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The linear stability characteristics of rotor blade flap-lag
oscillations in the hovering flight condition are examined. The
present study is focused on the effects of pre-cone, variable elastic
coupling, pitch-lag coupling, and the aerodynamics of induced
- inflow. Together with ap improved perturbation analysis for
deriving the equations these factors are shown to significantly
influence the flap-lag stability characteristics of hingeless rotor
blades. Routh’s criteria are used to derive several fundamental
flap-lag stability relations, and emphasize the utility of simplified
rotor blade modeling for understanding complex dynamic
phenomena. In order to validate the approximate rigid blade
equations, elastic blade modal equations are presented together
with comparative solutions. The results indicate a high degree of
accuracy for the approximate equations when the elastic cou-
pling is included. Finally, the approximate equations are used to
illustrate the influence of elastic coupling on the response charac-
teristics of hingeless rotors.

NOMENCLATURE

a = two-dimensional lift curve slope

A, A pprox,C = induced flow parameters, Eqs. (7,
41).

b = number of blades

c = blade chord, ft

Ca, = profile drag coefficient

Cs,C5,C;,C; = lead moment cocfficients

dD,dL,dF,dF, = local lift and drag forees; flap and
lead components, Ib/ft

E = Young's modulus, lb/in?

F = Routh’s discriminant, Eq. (9)

Fg,Fg,F,F; = flap moment coefficients

D = drag paramecter 2c,/a

I = blade inertia, !/;mR?3, slug-ft?

1, = blade section principal moments of
inertia

KsK:, = flap and lead-lag spring rates at hub,
ft-lb/rad, Fig. 14

Ks,,K;, = flap and lead-lag spring rates at

blade root, ft-lb/rad, Fig. 14
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total flap and lead-lag hinge spring
rates at 8 = 0, ft-lb/rad, Eq. (43)

clastic blade stiffiness parameters,
Eqgs. (56-58)

blade mass distribution, slug/ft

number of elastic blade flap and in-
plane modes

flap and lead acrodynamic moments,
Eqgs. (39, 40)

rotating flap and lead-lag frequency
parameters, Egs. (11, 25, 27, 51)

blade radius, ft; also,
variable elastic coupling param-
eter, Eq. (47)

clastic coupling parameter, Eq. (51)

Laplace transform variable, se¢™!

rotor blade tension, b

displacements in z, y, z direction
measured from undeformed posi-
tions, ft

relative normal and tangential air-
foil velocities, fps, Eq. (34)

induced velocity, fps

velocity, velocity of blade tip. RQ,
fps

generalized coordinates for modal
equations

lead-lag frequency parameter, Eqgs.
(11, 25, 27)

rotating coordinates

elastic coupling parameters, Eqs.
(31, 25)

flapping angular displaccment of
blade measured from plane of ro-
tation, rad

pre-cone parameters, Egs. (17, 18)

Lock number, pacR*/I

elastic coupling parameter, Eq. (46)
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¢ = inplane, or lead-lag angular displace-
ment of blade, rad

Lock number parameter, v/8

Nm = structural damping parameter

3
I

] = blade pitch angle, rad ,

Omin = minimum 6 for neutral stability for
given p

A = absolute minimum @ for neutral sta-
bility

6; = kinematic pitch-lag coupling param-
eter

¢ = nondimensional radial coordinate,
z/R

p = air density, slugs/ft?

s = rotor solidity, bc/7R

o; = real part of inplane mode eigenvalue,
sec™}

&,04 = inflow angle, ¢ = tan—'Up/Ur, ¢,
= v,/Qz

PonsPucn = mode shapes for modal equations

Q = coordinate system angular velocity,
rad/sec

w = imaginary part of eigenvalue, rad/
sec

wg, g = flap and lead-lag non-rotating fre-
quency, Eq. (51), rad/sec

0 = d( )/dt

() = 9( )/oz

( )odA( ) = steady state and perturbation vari-
ables

O) = nondimensionalized by R for lengths,

V¢ for velocities © for frequencies.

THE GROWING acceptance of hingeless rotors for con-
ventional and compound helicopters has intensified the
need for fundamental research on rotor blade stability.
This is because the small aerodynamic and structural
damping of the lead-lag motion can lead to unstable
rotor blade oscillations. The lack of a lead-lag hinge
and the desire for simplicity usually preclude the use
of auxilliary viscous dampers which are normally used
to augment damping of articulated rotor blades.

