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Eigenanalysis of Unsteady Flows About
Airfoils, Cascades, and Wings

Kenneth C. Hall*
Duke University, Durham, North Carolina 27708

A general technique for constructing reduced order models of unsteady aerodynamic flows about two-
dimensional isolated airfoils, cascades of airfoils, and three-dimensional wings is developed. The starting point
is a time domain computational model of the unsteady small disturbance flow. For illustration purposes, we apply
the technique to an unsteady incompressible vortex lattice model. The eigenmodes of the system, which may be
thought of as aerodynamic states, are computed and subsequently used to construct computationally efficient,
reduced order models of the unsteady flowfield. Only a handful of the most dominant eigenmodes are retained
in the reduced order model. The effect of the remaining eigenmodes is included approximately using a static
correction technique. An important advantage of the present method is that once the eigenmode information has
been computed, reduced order models can be constructed for any number of arbitrary modes of airfoil motion
very inexpensively. Numerical examples are presented that demonstrate the accuracy and computational efficiency
of the present method. Finally, we show how the reduced order model may be incorporated into an aeroelastic

flutter model.

Introduction

N recent years, significant progress has been made in the devel-

opment of unsteady aerodynamic analyses used to predict the
flutter and forced response of isolated airfoils, cascades of airfoils,
wings, and even complete aircraft configurations. Most unsteady
aerodynamic models can be divided into two main groups: time
domain analyses and frequency domain analyses.

In time domain analyses, one discretizes the governing equations
on a computational mesh and then marches the solution from one
time level to the next. At each time step, one imposes boundary
conditions arising from either the prescribed motion of the airfoil
or wing, or from a prescribed incident gust. For example, Davis and
Bendiksen' have time marched the two-dimensional Euler equations
to find the unsteady flow about vibrating airfoils. Batina® has com-
puted the time dependent Euler flow about a complete harmonically
deforming aircraft. Chaderjian and Guruswamy® have applied time
marching techniques to solve the transonic Navier-Stokes equations
about an oscillating wing. Time domain Euler and Navier-Stokes
solvers have also been applied to unsteady flows in turbomachinery
cascades, e.g., Refs. 4-8. The time domain analyses, although able
to model extremely complex flow features and nonlinear effects, are
computationally expensive due to the requirement that the solutions
be both accurate and stable.

Using a frequency domain analysis (sometimes referred to as
time linearized), one assumes that the unsteadiness is small com-
pared to the mean flow. Thus, the unsteady flow is governed by lin-
ear small disturbance equations. The unsteady motion is assumed
to be harmonic in time (¢/“") so that the time derivative operator
9/3r gets replaced by iw. Hence, time does not appear explicitly
in the governing equations. The resulting linear equations for the
unsteady small disturbance flow can be solved very efficiently. The
frequency domain approach has been applied to isolated airfoils,’
two-dimensional cascades,'%~!* and three-dimensional cascades. !¢

One of the main difficulties with both the time domain and fre-
quency domain techniques is that a separate analysis must be per-
formed for each frequency and mode shape of interest. Unfortu-
nately, in aeroelastic calculations, the frequency and mode shape are
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often not known a priori. A number of investigators have circum-
vented this difficulty by simultaneously marching the fluid dynamic
and structural dynamic equations of motion (e.g., Refs. 17-19).
This approach, although relatively straightforward, is still compu-
tationally very expensive. Furthermore, separate analyses must still
be performed for each reduced velocity or mass ratio of interest.
Additional analyses must also be performed if, for example, the
aircraft configuration is modified by changing the configuration of
under-wing stores. Finally, for applications to active control prob-
lems, such simulations do not provide the control engineer with the
Laplace plane information needed to formulate control laws.

