are written
for propagating waves (E < 0) . For de-
caying waves (E > 0) (-E)-1/2 jg re-
placed by i(E)-1/2 , The corresponding

vg velocity rturbations are obtained
from equations (38) and (43).

The velocities induced in the
direction normal to the blade chord at
the point £ = x'cosé, n = x'sind , by the
row of bound vortices at E=0 may
therefore be written, for x' < 0 (up-
stream of the row)

T -

vy = ;3 r:-- (vn, cos0 ~ vg, sine)
ei(aicosd + gsine)x' .

Comparing this with equation (10)

shows that the kernel function is given
by

(o] { 3
K(z) = o rz-« (vp, cose - vg, aine)
(55)
ei(ajcosp + gesine)lce
for £ < 0.
The corresponding expression for d&own-
stream of the row of vortices includes

the effect of the vorticity waves, eo
that

K(z) = E rz:- (vp, cose - vg, eing)
ei(az cose + psind)ce

+ % r::- (vpy cos® - vg, sing) (se)

ei(a3s cose + gsine)cx

for z > O.

3-7

It has been shown that ropagatin
waves only occur for a limitog range o
8 , and that outside this range the waves
decay. Hence large values of r (positive
or negative) give large value of |8|, and
the effect decays very rapidly on going
away from the row of vortices. The two
series for the acoustic waves therefore
show good convergence, with terms de-~
caying exponentially as |[r| increases.
However, the convergence is less good
when g is small, but still very
satisfactory.

The second series for the vorticity
waves in equation (56) does not show
satisfactory convergence. However, Smith
(1972) shows that this series may be
summed analytically. The result for the
kernel function may then be written

K(z) = % r::‘ (vy, cose - vg, sine)
.1(uz cos® + gsine)ce (57)

sinh (A cose s/c) exp (- iaz)
cosh (X cosé s/c)-cos{c + ieine s/¢c)

A
32
for z > o.

SOLUTION FOR SUBSONIC CASCADE

In order to complete the analysis it
is necsssary to solve numerically the
integral equation (10). 1In subsonic flow
this has to be done subject to the Kutta
condition at the trailing edge, which
says that the pressure difference across
the blade must tend to szero as the
tralling edge is approached.

The bound vorticity, vy , will be
specified at N points and perhaps the
obvious way to do this would be to take
these points equally spaced along the
chord. But it has been found that a
great increase in accuracy, using a
modest value of N , can be obtained
using the transformation (as in the
classical thin<aerofoil theory of

" isolated aerofoils).

X = % c (l=cos ¢). (58)

Then vy is specified at points given by

v = 1L/N (59)
where ¢t is an integer 0 < gt < (N -1).
It will Dbe noted that this does not
include the point at the trailing edge
(x=¢c, g=u, t=N) , since, by the
Kutta condition, y is gero there.

The upwash velocities will then be
matched at points given by

x' = é ¢ (1 -~ cos ¢) (60)

where

€ = x(2m + 1)/(2N)} (61)
and m is an integer O ¢ m ¢ (N - 1).
These points have values of ¢ halfway

between the values of ¢ at which the
bound vorticity is specifiea.
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Makin these substitutions in
egquation ?10) gives

Vy(e) = (62)

% I; K (% (cosy - cose))y(¥Y) siny dy.

’

These substitutions remove a difficulty
at the leading edge (x =0, y = 0},
since in the solution <y becomes infinite
at that point. But by regarding
vysiny as the fundamsntal variable thie
product remains finite at the 1leading
edge and causes nho numerical difficuley.
These substitutions also remove the
singularity at the leading edge in
integrals for the blade force and momant
in equations (7) and (8), which were

fy = -3 5 Uc |5 v(v) sin ¢ ay (63)

m=-z5Uc? [T (e sing (1 - conyldy.
(64)

With the reservation to be made
shortly the integrals in equations (62)
(63) and (64) may bes evaluated by the
trapezoidal rule. Expressing the results
in matrix form, equation (62) becomes

u=K& (65)

where | is an upwash matrix having N
rows and 2 oolumns. The f£irst column
gives the_upwash velocity due to bending
for unit (hy/U) and the second column
gives the ash velocity due to torsion
for unit o . According to equations
(11) ana (12)

=01, (1 + irax’/c)] . (66)

Further columns may be added for incoming
acoustic waves from upstream or down-
stream, and for incoming vorticity waves,
if these results are required.

is a kernel matrix (N x N) where ele-
ments are given by K(1/2(cosy - coss)).

L 1is a bound vorticity matrix having N

rows and two (or more) columns whose
elements are given by

I = [(x/28)(y/VU) siny] (67)

except for the first row which has half
voighf.-

Equations (63) and (64) may similarly
be written in matrix form

S=41 (68)
vhere
[ [(’Y/BU""'Y (fy/FUz"")] (69)
(m/BUczﬁy (m/,;u’eza) ’
and
=01 - 3(1 -cosy)l. (70)

Further columns may be added to ¢ for
additional input waves, and further rows
may be added to X and to give
additional outputs, such as e strength

of the vortex shests shsd from the
blades, and outgoing acoustic waves.

BEquation (65) may be formally solved
for I ., and substituted into equation
(68) to give the final result

Al ¥ ' (1)

One important complication concerns
the singularities of the kernel function
K(z) at g=0 ., smith (1972) shows
that these are of the form

2
-gﬁ - %s ( i+ allﬁ - l.zxz'z
- a3a’z3 + +..e)loglz|
where

a, =1-~ M2/2pn2

a, =1 -~ 1/2b2 + M?/4p"

8, = %(1 - 1/b2 + M?/6b2 + 1/3b% -
aM*/8bé + M/6p%)

and
bl =1 - M2,

whitehead (1960) has shown that
integration of the 1/x singularity is
accurately handled by the trapezoidal
rule, but that a correction is required
for the Log|z| singularity if accurate
results are to be obtained with modest
values of N . Reference may be made to
the original papers for the details of
this correction.

A Fortran computer program for the
implementation of this subsonic solution
is given in Appendix A.

