
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

More on Inheritance
Outline
• How to prevent object copying
• When we use friend class
• How to reuse class definitions using templates

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Problem of Object Copying
• Another subtle (thus hard-to-debug) problem can arise due

to the use of call-by-value object parameters
• Let us assume that we want to define an ordinary function

– check_owner (railroad_car r, char *s)

– Which checks if the serial # of a railroad car equals to a character string

int nyc_count = 0;

for (n = 0; n < car_count; ++n)

if(check_owner (*(train[n]), "NYC"))

++nyc_count;

cout << "There are " << nyc_count << "NYC cars." << endl;

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

int check_owner (railroad_car r, char* s) {

if (strncmp (s, r.serial_number, 3))

return 0;

else

return 1;

}

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

class railroad_car {
public: char *serial_number;

// Constructors:
railroad_car () { }
railroad_car (char *input_buffer) {
// Create new array just long enough:
serial_number = new char[strlen(input_buffer) + 1];
// Copy string into new array:
strcpy (serial_number, input_buffer);

}
// Destructor:
virtual ~railroad_car () {
cout << "Deleting a railroad serial number" << endl;
delete [] serial_number;

}
// Other:
virtual char* short_name () {return "rrc";}
virtual double capacity () {return 0.0;}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Problem of Object Copying
• Still have the same issue of copying only railroad portion

– It is fine since in this particular situation, we need only railroad portion

• Then, what is the real problem for this situation?
– Copying of the serial_number field

Memory reserved for

box_car argument

Memory reserved for

railroad_car argument

box_car

specific

portion

copied

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Problem of Object Copying
• Copying of the pointer to a serial_number object

– When the copying is made, the pointer is also copied

• What can be the problem? When the function returns the
destructor will be called for the copied object
– Why? A parameter is also a local variable which should be deallocated

when the function returns

Memory reserved for

box_car argument

Memory reserved for

railroad_car argument

box_car

specific

portion

copied

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Problem of Object Copying
• When the destructor is called for the copied object

– It will eliminate the (shared) serial_number object

• Now the pointer in the original object is dangling
– The worst thing is that the problem is not immediately detected

Memory reserved for

box_car argument

box_car

specific

portion

?

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Solution of Object Copying
• Replace call-by-value by call-by-reference

– No copy is made, no copy memory is reclaimed, no destructor is called

Memory reserved for

box_car argument

Memory reserved for

railroad_car argument

box_car

specific

portion

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Another Solution of Object Copying
• Define your own copy constructor

– C++ programs copy objects using a copy constructor
– C++ compiler provides a default copy constructor if you do not supply

• Which is simply member-wise copying as we already saw
– You can provide one, which actually duplicates the serial_number object

Memory reserved for

box_car argument

Memory reserved for

railroad_car argument

box_car

specific

portion

copied

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Which Solution is Preferable
• Experienced programmers prefer call-by-reference. Why?

– C++ objects generally represent real-world objects
– Any object creation, copying, destruction should mimic corresponding

actions in real world
– Objects should not be copied merely because a function is called, and

objects should not be destroyed merely because a function returns

• There are 3 reasons to avoid call-by-value object parameter
– Subclass portion is not copied
– Copying can lead to obscure reclamation bug
– Copying/reclamation in function calls violate the principle of software

objects mimicing real-world objects

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How to Avoid Inadvertent Object Copying
• Define your own copy constructor

– If you define a destructor, define also a copy constructor
• Place it in the private part so that it cannot be called outside

class railroad_car {
public: char *serial_number;

// Constructors:
railroad_car () { }
railroad_car (char *input_buffer) {
// Create new array just long enough:
serial_number = new char[strlen(input_buffer) + 1];
// Copy string into new array:
strcpy (serial_number, input_buffer);

}
……..

private:
// Never-to-be-called copy-constructor protytype:
railroad_car (railroad_car&);

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How to Implement Lists
• Build a linked list for storing railroad cars instead of array
• One way is adding a link pointer field in railroad_car object
• This kind of internal pointers is not recommended

– Adding a field to existing class definitions would be awkward
– If we build a separate list for each car class, we need a point for each list

• Most experienced programmers use external pointers
– Create a new class link which has two pointers

• Pointer to the next link object
• Pointer to a railroad_car object

0

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Implementation of Linked Lists
• We add one more class, header

– Each header object, one per list, contains a pointer to the 1st link object

• Member variables for header and link

class link {

public: link *next_link_pointer;

railroad_car *element_pointer;

...