One approach to overcoming these difficulties is to develop “re-
duced order” models of the time domain or frequency domain aero-
dynamic analyses. The goal is to describe the unsteady aerodynamic
loads over a range of reduced frequencies using models with a small
number of aerodynamic states. One way to do this is to simply eval-
uate the unsteady load due to a particular mode shape of vibration
at a number of reduced frequencies and then curve fit the results to a
convenient time domain representation.??=?* The approximate time
domain representation is usually taken to be a sum of exponentials
since the corresponding Laplace transform is a rational polynomial.
The parameters in the approximation, such as the time constant
of the exponentials or the constant multiplying each exponential,
are found by minimizing the error between the approximation and
the exact solution at a finite number of frequencies. Note that this
method requires that approximations for the unsteady aerodynamic
loads be computed for each mode shape of the vibrating wing or
mode shape of gust disturbance. Also, this curve fitting approach

» provides little insight into the physics of the unsteady flowfield.
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In structural dynamic problems, the dynamic behavior of com-
plex structures is often reduced to a few degrees of freedom using
normal mode analysis techniques. One might expect that some of
these techniques could be applied to unsteady aerodynamic models.
However, whereas modal analysis of structures is quite common-
place, modal analysis of unsteady aerodynamic systems is not. A
notable early method to predict the natural modes of low-speed
compressible flow about a cascade of unstaggered flat-plate air-
foils was developed by Parker. Parker found that the predicted
eigenfrequencies of the system were in good agreement with exper-
imentally observed acoustic resonances. More recently, Mahajan et
al.? have computed the aeroelastic stability of a cascade of airfoils
in compressible flow by computing the eigenvalues of the com-
plete fluid/structure model. The airfoils were modeled using a typ-
ical section model; the flow was modeled using a two-dimensional
time-marching potential code. In a recent paper by the author and
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Fig.1 Three-dimensional vortex lattice model of unsteady flow about
a finite aspect ratio wing.

his colleagues,”’ the eigenvalues and eigenmodes of a frequency
domain flow analysis of unsteady compressible flows about a cas-
cade of airfoils were computed. The eigenmode information was
then used to construct accurate, but very compact, reduced order
aerodynamic models.

In this paper, the author describes how reduced order models
may be constructed from time domain computational fluid dynamic
(CFD) analyses. The method is general and may be applied to a wide
variety of unsteady flow models. To demonstrate the approach, the
method is applied here to a time domain vortex lattice model of un-
steady incompressible flow. Numerical results are presented which
show that only a few of the hundreds of eigenmodes of the system
need to be retained in the reduced order aerodynamic model to ob-
tain accurate results. Finally, the paper describes how the reduced
order aerodynamic model may be incorporated into an aeroelastic
model of flutter.

Theory
Vortex Lattice Model

The flow about a two-dimensional isolated airfoil, cascade of
airfoils, or a three-dimensional wing is assumed to be incompress-
ible, inviscid, and irrotational. Hence, the unsteady flowfield may
be modeled using potential flow techniques. We use an unsteady
vortex lattice method. A typical three-dimensional vortex lattice
mesh used to compute the unsteady flow about a rectangular wing
is shown in Fig. 1. For simplicity in the following description of
the vortex lattice model, we limit the discussion to two-dimensional
airfoils and cascades.

The airfoil and wake are divided into a number of elements. In
the wake, the elements are all of equal size Ax in the streamwise
direction. Point vortices are placed on the airfoil and in the wake
at the quarter chord of the elements. At the three-quarter chord of
each airfoil element is placed a collocation point. At these points,
we require the velocity induced by the discrete vortices to equal
the downwash arising from the unsteady motion of the airfoil. This
relationship may be expressed as

N
i e T fle=q, 00 6]

j=1

where w/'*! is the downwash at the ith collocation point at time level
n+1,T; is the strength of the jth vortex, and K;; is a kernel function
which depends on the particular problem being solved. Also, M is
the number of vortex elements on the airfoil surface, and N is the
total number of vortices on both the airfoil and wake. The downwash
wi*! may be the result of airfoil motion or, alternatively, due to an
incident vortical gust.

For an isolated flat-plate airfoil in two-dimensional incompress-
ible flow, the kernel function is given by

Kij = 1/[27(xi — §))] @

where x; is the location of the ith collocation point, and §; is the
location of the jth vortex.