The fundamental stability characteristics of hinge-
less rotor blades ean be studied by retaining only the
flap and lead-lag degrees of freedom of a single blade.
Several researchers have already studied this prob-
lem,'~3 however, the subject of flap-lag stability is not
vet adequately understood. In particular, the effects of
aerodynamics, pre-cone, elastic coupling, and kinematic
pitch-lag coupling were either not included, incorrectly
derived, or not systematically investigated. In addition,
in nearly all cases only simplified mechanical represen-
tations of fully elastic hingeless rotor blades such as
centrally hinged rigid blades with spring restraint were
employed.
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The present study was therefore undertaken to ad-
dress these factors in detail. In order to determine the
accuracy of the approximate equations for centrally ~
hinged, rigid blades used by previous investigators, the
exact multimode elastic blade equations are also de-
rived and results for both formulations compared. The
analysis is restricted to the hover condition which
greatly simplifies the problem by eliminating the
periodic coefficients of the forward flight equations.
Further simplification is obtained by excluding the
torsional degree of freedom. Although torsional motion
is important for rotor blade stability, its inclusion is
beyond the scope of the present study.

BASIC FLAP-LAG EQUATIONS
The approximate perturbation equations derived in
the Appendix for the centrally hinged rigid blade with
spring restraint, may be used to examine the source of
potentially destabilizing flap-lag coupling. The homo-
geneous equations for the basic configuration (without
pre-cone or elastic coupling) can be written,

[sz+ Fis+ Fy,  —sF; ] Ag} -0
—-sC; s*+ Cis + Cp ] \Ar
The coupling coefficients of interest are obtained from
Eq. (50)
F; = v/8(28 — A) — 28, )
Cs = 26, — v/8(6 — 24) 3)
where the coning
Bo = [v/8)(6 — A)/p?, p*= ag*+ 1 (4)

The first coefficient, F;, combines the aerodynamic flap
moment due to lead velocity with the opposing cen-
trifugal flap moment due to centrifugal forces, 28,. The
second coefficient, C;, consists of a Coriolis lead moment
due to flapping velocity opposed by a small aerodynamie
moment. The product, F;C; represents the potentially

- -destabilizing flap-lag coupling. Approximating the in-

duced inflow parameter A by 6/2 (sec below) yields the
following simplified expression

FiCs = [(v/8)6)*[*/2 — 1/p*}/p? 6))

The destabilizing portion (3/;) is caused by the product
of aerodynamic and Coriolis moments while the product
of centrifugal and Coriolis moments (1/p?) is stabiliz-
ing. Furthermore, the flap-lag coupling is proportional
to 6% and is a maximum when p = 4/4/,. This flapping
frequency is typical of present hingeless rotor helicop-
ters. It may also be observed that flap-lag coupling
exists for articulated rotors (p = 1, for zero flap hinge
offset).

The induced inflow parameter A4 is defined in the Ap-
pendix, Eq. (41). The simple and useful approximation -
used above assumes that the induced inflow angle ¢,
is given by one-half the blade pitch angle. Eq. (41) then
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Figure 1. Comparison of approximations for induced inflow-
parameter A.

yields A = 6/2. This approximation eliminates the
small aerodynamic lead moment in the lead-lag cou-
pling coeflicient Cj.

Another useful but more accurate approximation for
the induced inflow parameter can be derived as fol-
lows. The exact expression for 4 is based on non-
uniform induced inflow given by blade-element mo-
mentum theory.® Fora = 2«

vy = xeQR/8{V'1 + 166t/x0 — 1] 6)

If ¢, is approximated by the value at £ = 3/,, the follow-
ing equation for A results

Aupprox = 70/6[V'1 + 128/70 — 1] )

The accuracy of these two approximate expressions is
compared with the exact value in Fig. 1. The effect of
solidity is seen to be important and therefore limits the
uscfulness of A = 6’2 for quantitative results. 4,;pr0x,
however, is quite accurate and will be used for the re-
sults which follow.

A detailed examination of flap-lag stability and dy-
namics will now be carried out for several specific cases.
For the approximate rigid blade equations these in-
clude: 1) basic flap-lag coupling, 2) the effects of pre-
conie. 3) variable elastic coupling, and 4) pitch-lag
coupling. Next. the results using multimode elastic
blade equations are presented and compared with pre-
vious results and finally, the effects of elastic coupling
on flapping response are examined.

RIGID BLADE STABILITY
Case I, No Pre-cane or Elastic Coupling

A broad view of the basic flap-lag stability charac-
teristics of the rigid hinged blade is afforded by Fig. 2.
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The nondimensional eigenvalues of Eq. (1) above are
presented in the complex plane as a function of increas-
ing collective pitch, for several values of inplane stiff-
ness. The flap mode is stable in all cases, but the weakly
damped lead-lag mode becomes unstable for inplane
frequencies near p. Some idea of the magnitude of the
instability may be gained from the time to double am-
plitude. With &, = 0.002 at 250 rpm, facuble = 13.2 sec,
which is not particularly rapid.