};

class header {

public: link *first_link_pointer;

header() {

first_link_pointer = NULL;

}

};

0

A header object

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Implementation of Linked Lists
• We need a member function add for the header

– train.add(pointer-to-railroad_car object)

class header {
public: link *first_link_pointer;

header() {
first_link_pointer = NULL;

}
void add (railroad_car *new) {
first_link_pointer = new link (new, first_link_pointer);

}
};
class link {
public: link *next_link_pointer;

railroad_car *element_pointer;
link (railroad_car *e, link *l) {
element_pointer = e;
next_link_pointer = l;

}
};

0

A header object

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Implementation of Linked Lists
• We now need to be able to access elements of the list

– current_link_pointer:
– advance(): advances current_link_pointer
– access(): obtains a pointer to a railroad_car object from the

current_link_pointer

class header {

public: link *first_link_pointer;

link *current_link_pointer;

header() {

first_link_pointer = NULL;

current_link_pointer = NULL;

}

void add (railroad_car *new) {

first_link_pointer = new link (new, first_link_pointer);

current_link_pointer = first_link_pointer

}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Implementation of Linked Lists
• More functions

– endp() for end predicate that checks if current_link_pointer is null
– Reset(): current_link_pointer to first_link_pointer

void advance () {

current_link_pointer = current_link_pointer -> next_link_pointer;

}

railroad_car* access () {

return current_link_pointer -> element_pointer;

}

int endp () {

return ! current_link_pointer;

}

void reset () {

current_link_pointer = first_link_pointer;

}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Main() of Linked Lists
header train;

main () {
// No initialization or increment expressions:
for (; cin >> input_buffer;)
switch (extract_car_code (input_buffer)) {
case eng_code: train.add (new engine (input_buffer)); break;
case box_code: train.add (new box_car (input_buffer)); break;
case tnk_code: train.add (new tank_car (input_buffer)); break;
case cab_code: train.add (new caboose (input_buffer)); break;

}

train.reset ();

// No initialization; incremernt expression advances list:
for (; !train.endp (); train.advance ())
// Display number, short name, and capacity and terminate the line:
cout << train.access () -> serial_number << " "

<< train.access () -> short_name () << " "
<< train.access () -> capacity () << endl;

}

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Sample Data and Result
-------- Sample Data ---

TPW-E-783

PPU-B-422

NYC-B-988

NYC-T-988

------- Result -------

NYC-T-988 tnk 1539.38

NYC-B-988 box 3990

PPU-B-422 box 3990

TPW-E-783 eng 0

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Hiding Implementation Details of Lists
• We want to move some members to private section
class link {
private:
link *next_link_pointer;
railroad_car *element_pointer;
link (railroad_car *e, link *l) {
element_pointer = e;
next_link_pointer = l;

}
};
class header {
public:

header() {
first_link_pointer = NULL;
current_link_pointer = NULL;

}
……..

private: link *first_link_pointer;
link *current_link_pointer;

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Solution

• However, it does not work
– why not? access of link members by header public functions
– Solution: resorting to friend class

class link {
friend class header;
private:

link *next_link_pointer;
railroad_car *element_pointer;
link (railroad_car *e, link *l) {

element_pointer = e;
next_link_pointer = l;

}
};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

How to Reuse Classes using Templates
• You want to make other lists once you have railroad car lists
• You can edit link and header class definitions by hand

– But this is not a good idea. Why not?
• Manual editing is error-prone
• If you have future improvements, you need to propagate them to all
• You need to give separate names for header and link for each list

• Solution
– C++ provides a template mechanism, which enables you to define

generic header and link template classes
– What is template?형판(型板)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Re-Interpretation of Link and Header Classes
class link {
friend class header;
private:
link *next_link_pointer;
railroad_car *element_pointer;
link (railroad_car *e, link *l) {
…

}
};
class header {
public: …

void add (railroad_car *new) {
first_link_pointer = new link (new, first_link_pointer);
…
}
railroad_car* access () {

return current_link_pointer -> element_pointer;
}
….

private: link *first_link_pointer;
link *current_link_pointer;

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Converting into Template Class Definitions
• Convert into template class definition by adding prefixes
template <class link_parameter>

class link {

...

};

template <class header_parameter>

class header {

...

