Introduction to Classes and Objects

Qutline
« How to create classes and objects

« How to define member functions

 How to define constructor member functions

« How to define reader and writer member functions
 How to benefit from data abstraction

« How to protect member variables from harmful accesses

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How To Create Classes and Objects

e Let’s first define and use classes as structures

« Classes correspond to naturally occurring categories
— Enable you to describe and manipulate bundles of descriptive
data items for categories with a single name
e E.g., student, car,
e E.g., Student has number, name, GPA... Car has speed, gear,...

— Define a class once, you can construct any number of class
objects that belong to that class

e E.g., student objects, car objects

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How To Create Classes and Objects

From programming languages perspectives,

o A class Is a data type
— User-defined data type (compared to built-in data types)
— Class includes member variables for descriptive data items

class box _car {
public:
double height, width, length;

class tank car {
public:
double radious, length;

¥

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Box Car and Tank Car

Box car Tank car

Pictures are from naver.com 0| 0| X| 2 AH

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How To Create Classes and Objects

* Objects are data items of that type

— Objects are created by declaring variables or dynamic allocation

box car X;

box _car *y = new (box_car);
tank _car z;

tank _car *w = new (tank car);

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Example of Creating a Class

» Describe data items that mirror real-world categories

Description of variables;
for example, height, width and length
Description of class-specific functions;

for example, volume

Instance of Instance of nstance of

height 10.5 height 10.5
width 9.5 width 9.5
length 40.0 length 40.0

class box_car {
public:
double height, width, length;

¥

height 10.5
width 9.5
length 50.0

Description of
the box_car

class

Desription of
particular

box_car objects

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Class Objects and Member Variables

e Once a class i1s defined, we can create variables of that
class, as we define variables of built-in types

— E.¢g., box_car x, y;

 Member variables
— Variables that appear inside class definitions (AKA, fields)

— Refer to a member variable via the class-member-operator .
— Use
o class object’s name . member-variable name
— Assignment
o class object’s name . member-variable name = expression ;
— Member variables are used as regular variables (e.g., parameters)

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1 #include <iostream.h>

° - Outline
3 class box_car { // Tells C++ that a class “box_car” is to be defined v

4 public: // Specifies where variables can be referenced

5 double height, width, length; // Introduces variables

6 }; // end class box_car

7 // Calculate the volume of a box

8 double box_car_volume(double h, double w, double I) {

9 return h * w * I;

10 } // end function box_car_volume

12 int mainQ {

i3 box_car X;

14 x.height = 10.5; x.width = 9.5; x.length = 40.0;

15 cout << “The volume of the box _car is “

16 << box_car_volume(x.height, x.width, x.length)
17 << endl;

18 } // end function main

The volume of the box_car is 3990

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Passing Class Object as Function Argument

* You can pass class object as function argument

— Instead of passing each member variables of class as
function argument, you can takes just one argument

 You can overload functions with different class
object arguments

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1 #include <iostream.h>

5 - Outline
3 class box_car { // Tells C++ that a class “box_car” is to be defined v
4 public: // Specifies where variables can be referenced

5 double height, width, length; // Introduces variables

6 }; // end class box_car

7 // Calculate the volume of a box

8 double volume(box_car b) {

9 return b.height * b_.width * b_length;

10 3}

11

12 int mainQ {

13 box_car Xx;

14 X.height = 10.5; x.width = 9.5; x.length = 40.0;
15 cout << “The volume of the box_car is “

16 << volume(X) << endl;

17 ¥} // end function main

The volume of the box_car is 3990

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#include <iostream.h>

Qutline

<>

const double pi = 3.14159;

class box_car {public: double height, width, length;};

// Calculate the volume of a box
double volume(box_car b) {

1
2
3
4
5 class tank _car {public: double radious, length;};
6
7
8 return b_height * b.width * b.length;

9

3
10 // Calculate the volume of a tank

11 double volume(tank _car t) {

12 return pi * t.radius * t_length;
13}
14 int mainQ {

15 box_car x; x.height = 10.5; x_width = 9.5; x_length = 40.0;

16 tank _car y; y.radius = 3.5; y_length = 40.0;

17 cout << “The volume of the box car is “ << volume(X) << endl
18 << “The volume of the tank car is “ << volume(y) << endl;
19 3} // end function main

The volume of the box car is 3990
The volume of the tank car is 1539.38

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Member Function

Define functions into the class definition, like member variables
class box car {

public: double height, width, length
double volume() {

return height * width * length;

}
+
— Calling member function is different from ordinary function calls
e E.g.,, box car x; ; X.volume();

— Member function has one special argument
» Class object that belong to the same class which does not appear in parenthesis

