
A Development Framework for Ultra-Dependable Automotive Systems Based on a
Time-Triggered Architecture

Bernd Hedenetz
Daimler-Benz Research, HPC T721, D-70546 Stuttgart, Germany

hedenetz@dbag.stg.daimlerbenz.com

Abstract

Today by-wire systems are well-known and utilised in
the area of aircraft construction. In the last few years
there has been an endeavour in the automotive industry
to realise by-wire applications without mechanical or
hydraulic backup systems in vehicles. The required
electronic systems must be highly reliable and cost-
effective due to the constraints of mass production.

A time-triggered architecture is a new approach that
satisfies these requirements. The backbone of
communication in this architecture is the fault-tolerant
Time-Triggered Protocol (TTP), developed by the Vienna
University of Technology and the Daimler-Benz
Research. The TTP protocol has been designed due to the
class C SAE [25] classification for safety critical control
applications, like brake-by-wire or steer-by-wire.

For time-triggered architectures a new development
process is required to handle the complexity of the
systems, accelerate the development and increase the
reliability. In this paper we present an approach for the
development of distributed fault-tolerant systems based
on TTP. The present approach is evaluated by a brake-
by-wire case study.

1 Introduction

In the past few years there has been the tendency to
increase the safety of vehicles by introducing intelligent
assistance systems (e.g., ABS, Brake-Assistant (BA),
Electronic Stability Program (ESP), etc.) that help the
driver to cope with critical driving situations. These
functions are characterised by the active control of the
driving dynamics by distributed assistance systems, which
therefore need a reliable communication network. The
faults in the electronic components, which control these
functions, are safety critical. However, the assistance
functions deliver only an add-on service in accordance
with a fail-safe strategy for the electronic components. If
there is any doubt about the correct behavior of the

assistance system, it will be switched off. For by-wire
systems without a mechanical backup a new dimension of
safety requirements for automotive electronics is reached.
After a fault the system has to be fail-operational until a
safe state is reached.

For the fail-operational assumption we demand that
after any arbitrary fault the system is fully operational.
The effective use of the redundancy is important, in order
to reduce the production costs for automotive by-wire
systems. A major goal is to increase the reliability of the
system by adding additional redundancy without
increasing the complexity of the system. Therefore, new
electronic architectures have to be developed.

Distributed time-triggered architectures (TTA) can be
realised through the Time-Triggered Protocol (TTP)
which guarantees a global time synchronisation over the
whole system and an adequate message transmission.

In this paper we present an approach for the
development of distributed fault-tolerant systems based
on TTP. This paper is organised as follows: Section 2
gives an overview of the general architecture and
elaborates on the time-triggered approach and the
communication subsystem. Section 3 gives a short
overview about the lifecycle of safety related automotive
systems. In Section 4 the development framework for
TTA systems is presented. In Section 5 the development
approach is demonstrated at the example of a brake-by-
wire case study. The paper is concluded in Section 6.

2 Time-Triggered Approach

The TT paradigm of a real-time system is based on a
distinctive view of the world: the observer (the computer
system) is not driven by the events that happen in its
environment. The system decides through the progression
of time when to look at the world. Therefore, it is
impossible to overload a time-triggered observer.

A TT system takes a snapshot of the world, an
observation, at recurring predetermined points in time
determined by the current value of a synchronised local
clock. This snapshot is disseminated within the computer

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:37 from IEEE Xplore. Restrictions apply.

system by the communication protocol to update the state
variables that hold the observed values. The semantic of
the periodic messages transported in a TT system is a
state-message semantic, i.e., a new version of a message
overwrites the previous version and messages are not
consumed on reading. This semantic is well suited to
handle the transport of the values of the state variables
used in control applications. The state message semantic
provides a predefined constant load on the
communication system and eliminates the problem of
dynamic buffer management [23].

2.1 Time-Triggered Protocol (TTP)

For the realisation of a distributed time-triggered
architecture a communication network is necessary that
provides the features mentioned above. This type of
communication belongs mainly to class C of the SAE
classification [25].

None of the commonly used in-vehicle communication
systems (CAN, A-BUS, VAN, J1850-DLC, J1850-HBCC
[26]) meet the requirements for safety related by-wire
systems since they were not designed for this case [17].
They are all lacking in being deterministic, in
synchronisation and fault tolerance characteristics.

These missing properties are the motivation for
developing new approaches for in-vehicle communication
systems. As a new start we examine the Time-Triggered
Protocol developed by the University of Vienna and
Daimler-Benz Research. TTP is especially designed for
safety related applications and fulfills these requirements.