SOLUTIONS FOR SUPERSONIC CASCADE

When the mainstream is supersonic,
the same general approach may be used as
in the subsonic case, but there are a
number of features which make the
solution very different. There are also
fundamental differences between the case
when the axial velocity is subsonic and
when the axial velocity is supersonic.
If +the axial wvelocity is supersonic the
effects of an element of bound vorticity
or pressure dipole introduced at any
point are entirely downstream of that
point. There 1is no effect upstrsam of
the leading edge plane, and the flow can
in principle be calculated by the method
of characteristics. But if the axial
velocity is  subsonic, then a pressure
dipole introduced on one blade implies
other presgure dipcles on the blades be-~
low it, and the effects of these dipoles
go upstream of the original dipole. The
flow is therefore one in which upstream
effects are possible and it haas some of
the features of a subsonic flow. There
is an effect upstream of the leading edge
plane, and the flow cannot be calculated
in a straightforward way by the method of
characteristics since there is no region
of known flow from which to start. The
supersonic axial velocity <case very
seldom occurs in real turbomachines, and
is therefore of mainly academic interest.
Attention will therefore be concentrated
here on the subsonic axial velocity case.




Another difference between the sub-
sonic and supersonic cases 1s that in the
supersonic case no Kutta condition is
applicable. The pressures across the
wake are equalized by waves emanating
from the trailing edge, and just upstream
of the trailing edge there is a finite
pressure jump across the blade. Con-
versely, at the leading edge the pressure
jump is finite, and not infinite as it is
in subsonic flow.

waves of finite strength originate
from the leading and trailing edges of
the blades. These waves may be reflscted
from the surfaces of adjacent blades, and
some of the patterns wvhich result are
illustrated in Figure 3. Diagrams (a) to
(4) apply for the subsonic axial velocity
case, and diagrams {(s) to (h) apply for
the supersonic axial velocity case. 1In
Pigure 3a all the waves from one blade go
ahead of the blade above it and behind
the blade below it, 80 there are no
reflections. In ateady flow there is no
interference Dbetween Dblades, but in un-
steady flow each blade can influence the
flow over the blades above it. Figure 3b
shows a trailing edge wave reflected
onca. Figure 3c shows a trailing edge
wave reflected once and a leading edge
wave reflected twice: this 1is the usual
design case for a fan tip section.
Figure 3@ shows four reflections of a
leading edge wave, and by extending the
blade chord the number of reflections can
be increased indefinitely, but these
cases are not of much practical impor-
tance.

Figures 3(e¢) to (h) show the super-
sonic axial velocity cases, and the
trailing edge waves always go downstream
of all other blades. In Figure 3(e) the
leading edge waves also go downstream and

39

there ie no interference between blades
which all hehave like isolated aerofoils.

Figure 3{f) shows one reflection of a
leading edge wave, and Figure 3(g) shows
one reflection of both of the leading
edge waves, and PFigure 3(h) shows two
reflections of Dboth of the leading edge
waves. Again there are theoretical
possibilities with large numbers of re-
flections.

In order to illuminate the most
important features of the flow we shall
start with a simple quasi-steady ana-
lysis. Torsional vibration 4is consider-
ed, and it is supposed that the blades
have moved to a position consistent with
a prescribed phase angle ¢ between blades
and are then frozen in that position.

Standard supersonic thin aerofolil
theory will be used, so that the rela-
tionship between the pressure change (4ip)
across a weak wave and the corresponding
deflection (a8) of the flow is

#2 =« 8° (72)

where BZ = (M2 - 1) and the positive
sign applies t0 an upward going wave and
the negative sign to a downward going
wave.

S8ince the blades are flat plates,
waves originate only from the leading and
trailing edges of the blades. They may
then be reflected from the adjacent
blades, as already discussed and 1il-
lustrated in Pigure 3.

A wave starting downwards from the
leading edge of one blade hits the next
blade Dbelow at a point distant d4; down-
stream from its leading edge, where

KRN L

(a) NO INTERFERENCE d,>c

{b) dz <C, d1> C

(€) di<c,(2d4~dp) > ¢

Z J
N\
SUBSONIC AXIAL VELOCITY  (d;>0)
A Y N

SUPERSONIC AXIAL VELOCITY (d2 <0)

(-d;}<c, dy>c

(e) NO INTERFERENCE
(-d}>c

di<c, {dy=d;) >¢

(d} (2dy~da)<t¢, (3dy-2d2) > ¢

&K &R

{g) (h)
—d,) <cldy -2d;) > ¢

Fig. 3. Wave Reflection Patterns.
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d} = g(sins + B cosb) . (73)

Similarly a wave starting upwards from
the leading edge of ocne blade reaches the
y position of the next blade above at a
point distant d2 upstream of its leading
edge, where

dy = g(sing - B coss) . (74)

If the axial velocity is
is negative.

supersonic, dz

firat cases with a eub-
such as (b) and (c)

We consider
sonic axial velocity,

in FPigure 3, but exclude case (a). Case
(c) is illustrated on a larger scale in
Figure 4. Let L be the strength, mea-

sured by the increase in pressure, of the
wave going upwards from the leading edge
of blade m =0 , and let T Dbe the
strength of the wave going upwards from
the trailing edge. Then waves of
strength -L and -T go downwards from the
leading and trailing edges respectively.

Just ahead of the blade m = 0 , the
flow angle must match the angle of blade
mw <1, just below, and is a exp(-io) .
Just behind the wave of strength L going
upward from the leading edge blade m = O,
the flow angle must match the angle of
blade m =0 , and is o . Hence from
equation (72),

%63 -+ a_-__e_-sz(:.iﬁ = 31 -exp(-ic)).

(75)
This determines the strength of the
leading edge wave. It is zero if o = O.
It does not depend on the number of

internal wave reflections.

Bearing in mind that a wave is
reflected from a s0lid surface as a wvave
of the same strength, the pressure in
sach area betwsen waves may now be
written down, and these are shown {n
square boxes on Figure 4 relative to the
pressure ahead of the blade m =0 . It
will be noted that the pressure jump
across each blade has three discon-
tinuities along the chord.

The strength of the trailing edge
wvave, T ; may now be determined from the
condition that the preesures on sach side
of the wake behind the blade must be
equal. This gives

L -2Lelo+ Tw=—- 3L+ 2 Te-ia-1T.