— In member functions, all member variables are taken to belong to the
special, class object argument

* When x.volume() is called, height, width, and length mean those of x
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

#include <iostream.h>
const doublle pi = 3.14159;
class box_car {
public: double height, width, length;
// Calculate the volume of a box
double volume(Q) {
return height * width * length;
}
}:
class tank _car {
public: double radious, length;
// Calculate the volume of a tank
double volume() {
return pi * radius * length;
kg
}:
int mainQ {
box_car x; x.height = 10.5; x.width = 9.5; x.length = 40.0;
tank car y; y.radius = 3.5; y.length = 40.0;
cout << “The volume of the box car is “ << x.volume() << endl
<< “The volume of the tank car is “ << y.volume() << endl;
} // end function main

The volume of the box car is 3990
The volume of the tank car is 1539.38

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Qutline

<>

Member function arguments

 Member function can also have ordinary arguments

— Example
e Usage : x.scaled_volume(0.95)
o Definition

class box car {
public: double height, width, length;
double scaled volume (double scale fTactor)

{

return scaled_factor*height*width*length;

}

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Member Function Prototype

 Function prototype of member functions
— Like function definition without a body
— Define the function outside of the class definition

— Example)
class box car {
public: double height, width, length;
double volume(); // prototype of member function
};
// definition of member function
double box car::volume() {
return height * width * length;

}

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Constructors

Special member functions that are called when class
objects are created

— Enable you to initialize the member variables in new class objects
— Default Constructor
» Called automatically whenever a new class object is created
* Function’s name is the same as the name of the class
— E.g.,, tank_car(), box_car(Q)
* No return-value data type
« Cannot have a parameter

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1 #include <iostream.h>

2 const double pi = 3.14159;

3 class tank_car {

4 public: double radious, length;

5 // default constructor;

6 tank_car() {radius = 3.5; length = 40.0;}
7 // Calculate the volume of a tank

8 double volume() {

9 return pi * radius * length;

10 }

11 };

12 int main(Q {

13 tank_car t;

14 cout << “The volume of the tank car is “ << t.volume() << endl;
15 %} // end function main

The volume of the tank car is 1539.38

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Qutline

<>

Constructor with Parameters

e You can also define a constructor with parameters

class tank car {

public: double radius, length;
// Default constructor
tank_car() { radius = 3.5; length = 40.0;}
// Constructor with two parameters;
tank car (double r, double 1) {

radius = r; length = 1I;

}
// volume function:
double volume() {return pi*radius*radius*length;}

};

o Different constructors are called on variable declaration
— tank car x, y(3.0, 4.0);
— Actually, constructors are overloaded

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

#include <iostream.h>
const double pi = 3.14159;
class tank car {

public: double radious, length;
// default constructor;
tank_car() {radius = 3.5; length = 40.0;}
// Constructor with two parameters:
tank _car(double r, double I) { radius = r; length = 1;}
// Calculate the volume of a tank
double volume() {
return pi * radius * length;

nt mainQ {

tank car ti;

tank _car t2(3.5, 50.0);

cout << “The volume of the default tank car is “

<< tl.volume()

<< endl

<< “The volume of the specified tank car is “
<< t2_.volume()

<< endl;

} 7/ end function main

The volume of the default tank car is 1539.38
The volume of the specified tank car is 1924_22

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Qutline

<>

Reader and Writer Member Functions

« Also referred to as getter and setter functions

— Not a part of the C++ language
— Convention to access the member variables indirectly by defining
a member function to access each member variable
e e.g., double read_radius() {return radius;}
double write_radius(double r) {radius =r;}
— Why do we have readers and writers, while we can access
member variables directly?
e e.g., cout << x.radius;
X.radius = r;
— This Is for practicing data abstraction or encapsulation

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Reader Functions

Extract information from an object

— Example)
class tank car {
public:
double radius, length;
tank_car() { radius = 3.5; length = 40.0;}
tank_car(double r, double 1) {radius=r; length=1;}
double read radius() {return radius;}
double volume() {return pir*radius*radius*length;}

}
— Usage: tank_car t; t.read_radius(Q);

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Reader Functions

Can include additional computation

— Example
class tank car {
public:
double radius, length;
tank_car() { radius = 3.5; length = 40.0;}
tank_car(double r, double 1) {radius=r; length=1;}
double read radius() {
cout << “Reading a tank car’s radius ..” << endl;
return radius;

}

double volume() {return pi*radius * radius *length;}

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Imaginary Member Variables

e Can provide access to imaginary value that can extract
from member variables

— Example: when there are access requests to diameters
class tank car {
public:
double radius, length;
tank_car() { radius = 3.5; length = 40.0;}
tank_car(double r, double 1) {radius=r; length=I1;}
double read radius() {return radius;}
double read diameter() { return radius * 2.0; }
double volume() {return pi*radius*radius*length;}

