Introduction to Inheritance

QOutline
e How to define classes that inherit variables and functions

« How to design classes and class hierarchy

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



1 #include <iostream.h>

2 const double pi = 3.14159; A Outline

3 class box_car { v

4 public: double height, width, length;

5 // Calculate the volume of a box Recall our box car
Do s eoimo L and tank_car class
7 return height * width * length; -

o X examples

9 };

10 class tank_car {

11 public: double radious, length;

12 // Calculate the volume of a tank

13 double volume(Q) {

14 return pi * radius * length;

15 3}

16 };

17 int mainQ {

18 box_car x; X.-height = 10.5; x.width = 9.5; x.length = 40.0;

19 tank_car y; y.radius = 3.5; y.length = 40.0;

20 cout << “The volume of the box car is “ << x.volume() << endl
21 << “The volume of the tank car is “ << y.volume() << endl;
22 % // end function main

The volume of the box car is 3990
The volume of the tank car is 1539.38

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Add Information Common to Classes

* We defined two railroad cars: box_car and tank_car
« Want to add information common to all railroad cars
e One way Is simply adding it to box_car and tank_car

int current_year = 2001;
class box car {
public:

// From a previous definition of the box_car class:
double height, width, length;
box _car () {height = 10.5; width = 9.2; length = 40.0;}
double volume () {return height * width * length;}
// New member variables:
int percentage loaded;
int year built;
// New member function; relies on current year, a global variable
int age () {return current _year - year built;}

}

’© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



class tank car {
public:
// From a previous definition of the box car class:
double radius, length;
tank _car() {radius = 3.5; length = 40.0;}
double volume() {return pi*radius*radius*length;}
// New member variables:
int percentage loaded;
int year_ built;
// New member function; relies on current year, a global variable
int age () {return current_year - year_built;}

) g

* What can be the problem?

— Needless duplication of percentage _loaded, year built, age()

— Probably need to duplicate in other railroad classes: engine and caboose
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Railroad Car Examples

Box car Tank car

Pia@%ﬁ%&ﬁ?%@—‘%ﬁ%@&h@‘ é'A%'escj)\ﬂcHiates, Inc. and Pearson Education Inc. All Rights Reserved.



Defining a Super Class

e In C++, we can avoid the duplication via inheritance
— We can say box car, tank car, engine, and caboose are railroad cars

— We define a rai lroad_car class where we declare common items
— Then we define box_car class as a subclass of rai lroad car class

e Common items will be inherited from railroad _car to box_car
e Same for tank_car, engine, and caboose classes

[

raillroad _car

-

box_car

tank _car

A A

engine

caboose




Defining a Super Class

e \We need to think more about inheritance

— We can also say a box car is a box and a tank car is a cylinder
» where is is different when we say that a box car is a railroad car
— I1s means is a kind of while is means usefully can be viewed as
— Why do you want to view like this?
— When introducing box and cylinder classes avoid duplication
— When you have fully-debugged box and cylinder classes

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Our Example Class Hierarchy

We assume that a box car usefully can be viewed as a
box and a tank car usefully can be viewed as a cylinder

— box_car is asubclass of box
— tank_car is asubclass of cylinder

Also, box and cylinder are a kind of container
— box and cyl 1nder are subclasses of container

box_car and tank car dlé subclasses of rail road_car

Then we rearrange member variables and functions

— Move height, width, length, volume() from box_car to box class
— Move radius, length, volume() from tank_car to cylinder class
— Declare age() and year_built in railroad_car class

— Declare percentage loaded in container class
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Our Example Class Hierarchy Diagram

container

percentage_loaded

box
volume()
height
width
length

volume()
radius

length

box_car

tank _car

railroad_car

age()
year_bulit

caboose




Inheriting Member Variables and Functions

* Qur class hierarchy shows multiple inheritance
— Not supported in Java

« Class objects inherit member variables and functions

— A box_car object has its own copy of all variables declared in
* box_car, box, container, railroad_car

— We can work on a box_car object with all functions declared in
e box_car, box, container, railroad_car

 Criteria for placing member variables and functions
— No needless duplication
— Each variable and function should be useful in all subclasses

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Defining Class Hierarchy using Inheritance

int current _year = 2001;

class container {
public: 1Int percent loaded;
// Default constructor:
container O {}