For a cascade of two-dimensional flat-plate airfoils, we consider
the case in which the downwash on all of the airfoils is identical
but shifted in phase by a constant interblade phase angle o on each
successive airfoil. Thus, the vortices on each airfoil and wake will

be identical to the vortices on the reference airfoil and wake but
shifted in phase by ro where r is the number of the airfoil in the
cascade (r = 0 corresponds to the reference airfoil). Therefore,
the kernel function represents the influence of an infinite row of
phased vortices on the reference airfoil. An analytical form of this
summation is given by Whitehead,?

Kij = W(xi — &) — W(—00) 3)
where
1 | exp[—(r — o) exp(i®@)z/s +iO]
i e [ sinh[ exp(i©)z/s]

exp[+(mr — o) exp(—i®)z/s — iO]
sinh[7r exp(—i®)z/s)

Here © is the stagger angle, s is the airfoil-to-airfoil gap, and the
interblade phase angle o is restricted to 0 < o < 2.

Next, we consider the modeling of the vorticity in the wake.
Unsteady vorticity is shed in the wake; its strength is proportional
to the time rate of change of circulation about the airfoil. If the
time step At is taken to be equal to the time it takes the vorticity to
convect from one vortex station to the next (Ar = U Ax), then the
strength of the first vortex point in the wake at the time level n + 1
is given by

M
== (r"-13) @
j=1

Once the vorticity has been shed into the wake, it is convected in
the wake with speed U, the freestream velocity. For the special case
where Ar = U Ax, this convection is described numerically by

PP =TL,. i=M+2,N~-1 ®)

Finally, because the vortex sheet is infinitely long but the computa-
tional model has a finite length wake, special treatment is required
at the last vortex element. Otherwise, the starting vortex would dis-
appear abruptly when it reaches the end of the computational wake
producing a discontinuous change in the induced wash at the airfoil.
To alleviate this difficulty, the convected vorticity, upon reaching the
end of the wake, is allowed to dissipate smoothly using the following
relationship:

[F=T7, +alf, i=N ©)

where « is a relaxation factor. For the isolated airfoil problem, the
relaxation factor is selected so that the unsteady indicial response
agrees well with the Wagner indicial response function?; usually,
095 <e < 1.0.

Putting together the kernel function equations [Eq. (1) and Eq. (2)
or Eq. (3)], the conservation of circulation [Eq. (4)], and the wake
convection equations [Egs. (5) and (6)] gives in matrix notation

AT 4+ BI™ = w™*! m

where I is a vector containing the strengths of the vortex elements
and w is the vector containing the prescribed downwash. The ma-
trices A and B are large sparse matrices.

Given a prescribed time history of the downwash, Eq. (7) is simply
marched in time from one time level to the next to find the time
history of the strengths of the vortex elements. Conceptually, the
solution at time level n + 1 is expressed in terms of the solution at
time level n by

" = A [w"! — BIM) (8)

Of course, the matrix A is not actually inverted. Instead, the matrix
A is decomposed just once using lower-upper (LU) decomposition.
Then, at each time step, Eq. (8) is solved using one forward and one
back substitution.

Once the time history of the unsteady vorticity has been com-
puted, one can compute the unsteady lift and moment acting on the
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airfoil. Making use of Bernoulli’s equation, one finds that the un-
steady lift L and moment Mg, measured about the elastic axis are

given by
b d x
L =[ p Uy(xJ+—f y(x1)dx |dx ®
-b ar J_,
b d X r
ME,\:f p(x—e)[Uy(x)+$f y(x:)d-rl]dx (10)
-b -b

where y is the (continuous) vorticity on the airfoil surface, p the
density, b the semichord of the airfoil, and e the distance of the
elastic axis aft of the midchord. Discretizing Eqgs. (9) and (10) gives

=1, -7+ [ (11
Mot =L .I" + L. T (12)

where I, I», I3, and L, are row vectors which approximate the inte-
gral operators in Egs. (9) and (10).

Finally, although the preceding development is for two-
dimensional flows, we have implemented a similar unsteady vortex
lattice method for flows about three-dimensional wings.

