
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Introduction to Classes and Objects
Outline
• How to create classes and objects

• How to define member functions

• How to define constructor member functions

• How to define reader and writer member functions

• How to benefit from data abstraction

• How to protect member variables from harmful accesses

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How To Create Classes and Objects
• Let’s first define and use classes as structures

• Classes correspond to naturally occurring categories
– Enable you to describe and manipulate bundles of descriptive

data items for categories with a single name
• E.g., student, car, ….
• E.g., Student has number, name, GPA... Car has speed, gear,…

– Define a class once, you can construct any number of class
objects that belong to that class

• E.g., student objects, car objects

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How To Create Classes and Objects
From programming languages perspectives,
• A class is a data type

– User-defined data type (compared to built-in data types)
– Class includes member variables for descriptive data items

class box_car {

public:

double height, width, length;

};

class tank_car {

public:

double radious, length;

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Box Car and Tank Car
Box car Tank car

Pictures are from naver.com이미지검색

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How To Create Classes and Objects
• Objects are data items of that type

– Objects are created by declaring variables or dynamic allocation
box_car x;

box_car *y = new (box_car);

tank_car z;

tank_car *w = new (tank_car);

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Example of Creating a Class

• Describe data items that mirror real-world categories

class box_car {
public:

double height, width, length;
};

Description of variables;

for example, height, width and length

Description of class-specific functions;

for example, volume

height 10.5

width 9.5

length 40.0

height 10.5

width 9.5

length 40.0

height 10.5

width 9.5

length 50.0

Instance of Instance of Instance of

Description of

the box_car

class

Desription of

particular

box_car objects

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Class Objects and Member Variables

• Once a class is defined, we can create variables of that
class, as we define variables of built-in types
– E.g., box_car x, y;

• Member variables
– Variables that appear inside class definitions (AKA, fields)
– Refer to a member variable via the class-member-operator .
– Use

• class object’s name . member-variable name
– Assignment

• class object’s name . member-variable name = expression ;
– Member variables are used as regular variables (e.g., parameters)

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

The volume of the box_car is 3990

1 #include <iostream.h>
2
3 class box_car { // Tells C++ that a class “box_car” is to be defined
4 public: // Specifies where variables can be referenced
5 double height, width, length; // Introduces variables
6 }; // end class box_car
7 // Calculate the volume of a box
8 double box_car_volume(double h, double w, double l) {
9 return h * w * l;
10 } // end function box_car_volume
11
12 int main() {
13 box_car x;
14 x.height = 10.5; x.width = 9.5; x.length = 40.0;
15 cout << “The volume of the box_car is “
16 << box_car_volume(x.height, x.width, x.length)
17 << endl;
18 } // end function main

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Passing Class Object as Function Argument

• You can pass class object as function argument
– Instead of passing each member variables of class as

function argument, you can takes just one argument

• You can overload functions with different class
object arguments

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

The volume of the box_car is 3990

1 #include <iostream.h>
2
3 class box_car { // Tells C++ that a class “box_car” is to be defined
4 public: // Specifies where variables can be referenced
5 double height, width, length; // Introduces variables
6 }; // end class box_car
7 // Calculate the volume of a box
8 double volume(box_car b) {
9 return b.height * b.width * b.length;
10 }
11
12 int main() {
13 box_car x;
14 x.height = 10.5; x.width = 9.5; x.length = 40.0;
15 cout << “The volume of the box_car is “
16 << volume(x) << endl;
17 } // end function main

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

The volume of the box car is 3990
The volume of the tank car is 1539.38

1 #include <iostream.h>
2
3 const double pi = 3.14159;
4 class box_car {public: double height, width, length;};
5 class tank_car {public: double radious, length;};
6 // Calculate the volume of a box
7 double volume(box_car b) {
8 return b.height * b.width * b.length;
9 }
10 // Calculate the volume of a tank
11 double volume(tank_car t) {
12 return pi * t.radius * t.length;
13 }
14 int main() {
15 box_car x; x.height = 10.5; x.width = 9.5; x.length = 40.0;
16 tank_car y; y.radius = 3.5; y.length = 40.0;
17 cout << “The volume of the box car is “ << volume(x) << endl
18 << “The volume of the tank car is “ << volume(y) << endl;
19 } // end function main

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Member Function

• Define functions into the class definition, like member variables
class box_car {

public: double height, width, length

double volume() {

return height * width * length;

}

}

– Calling member function is different from ordinary function calls
• E.g., box_car x; …..; x.volume();

– Member function has one special argument
• Class object that belong to the same class which does not appear in parenthesis

– In member functions, all member variables are taken to belong to the
special, class object argument