Hence
2 - eic
Te-iTTetel - (76)
If o= 0 , then L =0 and T

becomes indeterminate. The case ¢ = 0
must therefore be excluded from the
present analysis. It will be handled
by actuator disc methods in section
*Actuator Disk Theory.*
Apart from this case equatione (75)
and (76) give

;__.T,., “-2(2- el0) (77)

The force on the blade m = {0 may
now be determined, anéd is

fy = - L(dl - dz) -3 {c -4,))
+ (= 3L + 2'!'.—10)«1z - !..dl

-~ (L - 2L elo) (c-dl) .

Lale

Y 2d

Fig. 4.

T

Detail of Pressure Pield for Case (c).




This gives for case (c)

£y/sU%ca = = 2 (1 - e~ia(1-4,/c) (78)

+ 2(l-coso)(1~4,/c)}
and the moment about the leading edge is
similarly given by
m/5U2c2a = - & {1 - e-io(1-d,/e)?
+ 2(1-coso)(l - q,/¢)(1 + d;/c-d,/c)
-~ 24 sing (1 - 4,/e)(a,/c)} . (79)
Results for other cases of wave re-
flections may be obtained in a similar

way. For cases (a) and (e) in Pigure 3,
when there is no inter-blade effect,

fy/pU2ca = = g (80)

and
r/PU2c2q --% . (81)

For subsonic axial velocity and for
the general case when a wave starting
downwards is reflected R times from the
blade below and R times by the original
blade, R is an integer given by

(R-1} <« SN (g (82)
al-ai

R = 0 corrasponds to case (b) (Figure
3), R= 1 corresponds to case {c) and R
= 2 to case (d).

The strength of the 1leading edge

waves is given by equation (75), and the
strenqgth of the trailing edge waves |is

T/u2 = ~ 2 (1 + R (1 + elo)) . (83)
The blade force is given by
£Y/302cq = = & [1 - e-10(1-d,/c)

+ (l-cosg)R{2(1~d,/c) (84)
- (R*l)(dl‘dz)/(:}]r

and the moment about the leading edge is
m/ju2c2y = - % [1 - ei0(1-4,/c)?

+ (1~coso)R{2(1=a,/c)=-d,(d ~d,)(R+1)/c?
(a,-d,)2(R+1) (2R+1)/(3c?)}

(i sino)R{2(2-d,/c)(d,/c)
4,(d;-d,)(R+1)/c?}] (8s)

These results have been written for
torsion, but they also apply, to bending
with Ua replaced by hx R since
equations (1l1) and (12) show that when
w=20 the upwash velocities are then
identical. They also apply to the effect
of wakes from upstream obstructions,
since equation (44) shows that when
w=0 the upwash velocity is also uni-
form.
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The results are easentially those
derived by Kurosaka (1973) and by Strada,
Chadwick, and Platzer (1979) ana by
Nagashima and Whitehead (1977), using
different methods. These papers also
give formulae valid when the frequency is
small, but not zero, and correct to first
order in a . However, it appeara that
some of the terms in these formulae are
not entirely in agreement batween the
three papers.

Nagashima and Whitehead (1977) also
give formulae for force and moment in the
case of w=0 for supersonic axial
velocity.

Turning to the full unateady case
with a frequency which is not small, all
the available theories are complicated.
Therefore, only a brief qualitative
introduction to these methods will be
given There. The most straightforward
approach is to use a semi-infinite
cascade, assuming that there is no per-
turbation upstream of a first blade. The
flow may then be solved by the method of
characteristics, (Brix and Platzer,
1974), or by finite difference mathods
{Verdon, 1973). The number of blades in
the cascade must be chosen sufficiently
large for the blade force and moment to
approach limiting values. This involves
large computation times, since the
convergence with increasing blade number
is slow. Also it appears that the
results for the unsteady pressures on the
surface of the blades converge much
more slowly than the results for ths
blade loadings (Strada, Chadwick, and
Platger, 1979).

Calculations for an infinite cascade
at realistic frequencies must include two
physical effects. The first of these is
the reflections of the leading and
trailing edge waves from the adjacent
surfaces, as already discussed in the
case of steady flow. The second is the
acoustic resonance effect, as discussed
in the section "Fundamental Acoustic Wave
Solutions.” For a certain range of
phase angles, all possible acoustic waves
will propagate, and this regime is some-
times called the "subresonant” regime.
The range of the phase angles where one
or more of the possible acoustic waves
are of exponentially decaying type is
then called the "super-resonant" regime.
This regime normally occurs for negative
interblade phase angles, whsn the wave of
elastic vibration of a fan rotor travelsa
in the opposite direction to the direc-
tion of rotation, and is therefore clas-
sified as a "backward-travelling" wave.

A calculation in a single blade
passage, with the correct blade~to-blade
periodicity condition, has been given by
Verdon and McCune (1975). The solution
is formulated in terms of the velocity
potential, and the kernel function is
evaluated as a series of Bessel func-
tions. The internal reflections are
treated explicitly, and iteration is
necessary to deal with the influence of
the wake from one blade on the rear part
of the lower surface of the blade above.
This convergence fails in the ‘“super-
resonant” region. This limitation has
been removed by Verdon (1977) by using a
formulation in terms of pressure to £find
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the unsteady loading on the lower surface
behind the point at which the Mach wave
from the trailing edge of the next Dblade
below hits the lower surface.

Formulations in terms of pressure,
which relate more closely to the sub-
sonic solution given in the previous
section, have been given by Nagashima and
Whitehead (1977) and by Ni (1979). If an
attempt is made to calculate the kernel
function by the series glven in (55) it
is found that the series does not con-
verge. This behaviour is related to the
jump changes in pressure across the waves
propagated from the wsources. The tech-
nique used is therefore to subtract out
the steady and quasi-steady terms from
the series in (55), ¢to leave a series
which does converge, and this is done
in two different ways in these two
papers. It is also necessary to allow
for the reflections of the waves within
the blade passage explicitly. In super-
sonic flow there is no point in using the
transformations given in (58) and (60},
and uniform spacing along the chord seems
to be best for the points at which the
bound vorticity is specified and for the
points at which the upwash velocities are
matched.

A quite different approach has besen
used by Adamczyk and Goldstein (1978).
The problem is split into two parts. The
first part consists of the inlet region,
followed by a cascade of plates having
the same spacing and stagger angle as the
actual cascade, but with the chord
extending to X =+ « ., The second part
consists of the exit region, preceded by
a cascade of flat plates with the chord
exteanded back to x = - « . These two
parts are then solved by two separate
applications of the Wiener-Hopf tech-
nique. The solutions are then combined
to give a solution of the complete
problenm.