Reduced Order Aerodynamic Model

In this section, we derive a reduced order model of the vortex
lattice model described earlier. Consider the generalized eigen-
value problem

ziAx; +Bx; =0 (13)

where z; is the ith eigenvalue and x; is the corresponding right
eigenvector, and the matrices A and B are the same as those given
in Eq. (7). More generally, we may write

AXZ+BX =0 (14)

where Z is adiagonal matrix containing the eigenvalues of the gener-
alized eigenvalue problem, and X is a matrix whose columns contain
the corresponding right eigenvectors. Similarly, the left eigenvector
problem is given by

ATYZ+B'Y=0 (15)

The eigenvectors satisfy the orthogonality conditions
Y'AX =1 (16)
Y'BX=-Z amn

The eigenvalues and eigenvectors describe the natural modes of
fluid motion or, at least, the natural modes of the computational
model of fluid motion. If the magnitude of all of the eigenvalues is
less than or equal to unity, as is usually the case, then the system is
stable. If any of the eigenvalues is greater than unity, then the system
is unstable. The discrete time eigenvalues z; are related to the more
familiar continuous time eigenvalues A; by z; = exp(}; At).

For the relatively small problems considered in this paper (N
< 500), we compute all of the eigenmodes using the well-known
Eispack routines.*® For larger problems, one would compute only a
small subset of the eigenmodes using algorithms that take advantage
of the sparseness of the system of equations. For convenience, we
reorder the modes according to the magnitude of the eigenvalue z;
from largest to smallest.

Next, as is commonly done in structural dynamic problems, we
reduce the order of the flow model using the “mode superposition
method.” We represent the dynamic behavior of the fluid as the sum
of individual eigenmodes, i.e.,

L =Xc (18)

where c is the vector of normal mode coordinates. Substitution of
Eq. (18) into Eq. (7) gives

AXc™! + BXc" = w"t! (19)

Next, premultiplying Eq. (19) by Y7 and making use of the orthogo-
nality conditions gives a set of N uncoupled equations for the modal
coordinates c,

c!I-H - ch = YTWJH-!. (20}

Because the left-hand side of Eq. (20) is now diagonal, each mode
can be marched forward in time independently and inexpensively.
The results can then be reassembled using Eq. (18) to obtain the
strength of the vortex elements.

The advantage to a modal approach is that one may construct a
reduced order model by retaining only a few of the original modes.
For the present analysis, we retain the m modes with the largest
eigenvalues z; (i.e., the most lightly damped eigenmodes) where
m <« N. Therefore, in Eqs. (18) and (20), X and Y are reduced to
N x m matrices, and Z is reduced to an m x m matrix.

Unfortunately, one finds that in some cases the reduced order
model does not produce satisfactory results unless a prohibitively
large number of modes are used. The problem occurs because the
neglected modes are not orthogonal to the downwash and, therefore,
participate in the response. However, since the neglected modes
tend to have large natural frequencies compared to the excitation
frequency, the neglected eigenmodes respond in an essentially qua-
sistatic fashion. Hence, to include approximately the effects of the
neglected eigenmodes, we decompose the unsteady solution into
two parts, a part which is equivalent to the response the system
would have if the disturbance were quasisteady and a dynamic part
to be determined, i.e.,

r=r+i
=TI +X¢" (21
The quasisteady portion I'; is given by
[A+BIlY =w" @2
Thus, Eq. (20) is replaced by
e —Z&" =Y w*! — YT (AT + BIY) (23)

The static portion of the solution, described by Eq. (22), includes
the influence of all of the eigenmodes. For the dynamic part of the
solution, described by Eq. (23), only a small number of modes need
to be retained since only the low-frequency modes respond in a
dynamic way. .

This approach is the discrete time analog of the static correc-
tion or mode acceleration methods commonly used in structural
dynamics.’! The advantage of Eq. (23) over Eq. (20) is that generally
many fewer modes must be retained to obtain an accurate solution.
The additional cost of the LU decomposition required in Eq. (22) is
smail compared to the cost of computing the larger number of eigen-
modes that would be required to obtain accurate solutions using the
mode superposition method without the static correction.