The neutral stability condition (3; = 0) will now be
examined with the aid of Routh’s criteria. The charac-
teristic equation of the basic flap-lag equations is a
quartic of the following form

As* + Bs*+ Cs2+ Ds+ E =0 (8)

Neutral stability occurs when Routh’s discriminant
vanishes, i.e.,

F =D(BC — AD) — B*E =0 9

After some manipulation the following expression for
the collective pitch for neutral stability is obtained.
P2
2P -1n@-P) *
[D + A6][P — W] }
D 10
o+ s ro T Ao oA 00

(6—4) =

1.40
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F16ure 2. Locus of roots for increasing pitch angle, Case I, basic
rigid blade equations.
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where
2
D=EE P Wiy a=vs D)

Several conclusions immediately follow since ¢, > 0,
A6 > 0. First, a necessary (but not sufficient) condition
for instability is that 1 < p? < 2. This indicates that
purely articulated rotors without hinge offset or 8;(p =
1) cannot be unstable. This does not mean that de-
stabilizing flap-lag coupling is not present, but only
that it can never be sufficient to cause instability.
Second, for a given flap frequency (p) the minimum
pitch angle for neutral stability, 6mi,, occurs when @o; =
p and is independent of Lock number.

(bmin — A)? = [P2D/2(P — 1)(2 — P)] (12)

Finally an absolute minimum can be obtained for p =
V/4/,. ‘This value will be referred to as 6* and is de-
pendent only on the profile drag coefficient and induced
inflow parameter, A. Fora = 2

0 — 4) = 2Veu/m, p=a, =V (13)

This simple result specifies the lowest possible pitch
angle for which any hingeless rotor blade can become
unstable in pure flap-lag oscillations.

Structural damping is easily incorporated by modify-
ing the lead-lag damping coefficient C;.

N -
Ci = 7/8 [%‘ + 21n e+ Ao] (14)
The three terms are respectively the profile drag damp-
ing, structural damping, and induced drag damping.
For typical parameters !/,9, structural damping (7.
= 0.003) is on the order of 3 times the profile drag
damping which would significantly increase §*.

S
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Fiaurk 3. Effect of profile drag, structural damping, and aero-
dynamics on 6*.
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F16URE 4. Stability boundaries for basic rigid blade equations.

Figure 3 illustrates the relationship between inplane
damping and 8* given by Eq. (13) including the effects
of structural damping and various approximations for
the induced inflow parameter A.

A summary plot giving basic flap-lag stability

boundaries as a function of the flap and lead-lag fre-
quencies is given in Fig. 4. For a particular collective
pitch, the region of instability lies within the respective
contour. These results illustrate the occurrence of fmin
for a given value of p when &; = p and 6* when p =

VY,
Case II, Effect of Pre-cone, No Elastic Coupling

With pre-cone, the perturbation equations are iden-
tical to those used previously although the coning now
becomes

Bo = [v/81(6 — A)/p* + (@* — 1)Byc/p* (13)
Routh’s criteria yields the following expression for the
collective pitch for neutral stability.

P?

2(P - 1)(2—P) X
{D + (D + A6)(P — W)?
2[W + P(D + A6)}[1 + D + A6]

2ch(P - 1) [2871:(}) - 1) _
7P? ]

(6 — A4) =

+

(3P — 4)(6 — A)]} \'16)>n
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We will first examine the case of “ideal” pre-cone,
when the aerodyvnamic and inertial flap moments are
exactly balanced and the hinge spring supplies zero
flap moment.

Bre¢ = [v/81(6 — A) amn
Substitution into Eq. (16) indicates that instability is
not possible. This is because the destabilizing flap-lag
coupling is exactly cancelled by the lead-lag induced
drag damping (16 in Eq. 14). This indicates that pre-
cone can be strongly stabilizing although further ex-
amination of Eq. (16) indicates that for By, # Bpe,
pre-cone may also be destabilizing. The worst condition
occurs when

3P — 4
Bﬂ'_l( )

T @®-1) 6—4)

(18)
The corresponding pitch angle for neutral stability is

(0—A)==4{D-Z—

ID + A§)[P — W)
W+ P(D+ A6))]1 + D + AO]} (19)

For a given flap frequency p, the least stable condition
again occurs when &; = p but unlike basic flap-lag
stability, it is independent of p. In other words 6pmin =
6*; Eq. (19) becomes for a = 2=

(b — 4) = 2Veo/n (20)