TTP is an integrated time-triggered protocol that
provides:
• a membership service, i.e., every single node knows

about the actual state of any other node of the
distributed system

• a fault-tolerant clock synchronisation service (global
time-base),

• mode change support,
• error detection with short latency,
• distributed redundancy management.

All these issues are supported implicitly by the
protocol itself. A comprehensive description of the TTP
protocol is given in [13,14,15]. The TTP protocol has
been designed to tolerate any single physical fault in any
one of its constituent parts (node, bus) without an impact
on the operation of a properly configured cluster [15].

The overall TTP hardware architecture is characterized
by both the TTP system architecture and the TTP node
architecture as shown in Figure 1. A TTP real-time
system consists of a host subsystem, which executes the
real-time application and the communication subsystem

providing reliable real-time message transmission. The
interface between these subsystems is realised by a dual
ported RAM (DPRAM) called Communication Network
Interface (CNI) [16]. The assembly of host and TTP-
controller is called Fail Silent Unit (FSU). Two FSUs
form a single redundant Fault-Tolerant Unit (FTU). The
physical layer consists of two independent transmission
channels.

FTU1

SRU1
FSU0

FTUn

SRU1
FSU0

FTU0

SRU1
FSU0

...

FSU0

H
o

st
 S

u
b

sy
st

em

C
o

m
m

u
n

ic
at

io
n

S
u

b
sy

st
em

 /
T

T
P

/C
 C

o
n

tr
o

lle
r

DPRAM

Host CPU ROM

ROM

CNI

Host OS

Application
Tasks

Code/
Static
Data

Code/
Static
Data

TTP/C
Firmware

BG BG

RAM
Dyn.
Data

TTP Bus

Figure 1: Architecture of a TTP-based fault-tolerant real-
time system

2.2 Node Architecture

The overall aim of the node architecture is to fulfill the
fail-silence assumption without developing special
hardware for fault detection. We use software fault
detection methods and low cost hardware mechanisms
(such as watchdogs) and mechanisms provided by the
CPU (bus error, address error, illegal op-code, privilege
violation, division by zero,...). In [12] it is shown that a
high degree of fault detection can be achieved by
software fault detection mechanisms. We follow this
approach for trying to fulfill the fail-silence assumption.
Our architecture can be separated into three subsystems
(see Figure 2):
• Communication subsystem: this part is responsible

for the communication between distributed
components.

• Fault-tolerant subsystem: this part contains safety
critical and fault tolerance mechanisms. The safety
related application is handled by this subsystem.

• Application subsystem: this part includes the safety
related tasks, which build the application.

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:37 from IEEE Xplore. Restrictions apply.

Application Subsystem

Fault Tolerant Subsystem

Communication Subsystem

TTP Databus

FSU

Figure 2: Subsystems of an FSU

2.3 Propagation of TTP

TTP is in discussion in the Brite-EuRam Project
„Safety Related Fault Tolerant Systems in Vehicles“
(acronym: „X-By-Wire“) to be proposed as a European or
International Standard [2].

In 1997 the Esprit Project „Time Triggered
Architecture“ (acronym TTA) has been started with the
intention to develop a prototype TTP controller chip [9].
Other aims of the TTA project are the development of
tools for the design of TTP systems and the formal
verification of parts of the TTP protocol e.g. the clock
synchronisation algorithm.

3 Lifecycle

The typical lifecycle for the development of safety
related automotive systems consist of the following
phases: system specification, system design, design
verification, implementation and integration (see Figure
3). Several, more detailed descriptions of the lifecycle
exist, for further study a large number of books [27] and
standards are available [10,11]. All steps of the lifecycle
have to be supported with tools to manage the complexity
of the systems, accelerate the development process and
increase the reliability. New tools have to be developed
and common used tools have to be adapted to the
requirements of TTA systems.

4 Development Process

For TTA systems a new development process is
required which supports every phase of the lifecycle. Our
aim is to devise a approach for designing complex
distributed safety-related automotive systems using
commercial-off-the-shelf tools to as high a degree as
possible. Our approach based on verification of the
system design by functional simulation, fault modeling in
the models, functional test and fault injection in the real
system architecture. Therefore we separate the
development process in seven single steps (see Figure 3).