• When x.volume() is called, height, width, and length mean those of x

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

The volume of the box car is 3990
The volume of the tank car is 1539.38

1 #include <iostream.h>
2 const double pi = 3.14159;
3 class box_car {
4 public: double height, width, length;
5 // Calculate the volume of a box
6 double volume() {
7 return height * width * length;
8 }
9 };
10 class tank_car {
11 public: double radious, length;
12 // Calculate the volume of a tank
13 double volume() {
14 return pi * radius * length;
15 }
16 };
17 int main() {
18 box_car x; x.height = 10.5; x.width = 9.5; x.length = 40.0;
19 tank_car y; y.radius = 3.5; y.length = 40.0;
20 cout << “The volume of the box car is “ << x.volume() << endl
21 << “The volume of the tank car is “ << y.volume() << endl;
22 } // end function main

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Member function arguments

• Member function can also have ordinary arguments
– Example

• Usage : x.scaled_volume(0.95)
• Definition

class box_car {

public: double height, width, length;

double scaled_volume (double scale_factor)

{

return scaled_factor*height*width*length;

}

}

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Member Function Prototype

• Function prototype of member functions
– Like function definition without a body
– Define the function outside of the class definition
– Example)

class box_car {

public: double height, width, length;

double volume(); // prototype of member function

};

// definition of member function

double box_car::volume() {

return height * width * length;

}

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Constructors
Special member functions that are called when class

objects are created
– Enable you to initialize the member variables in new class objects
– Default Constructor

• Called automatically whenever a new class object is created
• Function’s name is the same as the name of the class

– E.g., tank_car(), box_car()
• No return-value data type
• Cannot have a parameter

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

The volume of the tank car is 1539.38

1 #include <iostream.h>
2 const double pi = 3.14159;
3 class tank_car {
4 public: double radious, length;
5 // default constructor;
6 tank_car() {radius = 3.5; length = 40.0;}
7 // Calculate the volume of a tank
8 double volume() {
9 return pi * radius * length;
10 }
11 };
12 int main() {
13 tank_car t;
14 cout << “The volume of the tank car is “ << t.volume() << endl;
15 } // end function main

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Constructor with Parameters

• You can also define a constructor with parameters
class tank_car {

public: double radius, length;

// Default constructor

tank_car() { radius = 3.5; length = 40.0;}

// Constructor with two parameters;

tank_car (double r, double l) {

radius = r; length = l;

}

// volume function:

double volume() {return pi*radius*radius*length;}

};

• Different constructors are called on variable declaration
– tank_car x, y(3.0, 4.0);

– Actually, constructors are overloaded

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

The volume of the default tank car is 1539.38
The volume of the specified tank car is 1924.22

1 #include <iostream.h>
2 const double pi = 3.14159;
3 class tank_car {
4 public: double radious, length;
5 // default constructor;
6 tank_car() {radius = 3.5; length = 40.0;}
7 // Constructor with two parameters:
8 tank_car(double r, double l) { radius = r; length = l;}
9 // Calculate the volume of a tank
10 double volume() {
11 return pi * radius * length;
12 }
13 };
14 int main() {
15 tank_car t1;
16 tank_car t2(3.5, 50.0);
17 cout << “The volume of the default tank car is “
18 << t1.volume()
19 << endl
20 << “The volume of the specified tank car is “
21 << t2.volume()
22 << endl;
23 } // end function main

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Reader and Writer Member Functions

• Also referred to as getter and setter functions
– Not a part of the C++ language
– Convention to access the member variables indirectly by defining

a member function to access each member variable
• e.g., double read_radius() {return radius;}

double write_radius(double r) {radius = r;}
– Why do we have readers and writers, while we can access

member variables directly?
• e.g., cout << x.radius;

x.radius = r;
– This is for practicing data abstraction or encapsulation

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Reader Functions

• Extract information from an object
– Example)

class tank_car {

public:

double radius, length;

tank_car() { radius = 3.5; length = 40.0;}

tank_car(double r, double l) {radius=r; length=l;}

double read_radius() {return radius;}

double volume() {return pi*radius*radius*length;}

}

– Usage: tank_car t; t.read_radius();

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Reader Functions

• Can include additional computation
– Example

class tank_car {

public:

double radius, length;

tank_car() { radius = 3.5; length = 40.0;}

tank_car(double r, double l) {radius=r; length=l;}

double read_radius() {

cout << “Reading a tank_car’s radius …” << endl;

return radius;

}

double volume() {return pi*radius * radius *length;}

}

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Imaginary Member Variables

• Can provide access to imaginary value that can extract
from member variables
– Example: when there are access requests to diameters

class tank_car {

public:

double radius, length;

tank_car() { radius = 3.5; length = 40.0;}

tank_car(double r, double l) {radius=r; length=l;}

double read_radius() {return radius;}

double read_diameter() { return radius * 2.0; }

double volume() {return pi*radius*radius*length;}

}

– Usage: tank_car t; cout << t.read_diameter();