2.4 2.8 3.2

The required pre-cone for least stability then becomes
Bree = [7/16]1BP — 4)/(P — DV ea/x  (21)

These results are illustrated in Fig. 5 by a plot of the
normalized value of the minimum pitch angle for neu-

tral stability, (fmia — 4)/ \/1_), as a function of the flap

frequency, p. For simplicity @; = p. For zero precone

the previous result for 0ni applies and 6nin = 6* when
P = V*/;. For pre-cone variation with p according to
Eq. (21) the absolute minimum 6* occurs for any value
of p. Even the previous limits 1 < p? < 2 no longer
apply. Also shown in Fig. 5 are stability boundaries for
constant B,. values. Minimum stability still occurs
when &, = p although the positive and negative roots
for 6min are no longer equal. Furthermore, a sign change
for B,. or 6 is equivalent. The general effect of pre-cone
is to shift the flap frequency for least stability (min =
6*) away from p = Vv /3. Indeed, 6* oceurs when p is
given by Eq. (21). These results clearly show that pre-
cone can be a destabilizing factor for flap-lag oscilla-
tions.

It may be noted that the above conclusions differ
somewhat from previous results. In Ref. 2, it was con-
cluded that for centrally hinged rigid blades in hover,
destabilizing flap-lag coupling would vanish when
flapping restraint vanished (p = 1, articulated blade)
or when the blades were ideally pre-coned. As a result,
flap-lag instabilities were precluded. The present study
indicates that flap-lag coupling does not vanish under
these conditions, for instance Eq. (5) indicates that
F;Cj # 0 for p = 1. This discrepancy can be attributed
to the derivation of the aerodynamic flap and lead
moments and is further discussed in the Appendix.

Fiaure 5. Effect of pre-cone on the minimum
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Case 111, Variable Elastic Coupling

The applicable homogencous equations for this case,
taken from the Appendix are

[.s-c + Fas + Fg —sF; + F, {Aﬁ} -0, (22)
—sCs+Cs 824 Cis + Cp] A A

The elastic coupling terms F, and C, produce cross
coupled flap and lead-lag moments proportional to lead-
lag and flap deflections respectively. Previous studies
have typically neglected these terms in simplified
rotor blade stability analyses. However, as will be seen
below, they can have pronounced effects on the stability
and dynamic characteristics of rotor blade flap-lag
motion. For small pitch angles F; and C; are given by

Ry ~ 570 (23)

Elastic coupling is proportional to pitch angle and is
configuration dependent by virture of the nonrotating
lead-lag and flap frequencies @, @, and the variable
elastic coupling parameter R.

The elastic coupling of actual hingeless rotor blades
is dependent on the particular design configuration and
specifically the distribution of flexibility radially in-
board and outboard of the pitch bearing. As explained
in the Appendix, this cliaracteristic is introduced in the
rigid blade equations by dividing the flap and lead-lag
hinge springs into two separate spring systems, one
inboard and the other outboard of the pitch axis. The
degree of elastic coupling is denoted by R and is pro-
portional to the fraction of flexibility present in the
spring system outboard of the hinge axis.

Representative results for the locus of roots of the
lead-lag mode are shown in Fig. 6. In comparison with
Fig. 2 it 1s apparent that the degree of elastic coupling
R is highly important in determining whether the ef-
fects are stabilizing or destabilizing. For full elastic
coupling. R = 1.0, the effect is generally highly stabiliz-
ing for the range of lead-lag frequencies considered.
It is suggested that the eclastic coupling allows the
transier of kinetic energy from the weakly damped in-
plane degree of freedom to the well damped flapping
mode. As a result, the inherently low aerodynamic and
structural lead-lag damping can easily be augmented
by more than an order of magnitude. This is significant
since it implies that the inplane degree of freedom is not
as susceptible to instabilities as its low inherent damp-
ing would suggest.

Further examination of Iig. 6 indicates that small
amounts of elastic coupling can be destabilizing for stiff
inplane (&; > 1) hingless rotors whereas soft inplane

P2 %
2P - 12— P)

(6— A) =
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Ficure 6. Locus of lead-lag mode roots, Case III, rigid blade
equations with variable elastic coupling.

(&; < 1) rotor blades are only stabilized by elastic
coupling. Further evidence is provided by Fig. 7 which
presents stability boundaries for variable elastic cou-
pling as a function of inplane frequency with p = \/‘/—.
This figure clearly shows that for stiff inplane blades
there exists a particular value of R for which instability
can occur at moderately low pitch angles but that in-
creased elastic coupling is strongly stabilizing. Further-
more, this minimum pitch angle is equal to 6* given by
Eq. (13) for the basic flap-lag equations.