During the first step - requirement specification - we
specify the functional requirements, the time constrains
and the reliability requirements of the system. In the
second step - architectural design - the structure of the
communication network, communication relations
between the nodes and the schedule of the application
tasks are defined due to the specification. In the next step
- functional design - we realise the application, e.g., a
control loop for an anti blocking system (ABS), as a
functional model. For the actual realization of this part we
use the tool StatemateTM from i-Logix [7] and
MATLAB /SimulinkTM from MathWorks [19]. In the
following step - functional simulation - the functional
models are verified through simulation and the reliability
is examined by fault modeling into the functional models.
In the step - realisation and integration - the real
architecture is realised and integrated in a vehicle.
Therefore we use the capability of automatic code
generation of the tools. Additionally, we use monitoring
tools to trace the system behavior. In the final step - test
and fault injection - we execute test and fault injection
experiments in the target system to verify the behavior of
the real system with respect to the requirement
specification.

Architecural Design

Functional Design

Functional Simulation

Fault Modeling

Realisation & Integration

Test & Fault Injection

System
Specification

System Design

Design
Verification

Implementation
& Integration

Requirement Specification

Figure 3: Overview about the development process

4.1 Requirement Specification

System specification is a very sensitive phase. The
most faults that lead to critical failures are system-faults,
and most design errors are not low-level implementation
errors but errors committed at the system specification
phase [18]. The description of the requirement
specification has to include:
• Identification of the objects in the environment
• which produce or consume data flows.

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:37 from IEEE Xplore. Restrictions apply.

• Definition of the input and output signals for these
objects.

• Specification of the functional and time behavior of
these objects.

• Specification of the reliability requirements.
• Definition of a fault hypothesis.

To verify the functional models and the system
realisation we have to specify the system with a sufficient
accuracy. The requirement specification is used to
generate test pattern, fault pattern and environment
models. Environment models are used as a reference for
the functional simulation. Environment models can be
described by:
• StatemateTM models,
• Input, output signals (stimulation and reaction),
• Differential equations, and
• C-code.

4.2 Architectural Design

The complexity of a system depends on the number
and types of elements and relations and on the amount of
their inner states. A method to handle complex systems is
the decomposition into smaller subsystems. A common
way is to partition the entire system into subsystems with
high inner connectivity and few relations crossing the
subsystem boundaries [1]. For the design of time
triggered architectures we follow this approach; first we
design the highest subsystem level, the communication
nodes in a TTP communication system. This step is called
global design and consists of all steps associated with the
overall system architecture:
• A time-triggered system is partitioned into a set of

components connected by the TTP bus.
• In respect with the reliability requirements, critical

components can be replicated.
• The communication relations between the

components are defined.
• In the last step, a bus schedule is determined that

fulfills the communication requirements of the
previous steps.

These steps are typically done by the system
manufacturer. The structure is commonly determined by
the function which the system has to fulfill. For example,
in an automotive steer-by-wire system, redundancy is
required for measurement of the steering wheel angle and
control of the steering actuator. The redundant nodes
have to be distributed that there is no common mode
failure - e.g. intruding of water in the ECU - can cause a
fatal failure.

4.3 Functional Design

After the global design, the local design contains all
steps associated with the specification of a single
component. The bus message scheduling specified in the
global design defines the interface of each component in
the value and time domain. The local design consists of
the following steps:
• Definition of the software structure of the

components.
• Description of the application tasks and their

communication relations and time constraints.
• Adding of fault tolerant schemes, e.g. double

execution and variable protection through cycle-
redundancy checks (CRC).

• Finally, a task schedule which fulfills the functional
requirements and time constraints is determined.

The single components in the automotive environment
are typically developed by sub-suppliers.

4.4 Functional Simulation

Models of real-time systems have to support different
views of a system. A system can be described by four
different views:
• Structural view: represents the structure of the

subsystems.
• Functional view: describes the functions and

processes of the system, the input and output signals,
and the information flows between the functions and
processes.

• Behavior view: describes the time and dynamic
behavior and the internal states of the components.

• Implementation view: represents the realisation of the
system by source code.

For the actual realisation of the functional models we
use the tools StatemateTM and MATLAB/SimulinkTM.
StatemateTM provides a hierarchical modeling approach
for the specification and analysis of complex systems.
The special feature of StatemateTM is that it puts emphasis
on the dynamic verification of the specification. This tool
provides facilities for the model execution, in interactive
or batch mode, and to instrument the models in order to
collect statistics during execution. The model can be
either connected to a software environment model
(software-in-the-loop) or to a target hardware
environment (hardware-in-the-loop). The source code can
be generated automatically from the functional
specification.

The main benefit of this approach is that the system
behavior can be examined from a very early design phase
and changes can be made with minor effort.

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:37 from IEEE Xplore. Restrictions apply.

