
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Introduction to Inheritance
Outline
• How to find member functions at run time
• How to make virtual member functions call other member functions
• How to make constructors call other constructors in class hierarchy



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Benefit of Inheritance
• We know inheritance avoids needless duplication, 
• But, that’s all? No, its real value comes from

– Polymorphism and Virtual functions

• What are these concepts?
• Revisit our class hierarchy

box_car tank_car engine caboose

railroad_car

age()

year_bulit



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

A Scenario: analyze_train Program
• Suppose there are many railroad cars that you want to 

save in a program. Where to save them?
– Saving in some sort of an array would be a natural solution
– Input: a stream of type code (in a file or from user input)

• 0: engine, 1: box_car, 2: tank_car, 3: caboose
• Input example: 0 1 2 1 3,….

– Create a railroad car for each type code
• e.g., new engine for 0, new box_car for 1, etc.

– Save it on an array
• train[i] = new engine;

• train[i] = new box_car;

• …

– What would be the type of the array train[] ?



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Array of Pointers to Objects
• C++ requires objects in an array to be of the same type

– Why? Each object should occupy the same amount of memory
– Even if it is an array of pointers, they should be of same pointer type

• However, if you define an array of pointers to a certain 
class, the actual pointers can point to
– Not only any object of that class, but also
– Any object in its subclass
– e.g., the following is allowed

railroad_car *train[100];

train[0] = new engine;

train[1] = new caboose;

train[2] = new tank_car;



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Polymorphism

box_car tank_car engine caboose

railroad_car

age()

year_bulit

• A class pointer variable can point an object of its subclass
– e.g., railroad_car class pointer variable can point a tank_car object
– As in a variable, an array, a formal argument, ..



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

class railroad_car { 

public: railroad_car(){} 

}; 

class box_car : public railroad_car { 

public: box_car(){} 

}; 

class tank_car : public railroad_car { 

public: tank_car(){} 

}; 

class engine : public railroad_car { 

public: engine(){ } 

}; 

class caboose : public railroad_car { 

public: caboose(){ } 

};



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

// Define railroad car array: 

railroad_car *train[100]; 

main () { 

// Declare various integer variables: 

int car_count, type_code; 

// Read type number and create corresponding objects: 

for (car_count = 0; cin >> type_code; ++car_count) 

if (type_code == 0) train[car_count] = new engine; 

else if (type_code == 1) train[car_count] = new box_car; 

else if (type_code == 2) train[car_count] = new tank_car; 

else if (type_code == 3) train[car_count] = new caboose; 

// Display car count: 

cout << "There are " << car_count << " cars in the array." 
<< endl; 

} 



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

railroad_car *train[100]; 
//Declare enumeration constants, needed in switch statement: 
enum {eng_code, box_code, tnk_code, cab_code};
main () { 

// Declare various integer variables: 
int n, car_count, type_code; 
// Read car-type number and create car class objects: 
for (car_count = 0; cin >> type_code; ++car_count) 

switch (type_code) { 
case eng_code: train[car_count] = new engine; break; 
case box_code: train[car_count] = new box_car; break; 
case tnk_code: train[car_count] = new tank_car; break; 
case cab_code: train[car_count] = new caboose; break; 
default: cerr << "Car code " << type_code

<< " is unknown!" << endl; 
exit (0); 

}
}

An Improved analyze_train Program



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Adding a Member Function to Subclasses
• Now we want to define an member function in each 

subclass of railroad_car that displays its car name
– For example,

class box_car : public railroad_car { 

public: box_car () { } 

void display_short_name () {cout << "box";}

};

class tank_car : public railroad_car { 

public: tank_car () { } 

void display_short_name () {cout << "tnk";}

};

…



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Walk Thru the Array and Print
• Then, we walk thru the array and print name of each object

for (n = 0; n < car_count; ++n) { 

train[n]->display_short_name(); 

cout << endl; 

} 

• This is a very elegant way of handling the print job because
– Otherwise, we need a member variable identifying each object, and 
– We would need to check the type of each object, something like
for (n = 0; n < car_count; n++) 

switch (train[n]->type_code) { 

case eng_code: cout << “eng” << endl; break; 

case box_code: cout << “box” << endl; break; 

case tnk_code: cout << “tnk” << endl; break; 

case cab_code: cout << “cab” << endl; break; 

}



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Compiler Rejects It, Though
• Unfortunately, C++ compiler cannot compile this code

for (n = 0; n < car_count; ++n) { 

train[n]->display_short_name(); 

cout << endl; 

} 

– Why not? No definition of display_short_name() in railroad_car class 
– After all, train[] is a pointer array to railroad_car class objects

