
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

More on Inheritance
Outline
• How to use private and protected variables
• How to use private and protected class derivations
• How to use call-by-reference class parameters
• How to call destructors in class hierarchy

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Box Class w/ Private Variables & Public Readers

• Move height,width,length to private with public readers
class box : public container {
public: box () { }

box (double h, double w, double l) {
height = h; width = w; length = l;

}
double read_height () {return height;}
double read_width () {return width;}
double read_length () {return length;}
double volume () {return height * width * length;}

private: double height, width, length;
};
class box_car : public railroad_car, public box {
public: // Default constructor:

box_car () : box (10.5, 9.2, 40.0) { }
// Displayers:
virtual void display_short_name () {cout << "box";}
virtual void display_capacity () {cout << volume ();}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Box Class w/ Protected Member Variables

• Alternatively, move them into protected part of class
– Now, they are accessible in the same class or subclasses

class box : public container {
public: box () { }

box (double h, double w, double l) {
height = h; width = w; length = l;

}
double volume () {return height * width * length;}

protected: double height, width, length;
};
class box_car : public railroad_car, public box {
public: // Default constructor:

box_car () : box (10.5, 9.2, 40.0) { }
// Displayers:
virtual void display_short_name () {cout << "box";}
virtual void display_capacity () {cout << volume ();}
virtual void display_height () {cout << height;}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Box Class w/ Protected Readers & Private Variables

• If you do not want them to be modifiable outside of box
– But they still can be accessible in box_car class
– They are not accessible at all outside of box and box_car

class box : public container {

public: box () { }

box (double h, double w, double l) {

height = h; width = w; length = l;

}

double volume () {return height * width * length;}

protected: double read_height () {return height;}

double read_width () {return width;}

double read_length () {return length;}

private: double height, width, length;

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Box Class’s Protected, Private, Public Members
• Box’s private member variables and functions

– Available only to member functions defined in box
• Box’s protected member variables and functions

– Available only to member functions defined in box,box_car

• Box’s public member variables and functions
– Available to ordinary and member functions everywhere

box_car

box

public:

protected:

private:

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Protected Derivation

• Protected derivation of box_car from box
– All public member variables and functions in box act as if they

are protected member functions and variables in box_car

class box : public container {
public: box () { }

box (double h, double w, double l) {
height = h; width = w; length = l;

}
double volume () {return height * width * length;}
double height, width, length;

};
class box_car : public railroad_car, protected box {
public: // Default constructor:

box_car () : box (10.5, 9.2, 40.0) { }
// Displayers:
virtual void display_short_name () {cout << "box";}
virtual void display_capacity () {cout << volume ();}
virtual void display_height () {cout << height;}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Effect of Protected Derivation

• If we have refrigerator_car, a public subclass of box_car
– It can access the height variable defined in box, but with a
box_car or a refrigerator_car object, cannot access height

– box_car x;

cout << x.height;// Error!

– refrigerator_car y;

cout << y.height;// Error!

– box z;

– cout << z.height;// OK!

box_car

box

public:

int height

Refrigerator_car

Protected derivation

Public or protected derivation

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Private Derivation

• Private derivation of box_car from box
– All public and protected member variables and functions in box act

as if they are private member functions and variables in box_car

class box : public container {
public: box () { }

box (double h, double w, double l) {
height = h; width = w; length = l;

}
double volume () {return height * width * length;}
double height, width, length;

};
class box_car : public railroad_car, private box {
public: // Default constructor:

box_car () : box (10.5, 9.2, 40.0) { }
// Displayers:
virtual void display_short_name () {cout << "box";}
virtual void display_capacity () {cout << volume ();}
virtual void display_height () {cout << height;}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Effect of Private Derivation

• All public members in box are accessible only in box_car
– Not in any member functions of box_car’s subclasses

• If we have refrigerator_car, a public subclass of box_car
– It cannot access the height variable defined in box

box_car

box

public:

int height

Refrigerator_car

Protected derivation

Public or protected derivation

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Effect of Protected and Private Derivation Summary

Public

Derivation

Protected

Derivation

Private

Derivation

Public

Members

Protected

Members

Private

Members

Remains

public

Remains

Private

Remains

Private

Remains

Private

Remains

Protected

Remains

Protected

Becomes

Private

Becomes

Private
Becomes

Protected

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Slightly Updated Class Definitions
class railroad_car {

public: railroad_car () { }

virtual void display_short_name () { }

virtual double capacity () { return 0.0 }

};

class box_car : public railroad_car, public box {

public: // Default constructor:

box_car () : box (10.5, 9.2, 40.0) { }

// Displayers:

virtual void display_short_name () {cout << "box";}

virtual double capacity () {return volume ();}

};

class tank_car : public railroad_car, public cylinder {

public: // Default constructor:

tank_car () : cylinder (3.5, 40.0) { }

// Displayers:

virtual void display_short_name () {cout << "tnk";}

virtual double capacity () { return volume ();}

};