Computer frogran- based on these last
four very different methods have been
shown to give identical results. GSome
specimen results will be presented in the
section “"Specimen Results for Flat Plate
Cascades."

TRANSONIC THEORY
The equation governing semall devia-
tiona from a uniform flow has been given

by Verdon, equation {133). If the main-
stream Mach number is near unity the term

2
(1-M2)%;f

is negligible compared to the term

2iaM 3¢ ,
il -

This is true provided

|1-M| <cac/U
so the approximation is valid provided
the frequency is high enough. The trane

sonic small perturbation equation is
therefore

2 2
:_yg-__21;“%§+°—lg-o. (86)

This equation is also valid for
blades ot/ small thickness, provided
(39/3%)gready << wc/u
which leads to ¥ /
wc/U »> §2/3,

This argument shows that the tran-
sonic equation is at least aa good an ap-
proximation as the original acoustic
equation. In fact Landahl (1961} has
argued in detail that for isolated aerxo-
foils in the transonic range the acoustic
equation leads to physically inadmissable
solutions, whereas the transonic equation
gives the correct small pertubation solu-
tion. These arguments will be summarized
hsre.

The one-dimensional solution of the
acoustic equation, Verdon , equation
(133), for flow in the chordwise direc-
tion shows two waves, one, the ‘advancing
wave', traveling forward at a speed of
A(M+1), and the other, the ‘receding
wave', traveling at a speed of A(M-1).
The transonic equation (86) on the other
hand just shows the advancing wave
traveling at a speed of 2AM, and no
receding wave. Disturbances do not prop-
agate upstream in the traneonic solution.

Looking at the solution of the acou-
stic equation near M=l one sees that the
receding wave has a 1low velocity, and
therefore a short wavelength. If there
is a smooth distribution of sources along
the chord, the effects of the receding
wave will tend to cancel, as M+l, but
this cancellation will not operate at the
leading and trailing edges where there
are discontinuities in the source distri-
bution. If the Mach mumber is just above
1, the solution of the acoustic equation
will show large short~wavelength oscilla-
tions propagating back from the leading
edge. If the Mach number is just below
1, the soclution will show large short
wavelangth oscillations propagating up-
stream from the trailing edge. These
oscillations are not present in the solu-
tion of the transonic equation.

Now consider the actual steady flow
over an aerofoil with small but finite
thickness just below M=l. The flow will
be subsonic near the leading edge, sonic
near the maximum thickness point, and
supersonic up to the trailing edge vhere
there will be attached shock waves. Un-
steady receding waves generated at the
leading edge will go upstream, and reced-
ing waves generated at the trailing edge
cannot go upstream, 8o no receding wave
effects appear on the aerofoil from the
leading and trailing edges. This
behavior is quite different from the
solution of the acoustic equation, but is
matched by the behavior of the transonic
equation. 1f the freestream Mach number
is slightly above one, there will be a
shock wave ahead of the leading edge, but
the flow over the aerofoil will be the
same, and the argument is unaffected
{Mach number freetze).

At a somsvhat lower Mach number the
trailing edge ehock will move upstream
onto the aerofoil, and its position will
oscillate dus to the effect of the un-~
steady flow. This situation will not be
well modeled by either the acoustic equa-
tion or the transonic equation.




Landahl (1961) also shows that due
to a variation of Mach number along the
chord, the amplitude of the receding wave
varies strongly, growing in a flow de-
celerating through M=l, and @&ecaying in
an accelerating flow. This is in con-
trast to the solution of the acoustic
equation which shows a wave of constart
amplitude. The transonic equation, which
shows no receding wave should be a better
model.

Finally Landahl {1961)
nonlinear unsteady effects,
that these will prevent the amplitude of
the receding waves from becoming large
and will cause them to damp out within a
few wavelengths.

considers
and concludes

In cascade gecmetry the acoustic
equation becomes unusable between Mach
numbers of approximately 0.9 and 1.1. 1If
the Mach number is raised from 0.9, main-
taining the phase angle constant, an in-
finite series of resonances is passed on
approaching M=l, and another infinite
series is found just above M=l. Also, in
the supersonic range, the number of
wave reflections becomes infinite as M
approaches 1 from above. These features
maka the programs discussed in the pre-
vious two sections unusable in the tran-
sonic range.

It is concluded that the transonic
theory should be used for thin blades of
small camber between Mach numbers of
about 0.9 and 1.1, but that its use
should be confined to cases when there
are no significant shock waves on the
blade surfaces.

The effect of Mach number in the
transonic equation (86) can be removed by
a transformation similar to the Prandtl-
Glauert transformation used in subsonic
flow. All dimensions in the y direction
are scaled by the factor M. The trans-
formed cascade therefore has a different
spacing and stagger angle, but frequency
parameter and phase angle are unaffected.
The transonic equation then becomes

2 2

3 2iw 3¢ w
‘a‘i‘f'—u' 2+ gzt -0, (87)
It is therefore only necessary to con-

sider the case M=l in the
cussion.

following dis-

Switching to axial and
axes t and n, the transonic
comes

2 2 2
2 l_i - 3%¢ 2 l_%
sin“e T 2 8iné cose TIL + cos<e an

tangential
equation be~

iw (9¢ EY) w?
- G Y cos 8 + an sin @) + gz ¢ = 0.

If we now look for a solution of the
form ¢ = ¢ exp i(ag + 8n), we £ind that
the wave numbers are related by

a2 sin29 - 2af sine cos 8 + B2 cosls

2
- %E(c cos 0 + B sin 8) - ﬁz = 0.

Since 8§ is determined by the phaae
angle, this is a quadratic equation for
a, and may be solved to give
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(Ua/u) = {cose [(Ug/w)eine + 1]) ¢
[2(Ug/w) sine + 1]}/2}/ einle

and resonance
=1/(2 sine®).

occurs when (Vp/w) =

There is therefore only one value of
phase angle for resonance. If B exceeds
this value, (assuming positive stagger
angle), a is real and propagating waves
occur. If g is less than this value, a
is complex and decaying waves occur.
This resonance is associated with the ad-
vancing wave. The multiple resonances
associated with the receding wave have
been suppressed.