¥
— Usage: tank_car t; cout << t.read_diameter();

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Writer Functions

Assign a member-variable value indirectly.
— Insert information into an object

— Example)
class tank car {

}

public:

double radius, length;

tank car() { radius = 3.5; length = 40.0;}
tank_car(double r, double 1) {radius=r; length=1;}
void write _radius(double r) {radius = r;}

double volume() {return pi*radius*radius*length;}

— Usage: tank_car t; t.write_radius(4.0)

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Imaginary Member Variables

e Can provide access to imaginary value that can extract
from member variables.

— Example
class tank car {
public:
double radius, length;
tank_car() { radius = 3.5; length = 40.0;}
tank_car(double r, double 1) {radius=r; length=I1;}
void write_radius(double r) {radius = r;}
void write _diameter(double d) {radius = d/72.0;}
double volume() {return pi*radius*radius*length;}

+
— Usage: tank_car t; t.write_diameter(8.0)

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Encapsulation, Data Abstraction, Information Hiding

e Object-oriented programming encapsulates data (states)
and functions (behaviors) into class packages

— A class is like a blueprint
— Out of a class, one can create objects

* When you move implementation details into access
functions and when users of the class access only thru
those functions, you are practicing data abstraction

— Constructors, readers, writers help practicing data abstraction
— Data abstraction allows easier update for implementation details

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Data Abstraction Benefit Example

class tank car {

}:

public:
double radius, length;

tank car() {radius = 3.5; length = 40.0;}
tank _car(double r, double 1) {radius = r; length = 1;}

double read radius() {return radius;}

void write_radius(double r) { radius = r; }

double read diameter() { return 2.0 * radius; }
void write _dirameter(double d) { radius =d /7 2.0; }
double read length() {return length; }

void write_ length(double 1) { length = 1; }

double volume() {return pi1 * radius * radius * length;}

e |f we find that read/write diameter() IS called more

often than read/write radius(), what can we do?

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Data Abstraction Benefit Example

» Change Implementations
— Change member variable “radius” to “diameter”
— Your member function implementations need also to be changed

class tank car {
public:
double diameter, length;

tank car() {diameter = 7.0; length = 40.0;}
tank_car(double r, double 1) {diameter=r*2.0; length=1;}

double read radius() {return diameter / 2.0}

void write_radius(double r) { diameter = r * 2.0; }
double read diameter() { return diameter; }

void write_diameter(double d) { diameter = d; }
double read length() {return length; }

void write_ length(double 1) { length = 1; }

double volume() {return .25 *pi*diameter*diameter*length;}

}:

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Data Abstraction Benefit Example

 How do the user sides need to be changed?

— When you practiced data abstraction, no change
. t.read drameter() => ... t.read driameter()
— If you did not, you must change all the used places

. t.radius .. == .. 0.5 * t.drameter ..

« Data abstraction leads to information hiding

— Class objects can communicate with one another via well-defined
Interfaces (which are member functions, not member variables), but
do not know (should not know) how each class is implemented

— Making programs easier to maintain

» Your programs become easier to reuse.
* You can easily augment what a class provides

* You can easily improve the way data are stored
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Protecting Member Variables

* You can practice data abstraction by providing access functions in
your class definition and by encouraging users to use them

— Obviously, this alone cannot prevent access to implementation details
* i.e., direct access to member variables

— Is there any way to prevent direct accesses to member variables?

 Protection of member variables from harmful references.
— Marked with the “private” symbol for protection
— Cannot access member variables via the class-member operator

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Example of Protecting Member Variables

class tank car {
public:
tank car() {radius = 3.5; length = 40.0;}
tank _car(double r, double 1) {radius=r; length=I1;}

double read radius() {return radius;}

void write_radius(double r) { radius = r; }

double read diameter() { return 2.0 * radius; }
void write_diameter(double d) { radius =d /7 2.0; }
double read length() {return length; }

void write_length(double 1) { length = 1; }

double volume() {return pi*radius*radius*length;}

private:
double radius, length;

}:

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Effect of Employing Private Member Variables

» Reference to an object’s member variables

— Attempt to refer to a object’s member-variable values via the class-
member operator fail to compile.
- t.radius : Evaluation fails to compile
e t.radius : Assignment fails to compile

— Reference and assignment via member functions located in the
public part of the class definition are still allowed

e t.read _radius() : evaluation compiles
e t.write radius(6) : assignment compiles

 Member variables and functions in private section
cannot be accessed directly from outside of the class
— They can still be accessible inside the class definition

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