Aeroelastic Model

Having described the reduced order modeling technique, we now
briefly describe how one would incorporate the reduced order aero-
dynamic model into an aeroelastic model of flutter. Consider a struc-
tural dynamic model of an airfoil or wing. The governing equations
of motion, when cast in discrete time form, will take the form

Dq"*' +D,q" + "1 =0 24)

where vector q is the state of the airfoil, and D, and D, are matrices
describing the structural dynamic behavior of the airfoil typical sec-
tion or wing. The unsteady aerodynamic loads appear in the vector
f, and may be expressed in terms of the unsteady vortex elements as

1 w C,I" £ 1" @5)
Note that the matrices C, and C, are quite sparse since only the

vortex elements on the airfoil itself contribute directly to the aero-
dynamic loads.

PV —
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Similarly, the downwash w on the airfoil is due to two sources:
incident vortical gusts and motion of the airfoil itself, i.e.,

w=w, + Eq (26)

where E is a matrix describing the linear relationship between the
motion of the airfoil and the resulting downwash at the collocation

points. »
Putting Eq. (7) and Egs. (24-26) together in matrix form gives

& s Jl5) L8 -5

+ = @2n
C; D:||gq C Dif|gq 0
We refer to Eq. (27) as the complete fluid/structure model. The
eigenvalues of the homogeneous part of Eq. (27) determine the sta-
bility of the aeroelastic system. If any of the eigenvalues z; have
magnitude greater than unity, then the system is unstable.

In principle, one could find the eigenvalues of Eq. (27) directly.
However, for most aeroelastic calculations, one must compute the
eigenvalues of the system as some parameter—such as the reduced
velocity—varies. Under these circumstances, it is computationally
much more efficient to model the unsteady aerodynamic loads using
the reduced order aerodynamic model presented in the previous
section. Changing to normal mode coordinates [see Eq. (18)] and
premultiplying the upper portion of Eq. (27) by Y7 gives

I YE][e"™ [-Z 0)fe]" [Y =
C:X D; ||q * CX D|lq] |0 (We)
(28)

Finally, incorporating the static correction technique into the
reduced order aerodynamic model, and after some manipulation,
one obtains

I Y [O+AA+BME]([:)™
C,X D1+C2(A+B]_1E q

-z Y'B(A +B)"'E c]”
Tlex p+cia+B)E]]q
Y'[I-A(A+B)™Y] T
¥ [ —-Cy(A+B)! (e
Y'I-B(A+B)™) -
—-Ci(A+B)™! 3
The eigenvalues of Eq. (29) will closely approximate the eigenvalues

of Eq. (27) provided that a sufficient number of eigenmodes are
retained in the model.

(29)

Numerical Results

Vortex Lattice Model

The results in this section are presented to validate the unsteady
vortex lattice model. Consider the lift acting on an isolated flat-
plate airfoil due to a step change in airfoil downwash (the Wagner
problem). Shown in Fig. 2 is the step response computed using
the present vortex lattice method. The airfoil was modeled using 20
vortex elements. The wake was modeled using 200 vortex elements,
the length of the wake was taken to be 10 chord lengths, and the
vortex relaxation factor & was taken to be 0.996. Also shown in
Fig. 2 for comparison is the Wagner function.? The present theory
is seen to be in almost perfect agreement with the Wagner function.

Also shown in Fig. 2 is the computed indicial response for a
cascade of two-dimensional flat-plate airfoils. The cascade has a
stagger angle © of 45 deg, and a gap-to-chord ratio G of 1.0. For
the case considered here, the interblade phase angle o is 180 deg.
The airfoil was modeled using 20 vortex elements. The wake length
was taken to be five chord lengths and was modeled using 100
vortex elements. The vortex relaxation factor @ was set to 0.5. The
cascade indicial response is seen to be somewhat larger than the
airfoil indicial response. Furthermore, the lift is seen to rise to its
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Fig. 2 Time history of unsteady Lift due to step change in downwash
for two-dimensional isolated airfoil, cascade of two-dimensional airfoils,
and three-dimensional wing.
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Fig. 3 Unsteady lift due to harmonic plunging motion of a two-
dimensional airfoil.

asymptotic value faster than in the isolated airfoil case. The reason
for difference in the rise times can be found by examining the kernel
functions for these two cases. For the case of the airfoil, the influence
of vorticity varies like the inverse of the distance from the airfoil.
Thus, asymptotically, the lift approaches its final value like 1/r.
In the cascade case, however, the influence of the vorticity decays
exponentially for large  (for nonzero interblade phase angles). This
is because the shed vorticity from each of the blades of the cascade
is equal in magnitude but shifted in phase by integer multiples of
the interblade phase angle. The influence of the far wake is reduced
by destructive interference. The result is that only a finite portion of
the near wake has any influence on the cascade.