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Revisit Our Full Class Hierarchy

box_car

display_short_name()

capacity()

tank_car

display_short_name()

capacity()

engine caboose

box

volume()

height

width

length

cylinder

volume()

radius

length

railroad_car

age()

year_bulit
display_short_name()

capacity()

container

percentage_loaded

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Call-by-Value Class Parameter
• Let’s define an ordinary function with class parameter

– Takes an ordinary railroad_car object and computes its volume()
double ordinary_capacity_function (railroad_car r) {

return r.capacity ();

}

for (n = 0; n < car_count; ++n) {

// Display short name and capacity and terminate the line:

cout << train[n]->short_name ()

<< " "

<< ordinary_capacity_function(*train[n])

<< endl;

}

– Output is not what we want
Output: eng 0

box 0

box 0

…

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

What is the Problem?
• Call-by-value really makes a copy of the object

– C++ reserves a space for a railroad_car formal parameter
– However, the actual parameter is an box_car object
– So, only the railroad_car portion is copied
– C++ calls capacity() defined in railroad_car class

Memory reserved for

box_car argument

Memory reserved for

railroad_car argument

box_car

specific

portion

copied

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Solution: Call-by-Reference
Replace the call-by-value argument by call-by-reference argument

double ordinary_capacity_function (railroad_car& r) {

return r.capacity ();

}

Memory reserved for

box_car argument

Memory reserved for

railroad_car argument

box_car

specific

portion

Now entire
object is visible

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Another Solution: Call-by-Value Pointer
• Based on polymorphism
double ordinary_capacity_function (railroad_car* r) {

return r->capacity ();

}

cout << train[n]->short_name ()

<< " "

<< ordinary_capacity_function(train[n])

train[n] r

box_car

specific

portion

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Benefit of Call-by-Reference
• Obviate object copying
• Allows modification of arguments

void loading_function (box_car& b) { // OK

b.percentage_loaded = 100;

return;

}

void loading_function (box_car b) { // DEFECTIVE!

b.percentage_loaded = 100;

return;

}

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Revisit Polymorphism & Virtual Function
What if we save a class object to its superclass variable

– Would virtual function call & polymorphism work as before?

Class A {
public:

virtual void foo() { cout << “foo() for A” << endl;}
}
Class B {

public:
virtual void foo() { cout << “foo() for B” << endl;}

}
int main() {

A a1, *a2;
B b;
a1 = b; a1.foo(); // What is printed? foo() for A or B?
a2 = &b; a2->foo(); // What is printed? foo() for A or B?

}

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Delete and Destructors
• delete reclaims memory of previously created object

delete train[car_count];

• What if the object also has a previously created object in it?
• Resort to the destructor defined in the class (~class-name())

– Supposed to be called when an object is de-allocated via
• function call return (local variables), delete (dynamic objects), program exit

– All destructors in the class hierarchy are called (from bottom to top)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Destructor Hierarchy
Void foo() {

box_car x;

tank_car *y;

y = new tank_car();

…

delete y;

return;

}

Call Sequences:
~tank_car()

~railroad_car()

~box_car()

~railroad_car()

box_car
~box_car()

tank_car

~tank_car()

railroad_car

~railroad_car()

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

What Happens when using Polymorphism?
• When a pointer variable points to a subclass object, what

destructor(s) are called when delete the pointer?

railroad_car *x;

x = new (box_car);

..

delete x;

..

• Calls Only destructor for the superclass (~railroad_car())
• We need to declare the destructor virtual as well

– Unlike other virtual functions, they have different names

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

class railroad_car {
public: char *serial_number;

// Constructors:
railroad_car () { }
railroad_car (char *input_buffer) {
// Create new array just long enough:
serial_number = new char[strlen(input_buffer) + 1];
// Copy string into new array:
strcpy (serial_number, input_buffer);

}
// Destructor:
virtual ~railroad_car () {
cout << "Deleting a railroad serial number" << endl;
delete [] serial_number;

}
// Other:
virtual char* short_name () {return "rrc";}
virtual double capacity () {return 0.0;}

};