The transonic solution for zero stag-
ger angle and 180° phase angle has been
given by Savkar (1976) using Laplace
transform methods. This is the case of a

single aerofoil vibrating in a wind tun-
nel. He concludes that the degree of
interference from the tunnel walls is

weaker than would be thought of at first.

A transonic solution for general
stagger angle and phase angle has been
given by Surampudi and Adamczyk (1964,
1985) using the Wiener-Hopf procedure.
1t is shown that the transonic solution
joins on smoothly to the subsonic and
supersonic solutions at Mach numbers of
.9 and 1.1. It is found that bending
vibration is always stable, but that
torsional flutter is predicted. It is
found that increasing the frequenay para-
meter and decreasing the stagger angle
and solidity have a stabilizing effect om
torsional flutter.

The transonic solution therefore
fills in the gap between the subsonic and
supersonic solutions. It is however
likely that real effects such as shock
waves and boundary layers will have a
much larger effect than in the subsonic
and supersonic regimes.

A transonic solution for =zero stagger
and arbitrary phase angle was developed
by Schlein (1975) and Platzer et al
(1976). This approach was based on the
time-linearized transonic flow theory de-
lineated by Verdon in this volume. WNe-
glecting the product terms on the right-
hand side of Verdon's equation (147) and
introducing the approximations

¢x = 0 and (y+l) exx = Conat= i > o

a linear parabolic equation is obtained,
following Oswatitsch and Keune (1955} and
Teipel (1964).

Three different methods of solution
were developed using Laplace and Fourier-
transform techniques as well as a collo-
cation technigque. The inversion technique
due to Hamamoto (1960) proved to be the
computationally most efficient procedure.
The collocation technique was based on
previous work by Gorelov (1966) for
supersonic oscillating cascades. Computed
stability boundaries showed increased
regions of instability with decreasing
blade spacing.
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ACTUATOR DISC THEORY

Actuator disc theory applies to
certain special cases of the more general
theory discussed in previous sections,
and in these c¢asee it will be found
poseible to derive apalytic results in
closed form. There are two fundamental
limitations.

The first of these is that the time
taken for the fluid to flow through the
cascade must be small compared with the
time for one oscillation of the flow.
This is equivalent to assuming that the
frequency parameter ) must be small,

A = wc/U << 1.

The second fundamental limitation ie
that the interblade phase angle must be
small,

lo] << 1.

In general 1 and ¢ will be of the
same order of magnitude. The wavelength
of the disturbance in the chordwise (x)
direction is 2wc/A and the wavelength

in the tangential (n) direction is
2%s8/c , so that these wavelengths are
comparable.

These assumptions enable the flow to
be considered from two viewpoints. First
there is a picture (Figure 5), drawn to a
scale comparable with the wavelength of
the disturbance, in which the blades are
very small, and the cascade is equivalent
to an actuator disc. A second picture,
similar to Figure 1, may be drawn to a
scale comparable to the blade chord, and
this just shows a few of the blades near
the origin of Figure $. In this second
picture the flow may be regarded as
quasi-steady, and any kind of steady flow
cascade data can be used.

In the actuator disc plane, and up-
stream of the actuator disc, the pertur-
bations <consist of Jjust one of the
acoustic wave solutions discussed in
“Fundamental Acoustic Wave Solutions,"
with r = in equation (19). The
solution carrying acoustic energy up-
etream is required. Downstream of the
actuator diec, the corresponding solution
carrying energy downstream is required,
plus a vorticity wave as discussed in the
section "vorticity Wave Solutions."

The solution for incompressible uns
stalled £flow through a cascade of flat
plates at rero incidence has been given
by whitehead (1959), and for subsonic
flow by Whitehead (1986). Three condi-
tions from the cascade plane are re-
quired. These are for continuity, devia-
tion, and =zero stagnation pressure loss.

The continuity squation is

P2 vrEa P Vrgl
Fry oty o'W

where the suffix r refers to conditions
relative to the blades, and suffices 1
and 2 refer to conditions just upstream
and downstream of the cascade, but very
near the origin in the actuator disc
plane.

(88)

The condition for deviation in sub-
sonic flow is obtained by applying the
Prandtl-Glauert transformation to get an
equivalent cascade in incompressible
flow, and then using the known analytical
result for incompressible flow in cae-
cades of flat plates given by Durand
(1934). In the Prandtl-Glauert transfor-
mation all distances parallel to the
chord are unchanged, but ail distances
normal to the c¢hord are reduced by a fac-
tor B, where Bi=1-M2, Using a * to indi-
cate quantities in the traneformed
plane, the stagger and space/chord ratio
are given by

tan (0*) = tan (8)/B , and

(89)
(s*/c) = B (8/c) cos(0)/coe(p*) .
The deviation is then given by
Vry, = b vry, . (90)

This esquation holds in both the original
and the transformed planes. The constant
b is related to the space/chord ratio and
the stagger angle in the transformed
plane as follows

vc/8* = - cos 8" tn b + 2 sin o* tan-l

{{1-b)tana*/(1+b)} (91)
For closely spaced blades, b = 0 ir a
good approximation.
The condition for zero  etagnation
pressure loss is
Proz = Prol (92)
where the suffix zero means a stagnation
preseure.

Equations (88), (89) and (91) apply
for the flow relative to the blades in
the cascade plane. en these equations
are combined with the actuator disc plane
squations, the whole set may be solved.
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Fig. 5. Actuator Disc Plane.



Results from actuator disc theory
depend on the ratio of phase angle to
frequency, although both of theae
quantities are individually esmall. It is
therefore convenient to write

= gU/u8 = gc/fis. {93)

The result for the blade force_,due to
blade vibration with velocity hy in
the y direction is then

=2T E (1-b (94)
-b H+ 1 +

fy/sUchy =
where
E = (uM2ysine + 1)(1-M2coe?s)
H = (P~Ts8ind8}(-R+ucosd)
1 = (P+Tsine}(R+uconss)
K = 2Tcos8({1-M2cos29)
P = ycos8{l-M2cos?8)-ginscose MZ({l+yaine)

R = T(ut+sina)

T » ((p2+2psine+l)M2-y2}31/2
for propagating waves,
T = «i(~{u2+2u8ine+1)IM24y2}1/2

for decaying waves.