Routl’s criteria can be used to clarify these results.
The equations with clastic coupling yield the following
cxpression for the collective pitch for neutral stability.

{D

| D+ AW — P2 —=ZO@+ AW —P)[1 - (D+ A0)] + Z*[(D+ A6+ 1)2 — (6 + A)’]} (24) N
N 2D + A8 + )W + P(D + A46) + Z(8 + A)] -
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where with inplane frequencies differing from p are subject to

P=p,W=g,Z=2 (25)

This expression neglects the effect of elastic coupling
- on B, which is consistent.with dropping second order
terms in the perturbation analysis. Equation (24) con-
firms that elastic coupling, Z, can be destabilizing; how-
ever, it can be shown that 8 cannot be less than 6*. For
small piteh angles (62 << 1) Eq. (24) can be greatly sim-
plified yielding

.« __ Pz
6-A = _ne-p X

4

the same critical stability condition if the elastic cou-
pling is in accord with Eq. (28).

Case IV, Pitch-lag Coupling

To provide further information about hingeless
rotor blade stability characteristics, a brief examination
of the influence of kinematic pitch-lag coupling has
been made. Since the important torsional degree of
freedom is not included in the present paper, this

. [D e A)z] (W — Py 4 [(0 + A)W — P) R(W — P + 1)] (26)

2

D +

where now

P=ag+ 1, W =g 27)

This equation illustrates that for the elastic coupling to
be destabilizing the lead-lag frequency must be such
that W > Por W <P — 1. This confirms the results of
Fig. 6 that elastic coupling can be destabilizing for stiff
inplane but not soft inplane rotor blades. Furthermore,
when p = Vv 4/3 the value of R corresponding to the

least stable value of lead-lag frequency can be found
since (§* — A)* = 4D. Equation (26) then yields

R AT =YY
2% (W —/a)

The significance of this result is that when p =

(28)

4/3, it is not necessary that &; = p for neutral stabil-
ity to occur at § = 6* as is the case without elastic
coupling. In other words, rotor blade configurations

7w

represents a restricted but convenient way of assessing
the effects of pitching motion in comparison with flap-
lag and elastic coupling effects. The previous equations
with elastic coupling (Case III) together with the non-
homogeneous pitch angle terms given in Eq. (50) were
combined using the following pitch-lag relation.

Representative results for stability boundaries with
respect to collective pitch are given in Fig. 8 for both
stiff and soft inplane rotor blade configurations. For
the soft inplane configuration, pitch-lag instability can
occur only for positive values of 6;. Also, the effects of
elastic coupling are relatively small, in fact slightly de-
stabilizing. The results are entirely different for the
stiff inplane configuration however, where elastic
coupling plays a major role. First, for B = 0.0, negative
values of 6; are destabilizing in opposition to the soft
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inplane result. Second, elastic coupling is strongly
stabilizing for negative 6, but becomes progressively
destabilizing as R increases and 6; becomes positive.
As a result, it appears that elastic coupling is wholly
as effective as pitch-lag coupling in determining the
flap-lag stability of stiff inplane rotor blades. This im-
plies that proper combinations of these two parameters
might be used to improve, or “optimize” the stability
characteristics of stiff inplane configurations.

MULTI-MODE ELASTIC BLADE EQUATIONS

The basic partial differential equations for a uniform
untwisted rotating becam are presented in the Appendix,
together with a brief outline of the method of solution.
Particular care was required to insure that centrifugal
and Coriolis forces which produce the destabilizing
flap-lag coupling were retained in the derivation. These
forces arise from blade radial displacements and tension
variations resulting from perturbation deflections and
velocities respectively. These effects are normally not
included in elastic rotor blade equations. In addition,
they do not have direct counterparts in the approxi-
mate rigid blade equations since radial displacements
and tension do not appear explicitly in those equations.

Results obtained using the elastic blade modal equa~
tions are presented in Fig. 9. The first inplane mode
damping is relatively high as a result of the elastic
coupling. Because the principle elastic axes of the rotor
blade rotate through the pitch angle 8 for the entire
length of the blade, the elastic coupling is equivalent
to R = 1.0 for the rigid blade. The effect of number of the
modes retained in the cquations is relatively slight as
far as the first inplanc mode damping is concerned. A
single flap and lead-lag mode are denoted by n = 1, two
of each mode are included for n = 2. To illustrate the
importance of the proper derivation of the elastic equa-
tions, the damping is also shown with the radial dis-
placement and tension perturbations neglected. This
gives a very unconservative result since the destabiliz-
ing flap-lag terms are not present.