Finally, Fig. 2 shows the indicial response of a rectangular wing
with an aspect ratio of 5.0 due to rigid-body plunging motion of
the wing. To reduce the number of vortex elements required, the
solution was assumed to be symmetric about the longitudinal axis.
For this example, the wing was modeled with eight vortex elements
in the streamwise direction, and 10 in the spanwise direction. The
wake was taken to be five chords long and was modeled using 40
vortex elements in the streamwise direction and 10 in the spanwise
direction. The wake relaxation factor a was set to 0.992. Note that
the asymptotic value of the nondimensional lift (0.65) is somewhat
less than that of the two-dimensional isolated airfoil (1.0). This is
to be expected because of the reduction of the steady lift curve
slope with decreasing finite aspect ratio (for an elliptic wing, the
asymptotic value would be 0.714). Also, the rise time is somewhat
shorter than in the case of the isolated airfoil. This is because the
influence of a convected horseshoe vortex varies like 1/2? for large
t rather than 1/¢ as in the case of-a two-dimensional vortex.

Next, to demonstrate the frequency domain analysis capabilities
of the vortex lattice model, the unsteady lift due to plunging mo-
tion of an isolated airfoil was computed for a range of reduced
frequencies. The results are plotted in Fig. 3. Also shown for com-
parison is the exact solution to the isolated airfoil problem due to
Theodorsen.** Note that because the vortex lattice model does not
separately compute circulatory and noncirculatory lift, the apparent
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Fig. 4 Eigenvalues of vortex lattice model of unsteady flow about a
two-dimensional isolated airfoil.
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Fig. 5 Eigenvalues of vortex lattice model of unsteady flow about a
cascade of two-dimensional airfoils.

mass effects have been added to Theodorsen’s circulatory lift func-
tion. The results are seen to been quite satisfactory for the range of
reduced frequencies considered here.

Eigenmodes of Aerodynamic Systems

Next, having validated the vortex lattice model, the eigenmodes
and eigenvalues of the three aerodynamic systems described earlier
were computed. A typical computational result is shown in Fig. 4.
Shown are the eigenvalues for the isolated airfoil case in both z-plane
and A-plane interpretations. Note that the eigenvalues are lightly
damped and form a dense line which runs close to the imaginary axis
in the A plane. The line of eigenvalues intersects the real axis very
near the origin and may be thought of as approximating a branch
cut of the aerodynamic transfer function. Numerical experiments
reveal that this line of eigenvalues gets denser as the length of the
computational wake is increased with constant element size Ax. The
line of eigenvalues gets longer as the element size Ax is reduced
with constant wake length.

The presence of a branch cut is consistent with the well-known
result that the Theodorsen function contains a branch point at the
origin. However, the branch cut is usually taken to be along the neg-
ative real axis. For example, Desmarais* found a continued fraction
representation of the Theodorsen function. The poles (eigenvalues)
of this continued fraction form a dense line along the negative real
axis. Also, a number of investigators®®~?* have developed curve fits
to the Theodorsen function and have explicitly placed the poles
on the negative real axis. The reason that the eigenvalues of the
present vortex lattice model appear in lightly damped complex con-
jugate pairs rather than as real negative eigenvalues is not com-
pletely understood; but neither is the present method thought to
be erroneous. Instead, the present analysis gives an equally valid
approximation to the aerodynamic transfer function.