The corresponding result for super-
sonic flow, with a subsonic axial veloci-
ty, has been given by Whitehead and
Davies (1983).,

In supersonic flow the continuity
equation (87) is unchanged and there is
no Kutta condition at the trailing edge.
But provided the axial velocity is
subsonic, and that case (a) in Figure 3
is excluded the incidence angle of rela-
tive flow into the cascade is zero
(Kantrowitz, 1946). This condition is
used instead of the deviation condition
{90), and gives

vyl = hy (95)

The result of the elimination is

- TE
fy/sUchy = %ig- (96)

Ew (p2 + 2y 8in 0 + 1)(1 - Micos2s)
F = [M2cos 8(sin 6 + y)=ucos & + T sin o]
G = [ycoa 8 - (y + sin 8)T]

where

T ==~ {({(p2+ 2us8in @ + 1)M2 - 2)1/2
it

u < M/{- Maitn o8 + (1-MZcoale)1!/2)

case of propagating waves,

T = =1 {(u2 + 2y ain 8 + 1)M2 + y2}1/2
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if
M/{-M sin 8 + (1-M2cos2g)1/2} ¢ y
< M/{-M ain o - (1-M2cos?e)1/2}
case of decaying waves,

T = + {(p2 + 2p sin 8 + 1)M2 - ,2)1/2

if
M/{- M sine - (1 - M2cos?p)1/2} < 4,

case of propagating waves.

The force is zero at the cut-off or
resonance points, where T=0 . The
force is also zero when the axial
velocity ie sonic, M cosg = 1 .

These results also apply .to torsional
motion of the blades, with h replaced
by Ua , and to the effec of wakes
being convected into the cascade. This
is because at zero frequency the upwash
velocities given by equations (11}, (12)
and {44) are all uniform.

These results can also be used to
£find the moment acting on the blades.
Since the cascade operates in quasi-
steady flow, the force acts at the centre
of pressure for steady flow in the
caacade. In subsonic flow this point can
be found by using thin aerofoil theory
for cascades (Pistolesi, 1937). In
supersonic flow the centre of pressure
is a distance {c - d2/2) downstream of
the leading edge, as in the section
“Solutions for Supersonic Cascade."

Actuator disc theory can be extended
in a number of ways. For instance,
results have been obtained for incompres-
sible flow through cascades of closely
spaced blades having large amounts of
turning of the mean flow. (The results
given in the paper by Whitehead (1959)
are wrong in this respect. The correct
results are given in an appendix to the
paper by Whitehead (1962) . Results have
also been obtained for incompressible
flow through cascades of clogely spaced
blades having a stagnation pressure loss
which varies with incidence.

The most important extension of
actuator disc theory is when the
restriction to small frequencies is
relaxed, but the restriction to small
phase angles is maintained. This is now
called semi-actuator-disc theory. This
method was developed by Sohngen (1953)
and by Tanida and Okazaki (1963) for
incompressible flow and for translational
motion of the blades.

The equations for the actuator disc
plane are the same as in actuator disc
theory. The three equations required
from the cascade plane are cbtained by
considering the control surface shown in
Figure 6. The control surface ie the
space between two blades, 13°'344°2)l, and
moves at a constant speed equal to that
at which the blade 12 travels at that
instant. The sides of the control sur-
face 33' and 44' are the displacement of
blade 34 relative to the blade 12, and
are given by
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s8' = 'hy .i(ﬂ"- + a) - hy .itﬂt - iuhy .1mt
since ¢ is small.

Applying continuity to this control
surface gives the result

Vg, - Vg, t (v.‘l - Vnz)(o/ul)ﬂy ain ¢
-~ i(e/n) oﬁy =0 . (97)

Here vy} and vg2 are the absoclute un-
steady axial velocities. The third term
arises from the change of steady tangen-
tial velocity giving a net flow through
the sides of length s‘, and is an
actuator disc term. The last term arises
from the change in gap between the blades
and is a semi-actuator-disc term.

The second equation from the cascade
plane is for the relative flow exit
angle, and equation (90) for the relative
velocity normal to the blades is un-
changed. The wusual approximation is
b = 0.

The third equation relates the pres-
sure at outlet from the cascade to the
pressure at inlet. This relationship ie
derived in two stages. It is presumed
that a loss of relative stagnation pres-
sure occurs at the inlet to the cascadse,
so that

1
Proy = Pros =3 n vrg? 3 (98)

wvhere the suffix 3 refers to a plane just
behind the 1leading edges of the blades,
and Z is a stagnation pressure loss
coefficient which is a function of the
inlet angle of flow relative to the cas-

cade or Vrp/vrg).

ﬁ ei(ufﬂ‘rl

Pig. 6. Control Surface for Semi-
Actuator-Disc Theory.

The relationship between the relative
stagnation pressure at cascade outlet
(plane 2) and at plane 3 is obtained by
integrating the equation of motion in
the x direction along the passage
between two adjacent blades to give

Pros - Proz = iwpec vex - (99)

With the addition of a momentum
eguation in the n direction, which
relates the blade force to the flow
variables, a complete set of linear
equations is available and may be solved.
The result is too lengthy to give here,
but may be found in the paper by Tanida
and Okazaki (1963).

Semi-actuator-disc theory has been
extended to compressible subsonic flow.
The case of transmission and reflection
of sound waves by a cascade, and the
generation of sound waves due to an in-
coming vorticity wave, have been treated
by Kaji and Okagaki (1970). The effects
of compressibility on flutter in subsonic
flow have been considered by Kaji and
Okaczaki (1972).

Semi-actuator-disc theory has been
extended to supersonic flow by Kaji
(1980), and in a somewhat different way
by Adamczyk (1978).

The seni-actuator-disc theories are
probably the wmost useful available for
stallea flow. But they do require
experimental or empirical input giving
the nature of the 1loss function % .
Actual stalling processes take a finite
time to develop. The theories can be
extended to allow for a time lag, but
again experimental or empirical informa-
tion must be provided to determine the
time constant.

SINGULARITY THEORY

We now turn to a guite different way
of building up solutions for the unsteady
flow through cascades by the super-
position of simple analytical sclutions.
In this case, the solutions are
restricted to lossless incompressible
flow, but they apply to blades with large
amounts of thickness and camber. The
particular method which will be sketched
in the following is largely taken from a
paper by Atassli and Akai (1980).

