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More on Inheritance
Outline
• How to use private and protected variables
• How to use private and protected class derivations
• How to use call-by-reference class parameters
• How to call destructors in class hierarchy
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Box Class w/ Private Variables & Public Readers

• Move height,width,length to private with public readers
class box : public container { 
public: box () { } 

box (double h, double w, double l) { 
height = h; width = w; length = l; 

} 
double read_height () {return height;}
double read_width () {return width;}
double read_length () {return length;}
double volume () {return height * width * length;} 

private: double height, width, length;
}; 
class box_car : public railroad_car, public box { 
public: // Default constructor: 

box_car () : box (10.5, 9.2, 40.0) { } 
// Displayers: 
virtual void display_short_name () {cout << "box";} 
virtual void display_capacity () {cout << volume ();} 

}; 
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Box Class w/ Protected Member Variables

• Alternatively, move them into protected part of class
– Now, they are accessible in the same class or subclasses

class box : public container { 
public: box () { } 

box (double h, double w, double l) { 
height = h; width = w; length = l; 

} 
double volume () {return height * width * length;} 

protected: double height, width, length;
}; 
class box_car : public railroad_car, public box { 
public: // Default constructor: 

box_car () : box (10.5, 9.2, 40.0) { } 
// Displayers: 
virtual void display_short_name () {cout << "box";} 
virtual void display_capacity () {cout << volume ();} 
virtual void display_height () {cout << height;}

}; 
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Box Class w/ Protected Readers & Private Variables

• If you do not want them to be modifiable outside of box
– But they still can be accessible in box_car class
– They are not accessible at all outside of box and box_car

class box : public container { 

public: box () { } 

box (double h, double w, double l) { 

height = h; width = w; length = l; 

} 

double volume () {return height * width * length;}

protected: double read_height () {return height;}

double read_width () {return width;}

double read_length () {return length;}

private:    double height, width, length;

}; 
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Box Class’s Protected, Private, Public Members
• Box’s private member variables and functions

– Available only to member functions defined in box
• Box’s protected member variables and functions

– Available only to member functions defined in box,box_car

• Box’s public member variables and functions
– Available to ordinary and member functions everywhere

box_car

box

public:

protected:

private:
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Protected Derivation

• Protected derivation of box_car from box
– All public member variables and functions in box act as if they 

are protected member functions and variables in box_car

class box : public container { 
public: box () { } 

box (double h, double w, double l) { 
height = h; width = w; length = l; 

} 
double volume () {return height * width * length;} 
double height, width, length; 

}; 
class box_car : public railroad_car, protected box { 
public: // Default constructor: 

box_car () : box (10.5, 9.2, 40.0) { } 
// Displayers: 
virtual void display_short_name () {cout << "box";} 
virtual void display_capacity () {cout << volume ();} 
virtual void display_height () {cout << height;}

}; 
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Effect of Protected Derivation

• If we have refrigerator_car, a public subclass of box_car
– It can access the height variable defined in box, but with a 
box_car or a refrigerator_car object, cannot access height

– box_car x; 

cout << x.height;// Error!

– refrigerator_car y;

cout << y.height;// Error!

– box z; 

– cout << z.height;// OK!  

box_car

box

public:

int height

Refrigerator_car

Protected derivation

Public or protected derivation
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Private Derivation

• Private derivation of box_car from box
– All public and protected member variables and functions in box act 

as if they are private member functions and variables in box_car

class box : public container { 
public: box () { } 

box (double h, double w, double l) { 
height = h; width = w; length = l; 

} 
double volume () {return height * width * length;} 
double height, width, length; 

}; 
class box_car : public railroad_car, private box { 
public: // Default constructor: 

box_car () : box (10.5, 9.2, 40.0) { } 
// Displayers: 
virtual void display_short_name () {cout << "box";} 
virtual void display_capacity () {cout << volume ();} 
virtual void display_height () {cout << height;}

}; 
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Effect of Private Derivation

• All public members in box are accessible only in box_car
– Not in any member functions of box_car’s subclasses

