
Introduction to Java Programming LanguageIntroduction to Java Programming Language

Java’s History

Java’s Features compared to C++

JavaJava’’s Brief Historys Brief History

Embedded controller market is originally targeted

Designed for programs for small embedded computers in consumer
electronic appliances (TV, Microwave, etc.)
Should be small, distributed, robust

Rapidly accepted as a de facto network programming language as the
Internet grows fast (WWW, electronic commerce)

Why?

Features as a Network Programming LanguagesFeatures as a Network Programming Languages

Run on a wide variety of hardware platforms

Loaded dynamically via a network

Provides robustness features

Provides security features

Features as a General Programming LanguagesFeatures as a General Programming Languages

Completely object-oriented language

Much simpler than C++

Can work on multiple tasks simultaneously

Automatically recycles memory

Exception handling features

Interpreted

High-Performance

PortabilityPortability

Designed to support applications operating in networked environment with
different CPUs, OS, and language systems

Java compiler dose not generate “machine code”

Rather, Java is compiled into byte code, a high-level machine-
independent intermediate code

Byte code is indeed an instruction set for an hypothetical stack
machine;e.g., iload, istore, pop, getfield, iadd, ..

The size of byte code is small (2 times smaller than the RISC code
from C++ compiler)

Portability (contPortability (cont’’))

public class Arr {

public static void main(String [] args){

int[] array = new int[1000];

for(int i=0; i<array.length;i++)

array[i] = i;

}

}

Method void main

0 sipush 1000

3 newarray int

5 astore_1

6 iconst_0

7 istore_2

8 goto 18

11 aload_1

12 iload_2

13 iload_2

14 iastore

15 iinc 2 1

18 iload_2

19 aload_1

20 arraylength

21 if_icmplt 11

24 return

Portability (contPortability (cont’’))

The byte code is executed by a software called a Java virtual machine
by interpretation

Java’s data types and operator behaviors are strictly defined;
e.g., bytes : 8-bit two’s complement, char : 16-bit Unicode,…

Java libraries define portable interface
(e.g., Abstract Window Toolkit (AWT) for UNIX, Windows, Mac)

Java language environment is easily portable
– Java compiler is written in Java
– Java run-time system is written in ANSI C

This approach is good for single-system software distribution as well as
for network-based applications

RobustnessRobustness

Reliable programming

Strict compile-time checking by Java compiler

Run-time checking by JVM (null dereference, array bound check)

Do not corrupt memory (no pointer arithmetic, w/ garbage collection)

Fast prototyping (like Lisp)

SecuritySecurity

How Java compiler restricts “hacking” code

No pointers (memory cells that contain the address of others)
Memory layout is decided at run-time, not at compile-time
(memory references using handles are resolved at run-time)
Violation of these are detected at compile-time

How Java VM restricts “hacking” code

Byte code verification by JVM (verifier, class loader)
Verifies no operand stack overflow, illegal data conversions, incorrect
parameter types, etc.

ObjectObject--Oriented Programming in JavaOriented Programming in Java

Completely object-oriented language

Programs consist of class definitions only (no stand-alone functions)

Class definition establish the blueprint of application-specific category

Objects (class instances) of the category can be created using the
blueprint

OO Technology in Java (contOO Technology in Java (cont’’))

Dynamic loading and binding of classes

No separate, static “link” phase after compilation. Load classes
dynamically only when needed during execution
Linking in Java is loading new classes into JVM by the class loader and
is incremental and lightweight
Dynamic binding solves the fragile superclass problem of C++ : when a
class definition changes, all other classes that reference the class must
be recompiled ; in Java, the references are compiled into symbolic
names (not numeric offsets) which are then resolved by the Java
interpreter (once) at run-time
Results in highly dynamic and dynamically-extensible system ; classes
are linked as required and are downloaded across networks ; you can
also provide your own class loader!

Simpler than C++Simpler than C++

No functions

No multiple inheritance (instead, use interface)

No operator overloading

No pointers

No Typedefs, Defines, and Preprocessing

No structures and unions

MultithreadingMultithreading

Multithreading is part of the Java language

Thread : a single sequential flow of control within a program

Concurrent activities can be programmed by running multiple threads at
the same time (e.g. HotJava browser)

Synchronization is required for accessing shared data

Java provides primitives for threads and locks

More “thread-safe”compared to previous thread libraries
(e.g., what happens then exception occurs while holding a lock)

Garbage collectionGarbage collection

Java frees you from the headache of memory management

A background garbage collector runs in a low-priority thread

It frees unused memory for reuse

Significantly improves the reliability and production cycle of code

Exception Handling FeaturesException Handling Features

Separate Error-Handling Code from “Regular” code
Example : reading an entire file into memory

readFile {

open the file;

determine its size;

allocate that much memory;

read the file into memory

close the file;

}

Exception Handling Features (contException Handling Features (cont’’))

What happens if the file cannot be opened?

What happens if the length of the file cannot be determined?

What happens if enough memory can’t be allocated?

What happens if the read fails?

What happens if the file cannot be closed?

Exception Handling Features (contException Handling Features (cont’’))

errorcode Type readFile {

init error_code = 0;

open the file;

if (the file is opened) {

determine the length of the file;

if (got the file length) {

read file into memory

if(read failed) {

error_code = -1;

}

} else error_code = -2;

……...

}

Is the file really being closed if the function fails to allocate memory?

Exception Handling Features (contException Handling Features (cont’’))

readFile {

try {

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

} catch (fileopenfailed) {

do something

} catch(sizedeterminefailed) {

do something

} catch (....)

}