The potential flow past any number of
two-dimensional bodies of arbitrary shape
may be represented as being due to a
distribution of singularities placed
around the boundaries of the bodies. The
singularities may be either a distribu-
tion of sources and sinks (plus at least
one vortex for each body if that body has
circulation) or a distribution of vor-
tices (plus at least one source or sink
if the body has a net flow out or in from
the surface). A further alternative is
to use doublets. A distribution of doub-
lets placed around the boundary and di-
rectsd along the boundary is equivalent
to a distribution of sources and sinke,
and a distribution of doublets directed
normal to the boundary is eguivalent to a
distribution of vortices (provided there
is no net flow out or in from the surface
and no net circulation). The wall-known
Martensen (1959) method for steady flow




in cascades uses a distribution of vor-
tices round the surfaces of the blades.
In this case the notional flow inside the
contourse of the surfaces has =zexoc velo-
city, 8o that the strength of the vor-
tices can be arranged to make the tan-
gential velocity just inside the contour
equal to zero. For the unsteady case how-
ever, the velocity normal to the surface
just outeside the surface is used as a
boundary condition. Also, since in the
unsteady case there is vorticity shed
from the blades into the wake, it is nec-
essary to use an additional distribution
of vortices along the wakes of the
blades.

In order to handle singularity theory
it is convenient to work in a complex =
plane where z = x + iy . It is then
necessary to change the notation slightly
and make all the unsteady variables
proportional to exp(jut). The unsteady
variables are then hypercomplex numbers,
which have four components, a real
component, an i component, a j com-
ponenté and an ij component . (12 =
-1, 3 = =~ 1, but we must not write
i) = -1).

If there is a source density distri-
bution m on the surface at the point =z ,
so that the source strength for a length
of surface &8t is métr , then the
velocities induced at a point zl not on
the surface are given by

vy = dvy = 3= [ oM (100)
where the integral is taken over the sur-
faces of all blades and their wakes.

Similarly for a vortiecity distribu~
tion yy , the induced velocities at gl
are given by

_ - 1 Ytar
ve - vy =5l [ 35 (101)

In general any combination of source
and vorticity distribution may be used.

Equations (100) and (10l1) may therefore
be combined to give

1 (Yt + im)ds
vx = vy g | T

1 hpdz
"I Pt

(102)

where the 1integral ias now a contour
integral taken anticlockwiae round the
blade surface. by 18 a complex
singularity strength. If pydz 1is real
it corresponds to pure vortlcTty, and if
updz is imaginary it corresponds to a
pure source-sink distribution.

Equation (102) gives the induced
velocities at a poigt zl which 1s not om
the surface. If 2" is on the surface the
integral is singular and the induced
velocitiea just ocutside the surface are

given by

(z)dz
e -ty =gy $ 5T - 3wz
(103)

and the induced velocities just inside
the surface are given by
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d
vx = vy = 5o $ Eﬂﬁfl': + % umiz') .

2g1 z -
{104)

The extra terms on the right hand side of
these equations give a jump in tangential
velocity across the surface equal to the
strength of the vortex sheet at the sur-
face and a Jjump in normal velocity acrose
the surface equal to the strength of the
source-sink distribution along the sur-
face.

Since the caascade is assumed to be
vibrating with an inter-blade phase angle
¢ . the singularity strength on the mth
blade at z + msel® is given by

¥m - ¥o .jlno

Hence the velocities 1induced just outside
a point zl on the reference blade are

- iy, = Xt (z)eimoae
V2T Y TR b z + maeld - 2!
(105)

- % uo(ll)

where the contour integral is now taken
round the reference blade m = 0 .

The series can be summed analytically
to giv? the induced velocities just out-~
z

side as
. 1
vx - vy = 2 $ K(z - zl)p(z)ae
(106)
- -12; uo(ll)

where

'ej("‘o)z.

K(z*) = :;IF:I;T:;:T Q <g < 2¢ . (107)

This 1is a more general form of equation
(14). The integral in equation (106} is
taken round the reference blade and its
wake.

The contour integral of o round
the reference blade is

$uods = vy + dm)dr = T4 (108)

where Ty is the circulation round the
reference blade, and the integral of the
source term is zero since there is no net
flow out of the blade surface.

Verdon's egquation (75) gives the jump
in potential across the wake as

[,]I - ﬁ,]] . e~Ju{d=d,p)  (109)

where A is the drift function, defined
so that the difference in A between any
two points on the same mean streamline is
equal to the time for a particle to move
from one point to the other under the
influence of the mean flow. In this case

T
A=~ Apg = v.~l ar (110)
TTE

which gives the time taken for fluid to
flow from the trailing edge to the point
in question on the wake, and the integral
is taken along the wake line.
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The jump in potential across

the wake
at the trailing edge is just the circula-
tion, so that

[’B e 0

Differentiating equation (109) with
respect to distance along the wake then
gives

B- H-vee-omn
(112)

e-Jula-dgpp) = —Jurgv,~le-Jula-a.,.) .

{111)

This equation gives the strength of the
vortex sheet at any point in the wake.

The boundary condition to be satis-
fied Jjust outside the blade surface is
given by Verdon's equation {69). For
rigid body motion of the blades, the dis-
placement vector is given by Verdon's
equation (102) and the normal velocity
just outside the blade surface reduces to

*- & > +> L J
vp = Jur.n + oV, = (r.v V).n, (113)

where

+* - »>
r=h+ax Rp (114)
The integral

equation for u, 1is
therefore

Lir 4 Kiz-2)uo(eaz - 3200 1 k(e-e!)

Vel emdelamspe) ar - L (1 A

= Jur.n + aV, = (5.9 V).n (115)

where the first integral is taken anti-
clockwise around the reference blade,
and the second integral is taken along
the wake of the reference blade from the
trailing edge to downstream infinity. To
is related to u, by equation (108).
Thias equation has to be solved, subject
to the additional Kutta condition at the
trailing edge, which specifies that g,
must not be infinite at that point.

Details of a solution method are
given in the paper by Atassi and Akai
(1980). The first move is to solve for

the steady flow. Then for the unateady
flow equation (115) is solved numerical-
ly. The last term on the right hand side
of equation (l115), which arises from
the translation of a point on the blade
surface through the msan velocity field,
may be singular at the trailing edge and
exhibits large values round the leading
edge. This is a source of numerical
difficulty. Atassi and Akai (1980) over-
came the difficulty essentially by
writing

1 > »
Vo () = u, (2) + 2. 7PV, (116)

By using u: as the primary measure of

the unknown singularity strength instead
of yu, ., the awkward last term on the
righthand seide of equation (115) may be
cancelled.