• If we have refrigerator_car, a public subclass of box_car
– It cannot access the height variable defined in box

box_car

box

public:

int height

Refrigerator_car

Protected derivation

Public or protected derivation
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Effect of Protected and Private Derivation Summary
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Slightly Updated Class Definitions
class railroad_car { 

public: railroad_car () { } 

virtual void display_short_name () { } 

virtual double capacity () { return 0.0 }

};

class box_car : public railroad_car, public box { 

public: // Default constructor: 

box_car () : box (10.5, 9.2, 40.0) { } 

// Displayers: 

virtual void display_short_name () {cout << "box";} 

virtual double capacity () {return volume ();}

}; 

class tank_car : public railroad_car, public cylinder { 

public: // Default constructor: 

tank_car () : cylinder (3.5, 40.0) { } 

// Displayers: 

virtual void display_short_name () {cout << "tnk";} 

virtual double capacity () { return volume ();} 

};
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Revisit Our Full Class Hierarchy

box_car

display_short_name()

capacity()

tank_car

display_short_name()

capacity()

engine caboose

box

volume()

height

width

length

cylinder

volume()

radius

length

railroad_car

age()

year_bulit
display_short_name()

capacity()

container

percentage_loaded
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Call-by-Value Class Parameter
• Let’s define an ordinary function with class parameter

– Takes an ordinary railroad_car object and computes its volume()
double ordinary_capacity_function ( railroad_car r ) { 

return r.capacity (); 

} 

for (n = 0; n < car_count; ++n) { 

// Display short name and capacity and terminate the line: 

cout << train[n]->short_name ( ) 

<< " " 

<< ordinary_capacity_function( *train[n] ) 

<< endl; 

}

– Output is not what we want
Output:  eng 0

box 0

box 0

…
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What is the Problem?
• Call-by-value really makes a copy of the object

– C++ reserves a space for a railroad_car formal parameter
– However, the actual parameter is an box_car object
– So, only the railroad_car portion is copied
– C++ calls capacity() defined in railroad_car class 

Memory reserved for 

box_car argument

Memory reserved for 

railroad_car argument

box_car

specific

portion

copied
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Solution: Call-by-Reference
Replace the call-by-value argument by call-by-reference argument

double ordinary_capacity_function ( railroad_car& r ) { 

return r.capacity (); 

}

Memory reserved for 

box_car argument

Memory reserved for 

railroad_car argument

box_car

specific

portion

Now entire 
object is visible
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Another Solution: Call-by-Value Pointer 
• Based on polymorphism
double ordinary_capacity_function ( railroad_car* r ) { 

return r->capacity (); 

}

cout << train[n]->short_name ( ) 

<< " " 

<< ordinary_capacity_function( train[n] ) 

train[n] r

box_car

specific

portion
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Benefit of Call-by-Reference
• Obviate object copying
• Allows modification of arguments

void loading_function (box_car& b) { // OK 

b.percentage_loaded = 100; 

return; 

} 

void loading_function (box_car b) { // DEFECTIVE! 

b.percentage_loaded = 100; 

return; 

} 
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Revisit Polymorphism & Virtual Function
What if we save a class object to its superclass variable

– Would virtual function call & polymorphism work as before?

Class A { 
public:  

virtual void foo() { cout << “foo() for A” << endl;} 
} 
Class B { 

public:  
virtual void foo() { cout << “foo() for B” << endl;} 

} 
int main() {

A a1, *a2; 
B b; 
a1 = b; a1.foo(); // What is printed? foo() for A or B?
a2 = &b; a2->foo(); // What is printed? foo() for A or B?

} 
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Delete and Destructors
• delete reclaims memory of previously created object

delete train[car_count];

• What if the object also has a previously created object in it?
• Resort to the destructor defined in the class (~class-name())

– Supposed to be called when an object is de-allocated via
• function call return (local variables), delete (dynamic objects), program exit

– All destructors in the class hierarchy are called (from bottom to top)
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Destructor Hierarchy
Void foo() {

box_car x;

tank_car *y;

y = new tank_car();

…

delete y;

return;

} 

Call Sequences:
~tank_car()

~railroad_car()

~box_car()

~railroad_car() 

box_car
~box_car()

tank_car

~tank_car()

railroad_car

~railroad_car()
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What Happens when using Polymorphism?
• When a pointer variable points to a subclass object, what 

destructor(s) are called when delete the pointer?

railroad_car *x;

x = new (box_car);

..

delete x;

.. 

• Calls Only destructor for the superclass (~railroad_car())
• We need to declare the destructor virtual as well

– Unlike other virtual functions, they have different names
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class railroad_car { 
public: char *serial_number; 

// Constructors: 
railroad_car ( ) { } 
railroad_car (char *input_buffer) { 
// Create new array just long enough: 
serial_number = new char[strlen(input_buffer) + 1];
// Copy string into new array: 
strcpy (serial_number, input_buffer); 

} 
// Destructor: 
virtual ~railroad_car ( ) { 
cout << "Deleting a railroad serial number" << endl; 
delete [ ] serial_number; 

} 
// Other: 
virtual char* short_name ( ) {return "rrc";} 
virtual double capacity ( ) {return 0.0;} 

}; 