A comparison with the rigid blade damping (B =
1.0) shows the approximate equations to be quite ac-

PITCH ANGLE , 4, rad

o 1
-4 -3 -2 -l o . .2 Jdo
PITCH-LAG KINEMATIC COUPLING , BC

3 4 0 4.2 3 4 5

Ficere 8. Stability boundaries for rigid blade equations, Case
IV. kinematic pitch-lag coupling and variable elastic coupling,
P =143,y =5.0,¢c4 = 001, 5 = 0.05.
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Ficure 9. Comparison of inplane mode damping from approxi-
mate rigid blade equations and elastic blade modal equations.

curate. That this is a result of proper inclusion of elas-
tic coupling is shown by the rigid blade result without
elastic coupling (B = 0.0).

EFFECT OF ELASTIC COUPLING ON FLAPPING RESPONSE

In addition to modifying the flap-lag stability char-
acteristics, elastic coupling also produces significant
variations in flapping frequency as collective pitch is
increased. For a hingeless rotor blade this results in a
variation in the phase lag of the blade flapping response
to harmonic pitch excitations. The control inputs to a
rotor from the swashplate are harmonic once-per-rev
pitch changes and the flapping phase lag directly de-
termines the ratio of the resulting rotor pitch and roll
moments. The implications of elastic coupling can thus
be appreciated in terms of vehicle stability and control
characteristics.

The magnitude of the frequency shift is shown in Fig.
10 for the rigid blade with full elastic coupling and with
aerodynamics neglected. At zero pitch the flap and
lead-lag modes are uncoupled, but for 8 = 0.3 rad
significant coupling exists. Note that elastic coupling
vanishes when @ = &, and the frequencics are identi-
cal for all pitch angles.

Figure 11 illustrates the flapping response phase lasr
from pitch excitation for cases with and without elasti

coupling. In particular, for stiff inplane rotor blades the =

influence of elastic coupling can be quite significant.
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1.6 LAG MODE

n

FLAP MODE 7

o
T

o

ROTATING FLAP AND LAG FREQUENCIES
®
1

4 NO AERODYNAMICS (y =0)
p=v/4/3
2F ——=— 8=0, (UNCOUPLED)
~—— 8=.3 rad
0 1 1 1 ] | -
.3 .5 7 9 i 13 L5

NONROTATING INPLANE FREQUENCY, a;

Ficure 10. Effect of elastic coupling on rigid hmged blade flap
and lead-lag frequencies without aerodynamics, R =

Figure 12 further illustrates this effect as a function of
collective pitch for a specific configuration.

CONCLUSIONS

The most important findings of the present study
may be summarized as follows:

1) For torsionally rigid, spring restrained centrally
hinged rotor blades flap-lag instability ecannot occur in
hover for piteh angles less than 6 = 6*.

2) Without pre-cone or clastic coupling, instability
will not occur for practical pitch angles unless the in-
plane and flapping frequencies are reasonably close.
Forao, = p = ‘\/‘/a, neutral stability occurs at 6 = 8%,

3) Without elastic coupling the effect of pre-cone
on stability mayv be either beneficial or detrimental.
Ideal pre-cone climinates flap-lag instability in hover.

4) Full elastic coupling virtually eliminates flap-lag
instability and greatly augments the inherently low
aerodynamic and structural damping of the lead-lag
degree of freedom. Partial clastic coupling can be
strongly destabilizing for stiffl inplane rotor blades,
however, and for p = \/‘—/; instability can occur for 8
= ¢* for a particular value of R.

5) The effects of kinematic pitch-lag coupling on
flap-lag stability are highly dependent on elastic cou-
pling for stiff inplanc rotor blades, but not for soft in-
plane ones.
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6) The flapping response phase for 1P pitch excita-
tion is significantly altered by elastic coupling. This
implies that coupled rotor-fuselage dynamic equations
should include the rotor blade inplane degree of free-
dom.

7) The rigid hinged blade gives a reasonably accu-
rate approximation of the actual elastic blade stability
if the elastic coupling effects are properly accounted
for.

APPENDIX

A brief derivation of the aerodynamic forces and
equations of motion for both the rigid hinged blade and
the elastic blade are given below. The basic z, y, 2
rotating coordinate system in Fig. 13 shows the posi-
tive conventions for angular (8,¢) and linear (u,v,w)
displacements (except a negative u displacement is
shown).