The complex singularity strength v,

may in principle be any combination of
source and vorticity strengths. This
arbitrariness corresponds to the idea
that wheresas the flow ocutside the blade
surfaces is fixed by the physics of the
problem, the notional flow inside the
blade wsurfaces may be chosen in an
convenient way. Atassl and Akai (1980

therefore chooss to make ﬂ: real with

respect to the space variables. The
singularity therefore corresponds to pure
vorticity when the surface is parallel to
the x {chordwise) axis, and to pure
source or sinkse when the surface is
parallel to the y axis.

The integral equation (115) is solved
numerically by matching the normal
velocities at N points round the blade
surface, vhere N must correspond to the

nunmber of pointa at which the singularity
strength is specified. Once the
singularity strength has been found, the

velocity and pressure distributions just
outside the blade surface may be found.
The pressure distributions are then
integrated to give the aerodynamic forces
and moment.

Due to a programming error, the
results for the real part of the pressure
distributions given in the paper by
Atassi and Axal (1980) are not correct.
Results for which the error has been
?orrogted are given by Akai and Atassi

1981).

SPECIMEN RESULTS FOR FLAT PLATE CASCADES

In order to specify the unsteady
performance of cascades of flat plates,
five independent non-dimensional vari-
ables are necessary. These are the space
to chord ratio, the stagger angle, the
Mach number, the frequency parameter, and
the interblade phase angle. Excluding
the acoustic information, and the detail
of the pressure distributions, there are
twelve dependent variables of interest.
These are the real and imaginary com—
ponents of the force and nmnoment for
bending, torsion, and wakes. This number
of variables makes any general presenta-
tion of the results totally impractical,
and it is only possible to present speci-
men results. It is therefore necessary
to have computer programs available so
that any particular cases of interest can
be calculated.

rFor incompressible flow, tables of
specimen results have been made by
wWhitehead (1960). Figure 7 illustrates
the force coefficient due to bending for
a space to chord ratio of unity and a
stagger angle of 60°. In this and the
following figures the axes are the real
and imaginary parts of the force
coefficient, and lines of constant
frequency parameter and phase angle are
shown. In general the lines of constant
frequency parameter form closed loops as
the phase angle 1is varied. However, the
line of zero frequency parameter is not
closed for finite phase angles. In order
to close the loop actuator disc theory,
with various values of o/\ in the limit
0+0 and A+0 , must be used, and the
result for this is shown on Pigure 7.
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8imilar 1results for the same cascade Specimen results for two supersonic
in subsonic compressible flow are shown cascades are shown in Figures 10 and 11.

in Figure 8
and on PFigure 9 (for
O-B).
compressible
the very

(for a Mach number of 0.5)
a Mach number of
The presentation of results for
flow 1is made difficult by
wild behaviour of the
coefficients which occurs near the
acoustic resonances. For this reason
the real and imaginary parts of the force
coefficient are plotted separately
against phase angle on figures 9% and 9b.
One resonance on these figures at A = 0.5
and ¢ = 102.45°* 4is shown in detail. The
other reaonances are merely indicated as
discontinuities in the curves. Only the
parts of the loops of constant frequency
parameter which are in the well-beshaved
sub-resonant region are ehown on  the
figures. Figure 8 alsc shows the actua-
tor disc case: there is also a range of
values of o/)% for which CFR ias purely
real, 80 that the 1lins 1lies along the
real axis. Figure 9 at the highsr Mach
number of 0.8 illustrates the wild fluct-
uvations which occur near the resonance
point at the frequency parameter of 0.5,
but at the higher frequency parameters
the results steady down and become
much less dependent on frequency para-
meter and phass angle.

These cascades 2are examples used by
Verdon and McCuns (1975) which have been
rather widely used as test cases. Cas-
cade A (Figure 10) has the wave pattern
illustrated in figure 3b, whsreas Caacade
B (Pigure 11) has the additional internal
wave reflections illustrated in Figure
3c. On these figures the wild behaviour
near the acoustic resocnance has Dbeen
largely suppressed, but on Figure 10 the
complete loop for a frequency parameter
of 0.602 is shown and illustrates typical
beshaviour.

Pure bending flutter of a system with
no machanicali damping is predicted if the
rsal part of the force coefficient due to
bending is positive. Figures 7 to 11 show
that the real part of this coefficient is
alway nsgative, so that re bsnding
vibration is damped. This g:haviour hae
always been found for flat plate cascadss
at zero incidencs. However, actuator-
disc and semi-actuator-disc analyses
allowing for steady deflection of the
steady flow through the cascade do show
the possibility of pure bending flutter.
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Pure torsional flutter depends on a
further parameter, which is the position
along the chord of the torsional axis.
Torsional flutter is predicted by these
theories if the frequency parameter is
sufficiently low. The effect of compres-
sibility of the fluids is generally found
to be stabilizing as the Mach number
increases in the subsonic range. But
there is also a theoretical poesibility
of ‘“resonance flutter', over a very
narrow range of interblade phase angle
close to the acoustic resonance condition
at comparatively high frequency para-
meters (Whitehead 1973). Whether this is
a real danger on practical machines is
not known.

CONCLUSIONS
This chapter has presented what are

regarded as the moat important two-
dimensional solutions which can be ob-

tained by the superposition of elementary
analytical aolutions. This has enabled
cascades of flat plates t© be treated up
to Mach nmumbers at which the axial
velocity becomes sonic. Also, singular-
ity theory, valid for incompressible flow
through cascades of thick canmbered
blades, has been discussed in the section
"8ingularity Theory" and actuator diec
theory, valid at low frequencies and for
small phase angles, in the section
“Actuator Disc Theory." These methods
enable useful predictions to be made for
the vibration characteristics of real
blades. But for turbine blade sections
with a lot of turning and with high Mach
numbers or for compreesor blades having
strong shock waves in the flow, these
mathods are hardly adegquate, and it is
necessary to go to field methods. These
will be discussed in the Chapter,
"Numerical Methods for Unsteady Transonic
Flow."
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