
lecture 17 보충자료 # 1 : Determination of e at the end of each load increment in the Oedometer test

- The void ratio at the end of each increment period can be calculated from the dial gauge readings and either the <u>water content</u> or <u>dry weight</u> of the specimen at the end of the test. Referring to the phase diagram in Fig. below, the two methods of calculation are as follows.
- (1) Water content measured at end of test = w_1
 Void ratio at the end of test = $e_1 = w_1 G_s$ (assuming $S_r = 100 \%$)
 Thickness of specimen at the start of test = H_0
 Change in thickness during test = ΔH
 Void ratio at the start of test = $e_0 = e_1 + \Delta e$
 where, $\frac{\Delta e}{\Delta H} = \frac{1 + e_0}{H_0}$

In the same way Δe can be calculated up to the end of any increment period.

(2) Dry weight measured at the end of test = M_s (i.e. mass of solids)

Thickness at the end of any increment period = H_1

Area of specimen = A

Equivalent thickness of solids =
$$H_s=\frac{M_s}{A\,G_s\,\rho_w}$$

Void ratio at the end of test, $e_1 \equiv \frac{H_1-H_s}{H_s}=\frac{H_1}{H_s}-1$
 $e=\frac{V_v}{V_s}$