AERODYNAMIC FORCES

The y and z components of the aerodynamic loading
(Ib/ft) can be written as follows

dF, = dL — ¢dD dF, = —dD — ¢dL (30)

The elemental lift and drag forces can be written from
simple strip theory. Since « = 6§ — ¢ and ¢ ~ U,/Uyr
for small inflow angles

ey _ U _ b
dL—ZI (0 U,-)dz dD = 2

Combining Eqs. (30 and 31) and noting that (Up/Us)?
<« 1 yields

dF, = fg{oU,ﬁ - (1 + c—;“‘) UpUr} dr (32)

dF,, = '—%‘c{% U'r2 + OUPUT - UPz}dI (33)

&

Incorporating the airfoil flap and lead displacements
(v,w) in the rotating coordinate system, the relative

fluid velocities become
Up=v,+w Ur=Q + 79 (34)

The final equations are then obtained after discarding
second order products of displacement velocities
(a2,5* a2).

sz = ?oic{m’z’ -
Cd, N Cd,
(1 )am o[ (1.4 )] -
a a
Q:cw(l + %“)} dr  (35)
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dF, 2 { @ a + 62l — v + including the effects of flap and lead velocities. The dif-
ference between the present results and those of Ref. 2
v (219 Cao + 01,1) + w6z — gv,)} dz (36) noted earlier lies in derivation of these equations. In
a Ref. 2, Ur in Eq. (31) was approximated by Qz rathe
than the complete equation given by (34), Qr + v. .
76 This results in an error in the coefficient of the first
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0 =.05,ApppROX

2o | E=J4/3
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FicUre 12, Flap response phase lag variation with collective
pitch, rigad blade.

order ¥ term in Eqs. (35) and (36).

For the elastic blades the aerodynamic loading can
be applied directly to the relevant partial differential
equations given below. For centrallv hinged rigid
blades, the aerodynamic moments about the hinges
for the flap and lead-lag equations are easily developed.
The kinematics of a rigid blade implies

w = z8 (37)

The flap and lead aerodynamic moments are defined by

R R
M, = f 2dF, M., = f zdF, (39
[1] [1]

v = xf
The resulting moments become, for constant chord,

z
1

Da

| y

FiGure 13. Rotor blade angular and rectilinear displacements in
roating coordinate system.
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e
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KBb "\4 %//Kﬁh
N Eﬁ\eﬁ‘\\y\
N

X

Figrre 14. Arrangement of flap and lead-lag spl‘ini‘.‘s of rotor
blade and hub for simulating variable elastic coupling. For clarity,
rotor blace springs shown radially displaced from axis of rotation.

untwisted blades

19
Mo, = 2= {a - (1 + °—"°)A +
8 a

o= (o 2)4]E -+ )%

~1Q2

Mo = = 75

{"'—‘°+Aa—c+
a

é(z%‘"-{- A0)+§(9— 2A)} (10)

The integrals 4, C and Lock number + are defined by

1 . vy
A E-i.‘; & (E) d§,

. AL _ pacR*
C“*fo‘(m) & 7=

Rigid B.ade Equations

The izertial and elastic restraint moments about the
centrally located flap and lead-lag hinges are combined
with the aerodynamiec moments to yield the equations
of moticn for a rigid hinged rotor blade. The inertial
terms. izcluding centrifugal and Coriolis moments are

Mg, = —I@ + @8 + 208%) M, = —IE — 2085)
(#2)
The elastic restraint hinge moment equations are de-
veloped for the spring configuration shown in Fig. 14.
Two orthogonal spring systems are attached to the hub
and blsde inboard and outboard of the pitch axis re-
spectivey. The blade spring system, which rotates dur-
ing collective pitch changes produces a significant cross
coupling of flapping moments with lead-lag deflections
and vie~versa. This effect, herein termed elastic cou-
pling. is approximately proportional to the flexibility of
the blsde spring system relative to the total spring
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flexibility. Previous studies have treated only the un-
coupled configuration, where all flexibility is contained
in the hub spring system.

The configuration of Fig. 14 reduces to a simple
equivalent single spring system at zero pitch angle
which defines the rotor blade nonrotating frequencies.
The equivalent spring system is given by

_ Kerfn

KﬂaKﬂn
Ky = —————— =
g d Kh+ fo

= , 43
KBn + KBH ( )

The complete elastic moments can be written as

A[5elutic = - % [Kﬂ + R(K{' - Kﬂ Sinze] -_
(R .
2_A (K; — Kp) sin28 (44)
¢ .
Mfoluhe = - Z [Kf - R(Kf - Kﬂ)smze] -
6R .
2——3 (Kr - Kﬂ) sin26 (45)
where gt
’ (A
A=1+4+R(1-R) Ky m Kp) inzg (46)

KK,

The degree of elastic coupling is governed by R which
is defined as

R = K,/K,g, = Kr/Kr.
(1 — R) = Kp/Kgy = K;/K;, (47)

Where B = 0.0 no elastic coupling is present and the
hinge spring system is entirely contained at the hub
and does not rotate with pitch angle changes. The con-
verse is true for full elastic coupling, B = 1.0. Variations
in elastic coupling are accommodated by intermediate
values of R.

