Programming methodology project #2
Due Date:
To-do:
Organizing a School object
Topics:
Class hierarchy, virtual function, STL containers, string processing, file I/O
Quick summary:
1. Read an input file which contains the information of a school
2. With the information read, construct a School object
3. Invoke print() function of the School object.
1. Detailed Class Description
In this section, the forms of constructors, member function, and member variable which you have to implement are explained in detail.
1.1 School Class
	Constructor
School(const std::string name, int year, Professor* prof)
:name(name),established(year),president(prof) {}

	Member Functions
// Prints out all the information of this school
void print() const;
// Register School Member
void addSchoolMember(SchoolMember* s);
// Returns a pointer of SchoolMember with the given id
SchoolMember* getSchoolMember(std::string id);

	Member Variables
std::string name; // School name
const int established; // Established year
std::string president; // President of school
// ID ~> SchoolMember map
std::map<std::string, SchoolMember*> schoolmembers;

School class is constructed with its name, established year ID of president and a mapping table to the school members of it. The mapping table schoolmembers is implemented using STL container std::map. Its key type is std::string, and its value type is *SchoolMember. The key is the ID of a school member, and the value is a pointer to the school member associated with the ID. You can add a schoolmember with its addSchoolMember function, and get a pointer to a school member using getSchoolMember function.
1.2. Classes representing a School Member
 SHAPE * MERGEFORMAT

· SchoolMember class
The abstract base class of all classes representing a SchoolMember. It has a private name & ID string field and the following functions.
	Constructor
SchoolMember(const std::strin& id, const std::string name)
 :ID(id), name(name) {}

	Member Functions
virtual void print() const = 0 // print out the information of the schoolmember
std::string getName() // returns the name string
std::string getID() // returns the ID string

	Member Variables
std::string name; // name of school member
std::string id; // ID of school member

· Professor class
Derived class of SchoolMember representing professor of School. This class has a private list of students he/she teach.
	Constructor
School(School* school, const std::string id, const std::string name, const std::string rank)
 :SchoolMember(id,name),school(school),academicRank(rank) {}

	Member Functions
void addStudent(std::string id); // add a student to students list
Virtual void print() const; // print out the information of the professor

	Member Variables
// Represent Rank of Professor Academic Rank

// Full Professor, Associate Professor, Assistant Professor or Visiting Professor
std::string academicRank;
School* school; // point to the school
std::vector<std::string> students; // Student list

· Student Class
Intermediate base class for classes representing student. Note that this class doest not implement virtual print function, thus an abstract class.
	Constructor
Student(School* school, const std::string id, const std::string name, float gpa)
 :SchoolMember(id, name), school(school), GPA(gpa) {}

	Member Functions
School* getSchool() // returns pointer of the school.
float getGPA() const; // returns GPA of the student
virtual void print() const = 0;

	Member Variables
School* school; // point to the school
float GPA; // GPA of the student

· Undergraduate Student
	Constructor
UndergraduateStudent(School* school, const std::string id, const std::string name, float gpa, int semester)
 :Student(school, id, name, gpa), semester(semester) {}

	Member Functions
int getSemester() // returns the semester
virtual void print() const; // print out information of the Undergraduate student

	Member Variables
int semester

· GraduateStudent
	Constructor
GraduateStudent(School* school, const std::string id, const std::string name, float gpa, std::string degree)
 :Student(school, id, name, gpa), degree(degree){}

	Member Functions
std::string getDegree() // returns the degree
virtual void print() const; // print out information of the Graduate student

	Member Variables
// degree of student
// Ph.D or master

std::string degree;

· Alumni
	Constructor
Alumni(School* school, const std::string id, const std::string name, float gpa, int graduateYear)
 :Student(school, id, name, gpa), graduateYear(graduateYear{}

	Member Functions
int getGraduateYear() // returns the graduate year
virtual void print() const; // print out information of the Alumni student

	Member Variables
int graduateYear;

2. Input file format
Input file is a regular text file. It is composed of three section, company section, professor section, student section.
It will look something like this.
	School:
01P, Seoul National University, 1946
Professor:
01P, Jung, Full, 16S,19S
02P, Lee, Full, 13S,
09P, Hong, Associate,
Students:
U, 13S, Choi, 3.0, 2
U, 16S, Oh, 2.1, 4
G, 19S, Kang, 3.7, Ph.D
A, 20S, Ko, 1.2, 2007

Each field of a line is separated by a comma. The order of information is as follow.
School section: ID of PRESIDENT, SCHOOL NAME, ESTABLISHED YEAR
Professor section: PROFESSOR ID, PROFESSOR NAME, ACADEMIC RANK, STUDENT ID LIST
And then the students section follows. POSITION, ID, NAME, GPA, … (additional information if needed) Position field can be G / U / A, representing Graduate Student, Undergraduate Student, Alumni respectively. For Graduate student, an additional field representing degree. For Undergraduate student, semester field is added. And for Alumni, graduated year is added.
3. Output
Print function of School class will print out an output like the following.
	[Seoul National University]
>> Established year: 1946
>> President: Jung
>> Number of school member: 7
Jung(01P)
-- Full Professor
-- Teach: Oh(16S), Kang(19S)
Lee(02P)
-- Full Professor
-- Teach: Choi(13S)
Hong(09P)
-- Associate Professor
-- Teach: No Student
Choi(13S)
-- Undergraduate Student
-- GPA: 3.0
-- Semester: 2
Oh(16S)
-- Undergraduate Student
-- GPA: 2.1
-- Semester: 4
Kang(19S)
-- Ph.D, Graduate Student
-- GPA: 3.7
Ko(20S)
-- Graduated in 2007
-- GPA: 1.2

Number of school member is counted by iterating through its mapping table. After general information of the school, comes the information of each professors and students. This information is printed by invoking print function.
4. The main procedure
1. Start the program with an argument (input file name)
2. After reading school section of the input file, construct a School object.
3. For each line of students/professor section, construct a proper object. And register objects to school using Schhol::addSchoolMember.
4. After reading all the input, now School object contains the whole information of a school.
5. School::print() to print the information.
5. Rules and hints:

Your class design should satisfy all the description of this document. The skeleton code will be given, so implement based on the given code. Every data members should be private. You may add member functions if required, but please do not try to add any data member if there’s any strong reason to do so. (I myself have successfully implemented this project without any modification to data members.)

For reading a text file, you may find std::ifstream class and getline function useful. To use std::ifstream you have to include <fstream> header.

To process std::string, proper use of find / size / substr member functions of std::string will be required. I do not recommend using c-style strings(const char *) instead of std::string. As you have used c-style strings so far, you may find it more comfortable to use them for now, but eventually it will make your problem unduly complicated.

I believe that many of you are not familiar with std::map, but it is very straightforward and using it is not at all as difficult as you may first think, so please don’t freak out.

Sample codes for std::string, std::ifstream and std::map are included in the PPT file, where you will find most of what you need for this project. And all these features of C++ are well-described in any quality C++ tutorial book. If yours is not, throw it away and get another one.
5. Files:
· School.h
· School.cc
· SchoolMember.h
· SchoolMember.cc
· main.cc
· Contains main function
6. When you have a problem:

1.
Ask for help on the BBS, productive discussions are highly encouraged

2.
Send an e-mail to TAs (clamp@altair.snu.ac.kr or sylee@altair.snu.ac.kr)

3.
Visit TAs (301-851)
SchoolMember

Professor

Students

Undergraduate

Student

GraduateStudent

Alumni