Shown in Fig. 5 are the eigenvalues for the cascade of flat plates
previously considered. Again, there is a line of closely spaced eigen-
values (a branch cut). In this case, however, the branch cut is shifted
to the left in the complex plane. Note also the simple pole between
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Fig. 6 Eigenvalues of vortex lattice model of unsteady flow about
a three-dimensional wing, aspect ratio = 5.0; only symmetric modes
shown.
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Fig.7 Unsteady lift predicted using reduced order modeling technique
for the case of a harmonically plunging isolated airfoil.

the branch cut and the origin. Because the poles are shifted to the left,
the eigenmodes will decay more quickly than in the case of the iso-
lated airfoil. Thus, for the indicial response problem, the final lift will
be reached more quickly. This is clearly seen to be the case in Fig. 2.

Finally, shown in Fig. 6 are the eigenvalues of the vortex lattice
model of unsteady flow about a rectangular wing with an aspect
ratio of 5.0. Since symmetry about the longitudinal axis was used to
reduce the number of degrees of freedom in the vortex lattice model,
only the eigenvalues corresponding to symmetric eigenmodes are
shown. Note that in the A plane, the eigenvalues appear to form a
number of branch cuts, each successive branch cut shifted to the
left. Careful inspection reveals that there are 10 branch cuts, the
same number as the number of vortex elements in the spanwise
direction. The branch farthest to the right corresponds to the first
spanwise mode, that is, the mode in which the vortex elements vary
most slowly in the spanwise direction (much like the first vibrational
mode of a beam).

Reduced Order Aerodynamic Models

Next, we use the eigenmode information computed in the previous
section to construct reduced order aerodynamic models. Figure 7
shows the unsteady lift predicted using the reduced order modeling
technique for the case of a harmonically plunging isolated airfoil.
Three cases are considered. In two cases, 20 or 40 of the most
lightly damped eigenmodes are retained, and a static correction is
used to approximate the influence of the remaining eigenmodes. In
the third case, 40 eigenmodes are retained, but no static correction is
performed. Also shown in Fig. 7 is the direct vortex lattice solution.
Both the reduced order models using the static correction give quite
good predictions up to a reduced frequency of 1.5, although the
40-mode model is slightly more accurate. The reduced order model
without the static correction, on the other hand, gives poor results.
The real part of the unsteady lift has an almost constant error. The
error in the imaginary part is zero at a reduced frequency of zero,
but grows quite large as the reduced frequency increases.
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Fig. 8 Unsteady lift due to harmonic plunging motion of a cascade of
two-dimensional airfoils predicted using reduced order models.
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Fig.9 Unsteady lift due to harmonic rigid body plunging motion of a
three-dimensional wing, aspect ratio = 5.

Figure 8 shows a typical reduced order model calculation for a
cascade of airfoils. For the case shown here, the airfoils vibrate
in plunge with interblade phase angle o of 180 deg. The reduced
order model was constructed using two or 10 eigenmodes together
with a static correction, and 10 modes without a static correction.
Also shown is the semianalytical solution due to Whitehead.?® The
10-mode solution using the static correction agrees almost exactly
with Whitehead's sclution. Even the two-mode solution agrees quite
well. This demonstrates that the dynamic behavior of the unsteady
flow in cascades is governed by just a few important eigenmodes.
Hall et al.?” found similar results for compressible flow through
cascades.

Finally, we consider the case of the finite wing vibrating with
a rigid-body plunging motion. Two reduced order models were
used: both contained 39 eigenmodes, but one used the static cor-
rection technique and one did not. Figure 9 shows the unsteady
lift as a function of reduced frequency. The results are similar to
those found for the two-dimensional isolated airfoil and cascade
examples, that is, the reduced order model using the static correc-
tion agrees well with the direct vortex lattice solver, whereas the
reduced order model without the static correction has significant
errors at high reduced frequencies.

One interesting feature of the case shown in Fig. 9 is that most of
the eigenmodes used in the reduced order model were eigenmodes of
the first mode branch cut (the branch cut nearest the imaginary axis).
This suggests that one might be able to reduce the size of the vortex
lattice model by using vorticity distributed in a few appropriately
shaped spanwise modes.

