
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Introduction to Inheritance
Outline
• How to define classes that inherit variables and functions

• How to design classes and class hierarchy

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Recall our box_car
and tank_car class
examples

The volume of the box car is 3990
The volume of the tank car is 1539.38

1 #include <iostream.h>
2 const double pi = 3.14159;
3 class box_car {
4 public: double height, width, length;
5 // Calculate the volume of a box
6 double volume() {
7 return height * width * length;
8 }
9 };
10 class tank_car {
11 public: double radious, length;
12 // Calculate the volume of a tank
13 double volume() {
14 return pi * radius * length;
15 }
16 };
17 int main() {
18 box_car x; x.height = 10.5; x.width = 9.5; x.length = 40.0;
19 tank_car y; y.radius = 3.5; y.length = 40.0;
20 cout << “The volume of the box car is “ << x.volume() << endl
21 << “The volume of the tank car is “ << y.volume() << endl;
22 } // end function main

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Add Information Common to Classes
• We defined two railroad cars: box_car and tank_car
• Want to add information common to all railroad cars
• One way is simply adding it to box_car and tank_car
int current_year = 2001;

class box_car {

public:

// From a previous definition of the box_car class:

double height, width, length;

box_car () {height = 10.5; width = 9.2; length = 40.0;}

double volume () {return height * width * length;}

// New member variables:

int percentage_loaded;

int year_built;

// New member function; relies on current_year, a global variable

int age () {return current_year - year_built;}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

class tank_car {

public:

// From a previous definition of the box_car class:

double radius, length;

tank_car() {radius = 3.5; length = 40.0;}

double volume() {return pi*radius*radius*length;}

// New member variables:

int percentage_loaded;

int year_built;

// New member function; relies on current_year, a global variable

int age () {return current_year - year_built;}

};

• What can be the problem?
– Needless duplication of percentage_loaded, year_built, age()
– Probably need to duplicate in other railroad classes: engine and caboose

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Railroad Car Examples
Box car Tank car

Engine Caboose

Pictures are from naver.com이미지검색

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Defining a Super Class
• In C++, we can avoid the duplication via inheritance

– We can say box car, tank car, engine, and caboose are railroad cars
– We define a railroad_car class where we declare common items
– Then we define box_car class as a subclass of railroad_car class

• Common items will be inherited from railroad_car to box_car
• Same for tank_car, engine, and caboose classes

box_car tank_car engine caboose

railroad_car

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Defining a Super Class
• We need to think more about inheritance

– We can also say a box car is a box and a tank car is a cylinder
• where is is different when we say that a box car is a railroad car

– is means is a kind of while is means usefully can be viewed as
– Why do you want to view like this?

– When introducing box and cylinder classes avoid duplication
– When you have fully-debugged box and cylinder classes

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Our Example Class Hierarchy
• We assume that a box car usefully can be viewed as a

box and a tank car usefully can be viewed as a cylinder
– box_car is a subclass of box
– tank_car is a subclass of cylinder

• Also, box and cylinder are a kind of container
– box and cylinder are subclasses of container

• box_car and tank_car are subclasses of railroad_car
• Then we rearrange member variables and functions

– Move height, width, length, volume() from box_car to box class
– Move radius, length, volume() from tank_car to cylinder class
– Declare age() and year_built in railroad_car class
– Declare percentage_loaded in container class

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Our Example Class Hierarchy Diagram

box_car tank_car engine caboose

box

volume()

height

width

length

cylinder

volume()

radius

length

railroad_car

age()

year_bulit

container

percentage_loaded

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Inheriting Member Variables and Functions

• Our class hierarchy shows multiple inheritance
– Not supported in Java

• Class objects inherit member variables and functions
– A box_car object has its own copy of all variables declared in

• box_car, box, container, railroad_car
– We can work on a box_car object with all functions declared in

• box_car, box, container, railroad_car

• Criteria for placing member variables and functions
– No needless duplication
– Each variable and function should be useful in all subclasses

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Defining Class Hierarchy using Inheritance
int current_year = 2001;

class container {

public: int percent_loaded;