The final flap-lag equations are obtained by combin-
ing the aerodynamic, inertial, and elastic contributions.
The usual perturbation method of solution is desired
wherein

6(t) = 6o + 46(t), B(t) = Bo + AB(),
W) = &+ AL(t) (48)

The equilibrium equations become
, e 2 0 — A
Pz ﬂ“} = v/8 49
[2’ qz] {Io 8 (91' + A6 — C) (49)
a
The perturbation equations, which neglect second order

nonlincar products such as ASA8, ABA{, A9AB, and

R e n_?w*n\v‘- fad P @“ A_{.S'
i
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s +Ss+p

- s[%(?ﬂ—A)—QBo]-*I-z“
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_ 2?} = Af
—s[zso-l’(e—QA) -‘I-'z’s’—i—.()'1(29—"°+At9)-+-qz
8 i 8 a
SRR i | L) ] o
v o —wg - sin20 cos -
8 {—A} —k A R. "y [ + [Bo [00520] T [—sin20] (50)
= (;“ + A6 — C)]
[ 8 \a
where where
Ro= (1 — RS 9" 0 K., = E(I; cos + I, sin%) (56)
@plag?
e Koo = E(l: cos% + I, sin%) )

1
pt =1+ " [@g? + R(&;? — «:,,,z)sinzo)]
2 1 o, 2 o ] P 2
¢ = 5 lo? ~ RGy" ~ agsing] (51)

2t = A (@;% — @p?) sin26

(:)ﬂz = Kﬂ/IQz, (:)‘»2 = I(‘»/IQ2

Note that for convenience 6 has been written as 8 in
the final equations.

Elastic Blade Equations

Only a brief outline of the equation derivation for an
elastic rotor blade will be given. Although the effects of
pre-cone for the elastic blade were not investigated,
this parameter is included in the following equations
for generality. The equations are restricted to un-
twisted blades with uniform mass and stiffness distri-
butions. In the case of pre-cone, the X axis is rotated
through the angle 8,. about the Y axis. The following
equations are similar to those derived in Ref. 7 except
that radial deflections and nonlinear strain have been
retained. They are, in order, the radial, inplane, and
flapping displacement equations together with the non-
linear strain relation.

—T' + mli — 209 — @z + u) + QwB,.] =0 (52)
—(T!’I)' + K,,v“” + wal/// +

mli — Q + 2Q@ — B,ab)] = r (53)
_(Twl)l + wallll + Kwovllll +

mlz — QB,.(whpe — (x + w)) + 208,9] = — (54)

T =EA®@ + /' + /') (85)

Keo = Ko = E(Iz — I) siné cosf (38)

The solution proceeds in a manner similar to the rigid
blade case, where the displacements are assumed to
consist of steady statc and perturbation components,
u(z,) = u(zr) + Au(z,t), and similarly for v, w, and
T. The steady state equations then become

=Ty + mQ*weB,. — mQNz + u) =0 (39)

_(Tovol)l + Kovvoll'l + meollll —
aF,,

midte = — = (60)

—(Towe)’ + Kutte”" + Kot ~
dF,,
mQ’ﬂpc[“‘Oﬁac -+ w]= E 61

For 8,. = 0, a linear solutiou for v, and uy is casily ob-
tained by Galerkin’s method after discarding sccond
order terms (uo < z) in Eqgs. (59) and (61). For the per-
turbation equations we have

— AT — m(2QA7 — Q*AuB,) =0 62

_(Tov/)/ . (ATvo')' + K"Av“” + KmAw”“ +
dAF,

)
dz (63

m[AY — Qv + 20(Aiw — B, Aw)] =
—(ToAw")’ — (ATuy') + Kppduw’’’ + K, 00" +
dAF,

e

m[A®D + 2Q8,40] =

AT = EA[Au + v Av' + wo'Aw'] (65)

Equations (63) and (64) are the inplane and flappiny

perturbation equations for an elastic rotor blade. With-
out the perturbation tension, AT, and radial displace-
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ment, Au, terms these equations are conventional.
However, the AT and Au terms give rise to the de-
stabilizing flap-lag effects and must be retained. The
additional equations (62) and (63) can be substituted
into Egs. (63) and (64) to vield two equations in two
unknowns Av, Aw which are then solved by Galerkin’s
method. The flap and lead-lag displacements are ex-
expressed in series form.

N
soat) = 2 Va)nl) (66)
:
sz = X Wal)e) (67)
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