Let $A \in \mathbb{R}^{n \times n}$ be a real symmetric matrix.

- 1. All eigenvalues are real.
 - Proof. Assume that there exists an complex eigenvalue, $\lambda + \mu i$, where $\lambda, \mu \in \mathbb{R}$ and $\mu \neq 0$. Then, the corresponding eigenvector must be a complex one, and let it x+yi, where $x,y\in\mathbb{R}^n$ and $y\neq 0$. Otherwise, $Ax\neq (\lambda+\mu i)x$ if $x\neq 0$.

Hence, $A(x+yi)=(\lambda+\mu i)(x+yi)$, and we have $Ax=\lambda x-\lambda y, Ay=\lambda y+\mu x$.

$$y^{T}Ax = \lambda y^{T}x - \mu y^{T}x$$

$$- x^{T}Ay = \lambda x^{T}y + \mu x^{T}x$$

$$0 = -\mu(y^{T}y + x^{T}x)$$

Since $x^T x + y^T y \neq 0$, $\mu = 0$, which is contradiction to the assumption.

2. Any two eigenvectors obtained from two distinct eigenvalues are orthogonal.

Proof. Let the eigenvalues and the corresponding eigenvectors be λ_i, λ_j and x_i, x_j . Then,

$$\frac{x_j^T A x_i = \lambda_i x_j^T x_i}{-x_i^T A x_j = \lambda_j x_i^T x_j} \\
\frac{-x_i^T A x_j = \lambda_j x_i^T x_j}{0 = x_i^T x_j (\lambda_i - \lambda_j)}$$

Since λ_i and λ_j are distinct, $x_i^T x_j = 0$, or x_i and x_j are orthogonal.

- 3. Let $X = \begin{bmatrix} | & | & | \\ | x_1 & \cdots & | & | \\ | & | & | & | \end{bmatrix}$, where $||x_i||_2 = 1, i = 1, ..., n$. Then, $X^T = X^{-1}$ by 2.
- $4. \ X^{T}AX = \begin{bmatrix} & x_{1}^{T} & \\ & \vdots & \\ & x_{n}^{T} & \end{bmatrix} \begin{bmatrix} A & \end{bmatrix} \begin{bmatrix} | & & | \\ x_{1} & \cdots & x_{n} \\ | & & | \end{bmatrix}$ $= \begin{bmatrix} & x_{1}^{T} & \\ & \vdots & \\ & x_{n}^{T} & \end{bmatrix} \begin{bmatrix} | & & | \\ Ax_{1} & \cdots & Ax_{n} \\ | & & | \end{bmatrix} = \begin{bmatrix} & x_{1}^{T} & \\ & \vdots & \\ & x_{n}^{T} & \end{bmatrix} \begin{bmatrix} | & & | \\ \lambda_{1}x_{1} & \cdots & \lambda_{n}x_{n} \\ | & & | \end{bmatrix}$ $= \begin{bmatrix} \lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{bmatrix} = \Lambda.$
- 5. Spectral Decomposition: $A = \lambda_1 x_1 x_1^T + ... + \lambda_n x_n x_n^T$

Proof.
$$X^T A X = \Lambda \Rightarrow A = X \Lambda X^T$$
 since $X^T = X^{-1}$.
$$A = X \Lambda X^T = \begin{bmatrix} & & & & \\ & & & & \\ x_1 & \cdots & x_n \\ & & & \end{bmatrix} \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & & \\ 0 & & \lambda_n \end{bmatrix} \begin{bmatrix} & - & x_1^T & - \\ & \vdots & & \\ & - & x_n^T & - \end{bmatrix}$$

$$= \begin{bmatrix} & & & & \\ \lambda_1 x_1 & \cdots & \lambda_n x_n \\ & & & & \end{bmatrix} \begin{bmatrix} & - & x_1^T & - \\ & \vdots & & \\ & & & & \end{bmatrix}$$

$$= \lambda_1 x_1 x_1^T + \dots + \lambda_n x_n x_n^T$$