StatemateTM uses three methods for system modeling,
module charts, activity charts, and statecharts [5,6]. The
module charts describe the structural view of the system
while activity charts describe the functional view and are
similar to conventional data flow diagrams. Activity
charts illustrate the identified sub-functions and the
information flows between them. Statecharts describe the
behavioral view of the system. Through automatic code
generation StatemateTM also supports the implementation
of the system.

4.4.1 Modeling a TTA System

The StatemateTM approach is typically used for
reactive systems. Time constraints are only an implicit
part of the models. An important property in a TTA is the
fulfillment of the time constrains. If the time boundaries
are violated the system can not fulfill its duty. We solve
this problem by building up a complete model of the TTA
system in the StatemateTM developing environment. The
time constraints of the system architecture are guaranteed
by the model of the TTP communication system. The
time constraints on the node subsystem are guaranteed by
the model of the fault tolerant subsystem.

The system architecture is the highest modeling level.
This level represents the structure of the system. Every
node is also modeled in detail. Node represents the node
structure and consists of the fault tolerant subsystem, the
communication subsystem and the application subsystem
(corresponding to Figure 2). The fault tolerant subsystem

builds the environment for the safety critical tasks,
defined in the application subsystem. The communication
subsystem handles the communication services provided
by the TTP system (see Figure 4).

For the design of a new system the developer has to
define the application dependable parts, the architectural
structure of the TTP cluster and the application
subsystem, corresponding to the global and local design
in Section 4.2 and 4.3. The other parts of the model are
available in a model library and can be reused.

4.4.2 Application Functional Specification

Applications on the top of a TTA consist usually of the
parts; periodically reading sensor signals, calculation of
new system states, and activation of actuators. The
function of applications are usually described through
statemachines and the control algorithms. The
StatemateTM environment provide for the specification of
statemachines the modeling concept of activity charts and
statecharts. The control algorithms are developed with the
help of MATLAB/SimulinkTM or MATRIXX

TM [28]. The
control algorithms can be integrated in StatemateTM

through C source code or in the case of MATRIXX
TM

directly, due to a common interface.

4.4.3 Application Development Environment

For the developing of applications we use a software-
in-the-loop simulation environment (see Figure 5). We

Application Subsystem

Fault Tolerant Subsystem

Node

System Architecture

Communication Subsystem

Figure 4: Functional model of a TTA

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:37 from IEEE Xplore. Restrictions apply.

define a test environment out of the requirement
specification, in which the functional model can be tested.
We connect the functional model of the TTA system with
the behavioral model of the vehicle. This method is called
software-in-the-loop. To verify the functional model a set
of test patterns have to be defined. The number of test
patterns depend on the complexity of the system, the
number of signals and the used test strategy. The
environment model is realised by using
MATLAB/Simulink .

Fault
Pattern

Task
Schedule

Simulation
Monitoring

Functional Model

Vehicle Model

Message
Schedule

Simulation
Control

Simulation
Analysis

Test
Pattern

TTA System

Fault Module

FSU3

FSU4

FSU1

FSU2

Figure 5: Overview of the simulation environment

The simulation environment consists of five
components:
• The vehicle model is used as a test environment for

the functional modeling. The vehicle model delivers
the reactions of the environment to the functional
model.

• The simulation control stimulates and controls the
simulation. Additionally, the test pattern and the
vehicle parameters are handled.

• The simulation monitor shows the current state of the
simulation.

• The simulation analysis stores and analyses the
reaction of the functional model to the different test
and fault pattern.

• The fault module allows the fault injection into the
functional model. Section 4.5 describes the fault
module closer.

If any fault is detected during the simulation, the fault
has to be localized and corrected. In addition to the
verification of the functional models, faults and open
issues in the requirement specification can be detected.

4.5 Fault Modeling

To examine the reliability of the functional
specification we introduced a fault module in our
simulation environment, which allows us formal analysis
of the system behavior in the presence of faults. In our
fault hypothesis we claimed to tolerate any single
arbitrary fault. To validate this property we use the fault
module. The fault module is an optional part of the
functional model and is controlled by the simulation
control. The behavior of the fault module corresponds to
the behavior of the fault injection device (see Section
4.7). So the result between fault modeling and fault
injection can be compared and the fault modeling can be
verified. Our focuses of fault injection activities on the
real system focus on the disturbance of the
communication on the TTP transmission channel. Thus
the fault injection module is realised for the transmission
channels only.