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Writer Functions

Assign a member-variable value indirectly.
– Insert information into an object
– Example)

class tank_car {

public:

double radius, length;

tank_car() { radius = 3.5; length = 40.0;}

tank_car(double r, double l) {radius=r; length=l;}

void write_radius(double r) {radius = r;}

double volume() {return pi*radius*radius*length;}

}

– Usage: tank_car t; t.write_radius(4.0)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Imaginary Member Variables

• Can provide access to imaginary value that can extract
from member variables.
– Example

class tank_car {

public:

double radius, length;

tank_car() { radius = 3.5; length = 40.0;}

tank_car(double r, double l) {radius=r; length=l;}

void write_radius(double r) {radius = r;}

void write_diameter(double d) {radius = d/2.0;}

double volume() {return pi*radius*radius*length;}

}

– Usage: tank_car t; t.write_diameter(8.0)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Encapsulation, Data Abstraction, Information Hiding

• Object-oriented programming encapsulates data (states)
and functions (behaviors) into class packages
– A class is like a blueprint
– Out of a class, one can create objects

• When you move implementation details into access
functions and when users of the class access only thru
those functions, you are practicing data abstraction
– Constructors, readers, writers help practicing data abstraction
– Data abstraction allows easier update for implementation details

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Data Abstraction Benefit Example
class tank_car {

public:
double radius, length;

tank_car() {radius = 3.5; length = 40.0;}
tank_car(double r, double l) {radius = r; length = l;}

double read_radius() {return radius;}
void write_radius(double r) { radius = r; }
double read_diameter() { return 2.0 * radius; }
void write_diameter(double d) { radius = d / 2.0; }
double read_length() {return length; }
void write_length(double l) { length = l; }

double volume() {return pi * radius * radius * length;}
};

• If we find that read/write_diameter() is called more
often than read/write_radius(), what can we do?

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Data Abstraction Benefit Example
• Change Implementations

– Change member variable “radius” to “diameter”
– Your member function implementations need also to be changed

class tank_car {
public:
double diameter, length;

tank_car() {diameter = 7.0; length = 40.0;}
tank_car(double r, double l) {diameter=r*2.0; length=l;}

double read_radius() {return diameter / 2.0;}
void write_radius(double r) { diameter = r * 2.0; }
double read_diameter() { return diameter; }
void write_diameter(double d) { diameter = d; }
double read_length() {return length; }
void write_length(double l) { length = l; }

double volume() {return .25 *pi*diameter*diameter*length;}
};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Data Abstraction Benefit Example

• How do the user sides need to be changed?
– When you practiced data abstraction, no change

… t.read_diameter() => … t.read_diameter()

– If you did not, you must change all the used places
…. t.radius … => … 0.5 * t.diameter …

• Data abstraction leads to information hiding
– Class objects can communicate with one another via well-defined

interfaces (which are member functions, not member variables), but
do not know (should not know) how each class is implemented

– Making programs easier to maintain
• Your programs become easier to reuse.
• You can easily augment what a class provides
• You can easily improve the way data are stored

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Protecting Member Variables

• You can practice data abstraction by providing access functions in
your class definition and by encouraging users to use them
– Obviously, this alone cannot prevent access to implementation details

• i.e., direct access to member variables
– Is there any way to prevent direct accesses to member variables?

• Protection of member variables from harmful references.
– Marked with the “private” symbol for protection
– Cannot access member variables via the class-member operator

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Example of Protecting Member Variables
class tank_car {

public:

tank_car() {radius = 3.5; length = 40.0;}

tank_car(double r, double l) {radius=r; length=l;}

double read_radius() {return radius;}

void write_radius(double r) { radius = r; }

double read_diameter() { return 2.0 * radius; }

void write_diameter(double d) { radius = d / 2.0; }

double read_length() {return length; }

void write_length(double l) { length = l; }

double volume() {return pi*radius*radius*length;}

private:

double radius, length;

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Effect of Employing Private Member Variables

• Reference to an object’s member variables
– Attempt to refer to a object’s member-variable values via the class-

member operator fail to compile.
• t.radius : Evaluation fails to compile
• t.radius : Assignment fails to compile

– Reference and assignment via member functions located in the
public part of the class definition are still allowed
• t.read_radius() : evaluation compiles
• t.write_radius(6) : assignment compiles

• Member variables and functions in private section
cannot be accessed directly from outside of the class
– They can still be accessible inside the class definition