// Default constructor:

container () {}

};

class railroad_car {

public: int year_built;

// Default constructor:

railroad_car () {}

// Other member function:

int age () {return current_year - year_built;}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Defining Class Hierarchy using Inheritance
class box : public container {

public: double height, width, length;

// Default constructor:

box () {}

// Other member function:

double volume () {return height*width*length;}

};

const double pi = 3.14159;

class cylinder : public container {

public: double radius, length;

// Default constructor:

cylinder () {}

// Other member function:

double volume ()

{return pi*radius*radius*length ;}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Defining Class Hierarchy using Inheritance
class box_car : public railroad_car, public box {

public: box_car ()

{height = 10.5; width = 9.2; length = 40.0;}

}

class tank_car : public railroad_car, public cyliner {

public: tank_car ()

{radius = 3.5; length = 40.0;}

}

class engine : public railroad_car {

public: engine () {}

}

class caboose : public railroad_car {

public: caboose () {}

}

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Calling Constructors in Class Hierarchy

• When you create an object in a class hierarchy,
– All the default constructors in the object’s class and

superclasses are called automatically
– Superclasses’ constructors are called earlier than subclasses’

#include <iostream.h>

int current_year = 2001;

class container {

public: int percent_loaded;

// Default constructor:

container () {

cout <<

"Calling container default
constructor." << endl;

}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Calling Constructors in Class Hierarchy
class box : public container {
public: double height, width, length;

// Default constructor:
box () {
cout << "Calling box default constructor." << endl;

}
// Other member function:
double volume () {return height * width * length;}

};
// Cyliner definition goes here ...

class railroad_car {
public: int year_built;

// Default constructor:
railroad_car () { cout <<

"Calling railroad_car default constructor." << endl;
}
// Other member function:
int age () {return current_year - year_built;}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Calling Constructors in Class Hierarchy
class box_car : public railroad_car, public box {
public: box_car () { cout <<

"Calling box_car default constructor." << endl;
height = 10.5; width = 9.2; length = 40.0;}

};
main() {
box_car b;
b.year_built = 1943; b.percent_loaded = 66;
cout << "The car is " << b.age() << " years old." << endl;
cout << "And " << b.percent_loaded << " percent loaded."
<< endl;
cout << "Its volume is " << b.volume () << " units." << endl;

}

Calling railroad_class default constructor
Calling container default constructor
Calling box default constructor
Calling box_car default constructor
The car is 58 years old
And 66 percentage loaded
Its volume is 3864 units

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Member Function Overriding

box_car gondola_car

volume()

box

volume()

height

width

length

• Suppose we a gondola_car class, a subclass of box class
– whose volume() is computed differently, so is defined in gondola_car
– There are two volume() in class hierarchy for a gondola_car object
– Which one to choose? the one in gondola_car

• Which shadows the one in box
– This is called overriding

• Can also call shadowed one
– By calling box::volume()

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Function Overriding Example Code
class gondola_car : public railroad_car, public box {
public: // Default constructor:

gondola_car () {height=6.0; width = 9.2; length = 40.0;}
// The gondola volume member function;
// gondolar cars are loaded above their rims:
double volume () {return 1.2 * height * width * length;}

};

main() {
// Construct a gondola car:
gondola_car g;
// Display volume; use the gondola class volume function:
cout << "Viewd as a gondola, the car's volume is "

<< g.volume () << " units." << endl;
// Display volume; use the box class volume function:
cout << "Viewd as a box, the car's volume is "

<< g.box::volume () << " units." << endl;
}

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How to Design Classes and Class Hierarchies

• Principles to design classes and hierarchies
– Explicit representation principle

• There should be a class corresponding to a natural category
– No-duplication principle

• Avoid duplication of identical code
– Local-view principle

• Related program elements should be located close in the code
– Look-it-up principle

• Frequently-needed answer must be a variable, not a computed one

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How to Design Classes and Class Hierarchies

– Need-to-know principle
• Restrict access to public interfaces

– Keep-it-simple principle
• Class definition should be easier to read (e.g., less than 20 lines)

– Modularity principle

• Related classes should be in a file