};

• Replace red-colored ones by appropriate parameter names
• Provide a specializing argument when another template class

name is used inside the class definition
• Finally, define class variables using parametered classes

– header train; => header<railroad_car> train;

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Re-Interpretation of Link and Header Classes
template <class link_parameter> class link {
friend class header<link_parameter>;
private:

link *next_link_pointer;
link_parameter *element_pointer;
link (link_parameter *e, link *l) {

…
}

};
template <class header_parameter> class header {
public: …

void add (header_parameter *new) {
first_link_pointer = new

link<header_parameter>(new,first_link_pointer);
…

}
header_parameter * access () {

return current_link_pointer -> element_pointer;
}
….

private: link< header_parameter > *first_link_pointer;
link< header_parameter > *current_link_pointer;

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Converting into Template Class Definitions
• Finally, define class variables using parametered classes

– header train; => header<railroad_car> train;

• This will cause the header template class to be instantiated so
as to deal with header objects belonging to railroad_car class

• You can instantiate it using other classes for other type lists

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Iteration Class Objects
• Previously, we can have only one traversal for the list

– Using the current_link_pointer in the header class

• What if we have multiple traversals going simultaneously?
• We use iteration class for more than one traversal

– Which separates list construction and list traversal
header object Iterator object

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Iterator Template Class
template <class iterator_parameter>
class iterator {
public: ...
iterator_parameter* access () {
return current_link_pointer -> element_pointer;

}
void advance () {
current_link_pointer = current_link_pointer -> next_link_pointer;

}
int endp () {
return ! current_link_pointer;

}
void reset () {
current_link_pointer = first_link_pointer;

}
private link<iterator_parameter>* current_link_pointer;

link<iterator_parameter>* first_link_pointer;
};

• Why do we need first_link_pointer?
– For reuse of the iterator

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Iterator Class Constructor
• Defining iterator constructor is not simple

– Constructor needs to get the first link with the header object argument

• How do we declare a header and an iterator variable?
– header<railroad_car> train;

– iterator<railroad_car> train_iterator (train);

• The format of the constructor would be
iterator (header<iterator_parameter> & header)

{

first_link_pointer = header.first_link_pointer;

current_link_pointer = first_link_pointer;

};

• Iterator class should be a friend class of link class

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Analyze Program
template <class iterator_parameter>
class iterator {
public:
iterator (header<iterator_parameter>& header) {
first_link_pointer = header.first_link_pointer;
current_link_pointer = first_link_pointer;

}
iterator_parameter* access () {
return current_link_pointer -> element_pointer;

}
void advance () {
current_link_pointer = current_link_pointer -> next_link_pointer;

}
int endp () {
return ! current_link_pointer;

}
void reset () {
current_link_pointer = first_link_pointer;

}
private: link<iterator_parameter>* current_link_pointer;

link<iterator_parameter>* first_link_pointer;
};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Analyze Program
template <class link_parameter>
class link {
friend class iterator<link_parameter>;
friend class header<link_parameter>;
private:
link *next_link_pointer;
link_parameter *element_pointer;
link (link_parameter *e, link *l) {
element_pointer = e;
next_link_pointer = l;

}
};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Analyze Program
template <class header_parameter>
class header {
friend class iterator<header_parameter>;
public:
header () {
first_link_pointer = NULL;

}
void add (header_parameter *new_element) {
first_link_pointer =
new link<header_parameter> (new_element, first_link_pointer);

}
private:
link<header_parameter> *first_link_pointer;

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Analyze Program
header<railroad_car> train;
char input_buffer[100];
enum {eng_code = 'E', box_code = 'B', tnk_code = 'T', cab_code = 'C'};
char extract_car_code (char *input_buffer) {return input_buffer[4];}

main () {
// No initialization or increment expressions:
for (; cin >> input_buffer;)
switch (extract_car_code (input_buffer)) {
case eng_code: train.add (new engine (input_buffer)); break;
case box_code: train.add (new box_car (input_buffer)); break;
case tnk_code: train.add (new tank_car (input_buffer)); break;
case cab_code: train.add (new caboose (input_buffer)); break;

}
// Define and initialize iterator class object:
iterator<railroad_car> train_iterator (train);
// Iterate:
train_iterator.reset ();
// No initialization; incremernt expression advances list:
for (; !train_iterator.endp (); train_iterator.advance ())
// Display number, short name, and capacity and terminate the line:
cout << train_iterator.access () -> serial_number << " "

<< train_iterator.access () -> short_name () << " "
<< train_iterator.access () -> capacity () << endl;

}