) g

class railroad car {
public: 1nt year built;
// Default constructor:
railroad car O {}
// Other member function:
int age () {return current _year - year built;}

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Defining Class Hierarchy using Inheritance

class box : public container {
public: double height, width, length;
// Default constructor:
box O {}
// Other member function:
double volume () {return height*width*length;}

}s
const double pi1 = 3.14159;

class cylinder : public container {
public: double radius, length;
// Default constructor:
cylinder O {}
// Other member function:
double volume ()
{return pi*radius*radius*length ;}
© gopyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Defining Class Hierarchy using Inheritance

class box _car : public railroad car, public box {
public: box _car ()
{height = 10.5; width = 9.2; length = 40.0;}
}

class tank car : public railroad car, public cyliner {
public: tank car ()
{radius = 3.5; length = 40.0;}
by

class engine : public railroad car {
public: engine () {}
+

class caboose : public railroad car {
public: caboose () {}

}

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Calling Constructors in Class Hierarchy

* When you create an object in a class hierarchy,

— All the default constructors in the object’s class and
superclasses are called automatically

— Superclasses’ constructors are called earlier than subclasses’

#include <i1ostream.h>
int current_year = 2001;
class container {
public: Int percent_ loaded;
// Default constructor:
container O {
cout <<

""Calling container default
constructor." << endl;

}s
© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Calling Constructors in Class Hierarchy

class box : public container {
public: double height, width, length;
// Default constructor:

box O {

cout << "Calling box default constructor." << endl;
+
// Other member function:
double volume () {return height * width * length;}
}s

// Cyliner definition goes here ...

class railroad car {
public: i1nt year built;
// Default constructor:
railroad car () { cout <<
"Calling railroad car default constructor.” << endl;
+
// Other member function:
int age () {return current _year - year_ built;}

};

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Calling Constructors in Class Hierarchy

class box_car : public railroad car, public box {
public: box car (O { cout <<
"Calling box_car default constructor." << endl;
height = 10.5; width = 9.2; length = 40.0;}
}:
main() {
box car b;
b.year built = 1943; Db.percent loaded = 66;
cout << "The car 1s " << b.age() << " years old." << endl;

cout << "And " << b.percent_loaded << " percent loaded."
<< endl;
cout << "lIts volume is " << b.volume () << " units." << endl;

+

Calling railroad _class default constructor
Calling container default constructor
Calling box default constructor

Calling box car default constructor

The car 1s 58 years old

And 66 percentage loaded

Its volume i1s 3864 units

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



Member Function Overriding

e SuUppose We a gondola_car Class, a subclass of box class
— whose volume () Is computed differently, so is defined in gondola_car
— There are two volume() in class hierarchy for a gondola_car object
— Which one to choose? the one in gondola_car

« Which shadows the one in box
— This is called overriding

e Can also call shadowed one
— By calling box: :volume()

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

box
volume()
height
width
length

box_ car

gondola_car

volume()




Function Overriding Example Code

class gondola car : public railroad car, public box {
public: // Default constructor:
gondola _car () {height=6.0; width = 9.2; length = 40.0;}
// The gondola volume member function;
// gondolar cars are loaded above their rims:
double volume () {return 1.2 * height * width * length;}

33
main() {

// Construct a gondola car:
gondola _car g;
// Display volume; use the gondola class volume function:
cout << "Viewd as a gondola, the car®s volume i1s "

<< g.volume () << " units." << endl;
// Display volume; use the box class volume function:
cout << "Viewd as a box, the car"s volume is "

<< g.box::volume () << " units." << endl;

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



How to Design Classes and Class Hierarchies

 Principles to design classes and hierarchies
— Explicit representation principle
» There should be a class corresponding to a natural category
— No-duplication principle
 Avoid duplication of identical code
— Local-view principle
» Related program elements should be located close in the code
— Look-it-up principle
* Frequently-needed answer must be a variable, not a computed one

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



How to Design Classes and Class Hierarchies

— Need-to-know principle

 Restrict access to public interfaces
— Keep-it-simple principle

 Class definition should be easier to read (e.g., less than 20 lines)
— Modularity principle

e Related classes should be In a file

© Copyright 1992-2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.