Another interesting point is that no more modes were required to
obtain satisfactory results for a finite wing than were required for
the two-dimensional airfoil, even though the wing has a total of 480
degrees of freedom in the model compared to 220 in the case of the
two-dimensional airfoil (in fact, the finite wing results are slightly
more accurate). This is an important result. The author believes that
similar results will hold when the reduced order modeling technique
is applied to large three-dimensional CFD algorithms. That is, only
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Fig. 10 Natural frequencies and damping of the aeroelastic modes of
a typical section model.

a very few of the thousands of eigenmodes will contribute dynami-
cally to the unsteady flow solution (although a static correction will
generally be needed to approximate the influence of the eigenmodes
not included).

Flutter Calculations

Next, we consider the use of reduced order models to compute
the flutter stability of a two-dimensional airfoil. The typical section
model has two degrees of freedom, one plunging and one pitch-
ing. The mass ratio u is 20, the static imbalance x, /b is 0.2, the
radius of gyration r,/b is 0.5, and the location of elastic axis aft
of midchord e/b is —0.1 (i.e., it is in front of the midchord). Fi-
nally, the frequency ratio w;/w, of the uncoupled modes is 0.3,
where @, and w, are the uncoupled plunging and torsional fre-
quencies, respectively. Shown in Fig. 10 are the real and imaginary
parts of the frequencies of the aeroelastic modes (A = iw, — w;).
These results were computed using the complete vortex lattice model
coupled directly to the structural dynamic model [Eq. (27)] and
using the reduced order aerodynamic model coupled to the struc-
tural dynamic model [Eq. (29)]. Here, 40 eigenmodes were used
in the reduced order model along with a static correction. The fre-
quencies and damping of the aeroelastic modes calculated using
the complete and reduced order models are seen to be very good
agreement. Note that flutter occurs at a reduced velocity V of 2.0
where V = U/(w,b) and is of the frequency coalescence type.
Also shown for comparison is a classical V-g calculation using
Theodorsen aerodynamics. The flutter speed predicted using the
V-g method is nearly identical to that predicted using the present
method. However, the frequencies and “required damping” g pre-
dicted using the V-g method are not physically meaningful except
at the flutter speed, and then only for the mode which is neutrally
stable.

Of course, the reduced order model required much less compu-
tational time to solve than the complete model. For the case con-
sidered here, the reduced order modeling approach required that a
single generalized eigenvalue problem with 220 degrees of freedom
be solved just once. Then, for each reduced velocity, an eigenvalue
problem with 44 degrees of freedom was solved (40 reduced aero-
dynamic states plus four structural dynamic states). The complete
fluid/structure problem, on the other hand, required that an eigen-
value problem with 224 degrees of freedom be solved at every re-
duced frequency. Since the computational time required to solve
an eigenvalue problem increases rapidly with the size of the prob-
lem, the computational savings afforded by the present method are
substantial. For example, to compute the aeroelastic stability using
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the reduced order model required a single calculation taking about
16 s on a Silicon Graphics Indigo 4400 workstation to form the re-
duced order aerodynamic model. Then, for each reduced frequency,
the aeroelastic stability calculation required approximately 0.4 s.
This compares to about 14 s per reduced frequency for the complete
fluid/structure model.

Conclusions

A novel reduced order modeling technique has been applied to
unsteady fluid motions about two-dimensional isolated airfoils, cas-
cades of airfoils, and three-dimensional wings. It was shown that the
unsteady fluid motion can be modeled accurately using just a small
number of aerodynamic eigenmodes provided a static correction is
applied to approximate the influence of the remaining eigenmodes.
Such a reduced order model is particularly useful when a large num-
ber of aeroelastic calculations are to be performed. The form of the
reduced order model, a low-order model with a classical pole/zero
behavior of the aerodynamic transfer function, should also prove
useful in applications of active control of aeroelastic phenomena.
Furthermore, the reduced order model provides important insights
about the nature of unsteady flows about airfoils, cascades, and
wings. Finally, although the method was applied to a relatively sim-
ple flow model in this paper, the reduced order modeling technique
can be applied to more sophisticated computational fluid dynamic
models of unsteady compressible flow.”
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