• So we want to add display_short_name() to railroad_car class
class railroad_car { 

public: railroad_car () { } 

void display_short_name () {cout << "rrc";} 

}; 

• Still, it does not work
– The for loop will repetitively print rrc only



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Virtual Functions
• We want appropriate function is chosen at run time, not 

decided by compiler statically, while being compiled OK
• We can convey the idea to C++ with a keyword “virtual”
class railroad_car { 

public: railroad_car () { } 

virtual void display_short_name () {cout << "rrc";} 

}; 

• Add virtual to functions in the subclasses as well
class box_car : public railroad_car { 

public: box_car () { } 

virtual void display_short_name () {cout << "box";} 

};

• Why virtual? Because which function to use is not 
available at compile-time



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

class railroad_car { 
public: railroad_car () { } 

virtual void display_short_name () {cout << "rrc";} 
}; 
class box_car : public railroad_car { 

public: box_car () { } 
virtual void display_short_name () {cout << "box";} 

}; 
class tank_car : public railroad_car { 

public: tank_car () { } 
virtual void display_short_name () {cout << "tnk";} 

}; 
class engine : public railroad_car { 

public: engine () { } 
virtual void display_short_name () {cout << "eng";} 

}; 
class caboose : public railroad_car { 

public: caboose () { } 
virtual void display_short_name () {cout << "cab";} 

}; 



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

When We Use Virtual Functions?
• We have a pointer defined to point some class A
• You assign the pointer to an object, introduced at runtime, 

which belongs to a subclass of the class A
• You want C++ to pick a member function foo(), on the 

basis of the object’s class

Then you must define a version of foo() in A and mark it 
with virtual
– foo() will automatically be virtual in all subclasses
– However, it would be clearer to mark them all virtual explicitly
– foo() in subclasses will shadow foo() in A



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Pure Virtual Function
• If display_short_name() in railroad_car class is only for 

correct compilation (i.e., shadowed in every situation), 
you can make a pure virtual function

class railroad_car{ 

public: railroad_car () { } 

virtual void display_short_name () = 0; 

};

• Calling a pure virtual function causes an error
• If not completely shadowed, use a do-nothing function
class railroad_car{ 

public: railroad_car () { } 

virtual void display_short_name () { }; 

};



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Revisit Our Full Class Hierarchy

box_car tank_car engine caboose

box

volume()

height

width

length

cylinder

volume()

radius

length

railroad_car

age()

year_bulit

container

percentage_loaded



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Constructors Call Other Constructors
• Previously box had only a default constructor
class box : public container { 

public: double height, width, length; 

box () { } 

double volume () {return height * width * length;} 

}; 

class box_car : public railroad_car, public box { 

public: box_car () { 

height = 10.5; width = 9.2; length = 40.0;} 

}; 

• Now we want to add argument-bearing constructor for box
box (double h, double w, double l) { 

height = h; width = w; length = l; 

} 



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Constructors Call Other Constructors
• How to make box_car() call box(parameters) explicitly?
class box : public container { 

public: double height, width, length; 

box () { } 

box (double h, double w, double l) { 

height = h; width = w; length = l; 

}

double volume () {return height * width * length;} 

}; 

class box_car : public railroad_car, public box { 

public: box_car (): box(10.5, 9.5, 40.0) { };



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Virtual Member Function Calls Other Function

• We also want to print capacity of each train
for (n = 0; n < car_count; ++n) { 

train[n] -> display_short_name (); 

cout << " "; 

train[n] -> display_capacity ();

cout << endl; 

} 

• Define display_capacity() as a virtual function in box_car
virtual void display_capacity () {cout << height * width * length;}

– By inheriting height, width, length from the box class
– Similarly we define display_capacity() for the tank_car class

• However, it would be better to use volume() in box
virtual void display_capacity () {cout << volume ();} , or
virtual void display_capacity () {cout << this -> volume ();} 



© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

Updated Class Definitions
class railroad_car { 

public: railroad_car () { } 

virtual void display_short_name () { } 

virtual void display_capacity () { } 

};

class box_car : public railroad_car, public box { 

public: // Default constructor: 

box_car () : box (10.5, 9.2, 40.0) { } 

// Displayers: 

virtual void display_short_name () {cout << "box";} 

virtual void display_capacity () {cout << volume ();} 

}; 

class tank_car : public railroad_car, public cylinder { 

public: // Default constructor: 

tank_car () : cylinder (3.5, 40.0) { } 

// Displayers: 

virtual void display_short_name () {cout << "tnk";} 

virtual void display_capacity () {cout << volume ();} 

};