4.6 Realisation and Integration

After finishing the global and local design and
verification of the behavior through functional simulation
and fault modeling, the complete system is integrated by
connecting all components, by downloading and
execution of the application software.

For the system integration the opportunity to monitor
the global behavior by tracing the bus is important.
Therefore we developed, together with an outhouse
partner a monitoring tool, which allows us during run-
time to monitor and trace the messages on the
communication bus, without influencing the system. The
inner state of the components like task states, variable
values, etc. can be observed via local monitoring. Local
monitoring should be applied very carefully, because it
changes the behavior, especially the timing behavior of
the components.

In industrial projects parts of the system are developed
by different project teams or outhouse partners. For the
component developer the whole system is typically not
available. For the test of a single component a tool which
simulates missing nodes is required. Therefore we
realised a first prototype tool [3].

4.7 Test and Fault Injection

We have three intentions with the test and the fault
injection experiments:
1. Verify the behavior of the TTP bus against the

preliminary TTP specification, the TTP protocol is
still under current investigation.

2. Verify the behavior of the simulation models for the
nodes, the communication subsystem and the fault

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:37 from IEEE Xplore. Restrictions apply.

module during the developing phase of the
simulation environment.

3. Verify the behavior of the real system with respect to
the system requirement specification.

4.7.1 Test

The definition of the test pattern is very important for
the quality of the test. The aim is to reach as high as
possible coverage of the test room with a minimum
number of test patterns. The test method has to be
understandable and reproducible, therefore, we used a
functional test method.

Functional test methods examine the functional
behavior and not the code itself. The program is
considered as a black box [22]. The aim of the functional
test is to test the specified requirements as completely as
possible. The test specification can be described in a
formal and informal way [4]. Formal methods nowadays
are only accepted for a few applications in the industry.
The most important functional test methods are
equivalent class, boundary test [20], the category-
partition method [21], and the classification tree method
[4]. We generate our test pattern with the help of the
classification tree method. It supports the combination of
different input signals to generate test patterns. In the first
step the relevant classifications are identified with the
help of the requirement specification. In the next step the
classifications are separated into mathematical disjunctive
classes. The classifications and classes can be defined
hierarchically and form a classification tree. The test
patterns are generated by the combination of the non
classifiable basic classes, from each single classification
one class is used.

4.7.2 Fault Injection

Fault injection is a method for testing the fault-
tolerance of a system with respect to the specified
behavior. Fault injection is needed for two different
purposes: to test the correct operation of the fault
tolerance algorithms/mechanisms and to predict the
dependability of the system in a realistic scenario where
faults are expected to occur and have to be handled
properly [12].

Our present fault injection techniques concentrate on
disturbing the transmission channel. Therefore we use a
fault injection hardware called TTP-Stress, which allows
to disturb the communication channel of TTP. In a
distributed fault-tolerant system the communication
between the nodes is of utmost importance. Faults which
are injected:
• Faults of the Physical Communication Layer: short

cuts between transmission wires, short cuts to ground

or power supply, loss of connections, faulty bus
termination, etc.

• Loss of Frames: the switch off and reconfiguration of
nodes can be simulated.

• Change of bits: the message contents can be changed.

The disturbances can be injected for a defined time
interval, periodically or permanently. The start trigger is
set manually through the user or via an external device,
e.g., from a monitoring tool.

TTP supports different physical transmission layers.
The currently implemented physical layer is in
conformance with the ISO/DIS 11898 CAN [24]
standard, i.e., differential transmission on a two-wire
broadcast bus with one dominant state and one recessive
state. The higher layers defined in the CAN specification
(e.g. arbitration) do not apply for TTP.

5 Brake-by-wire Case Study

Automotive applications like brake- or steer-by-wire
are typical examples for the use of a time-triggered
architecture. We selected a brake-by-wire application,
which we realised as a case study to evaluate the TTP
protocol [8]. This application has several advantages:
• Realistic workload in a hard real-time application.
• Reuse for future realisations.
• Experiences on a real automotive example.

5.1 Requirement Specification

The requirement specification consists of the parts:
specification of the system and definition of the test
environment.

We realise the system specification in textual form
with in-house used methods. So we do not have the
opportunity to execute consistence checks in the
description of the specification. Therefore we use the
system model, which represents a detailed functional
specification of the system.

5.2 Architectural System Design

Our fault tolerant architecture consists of a set of two
redundant ECU’s for the Brake-by-Wire-Manager (BBW-
Manager, BBWM) and 4 single ECU’s, one for each
brake (see Figure 6). The ECU’s are connected by two
replicated busses. In this case study the brake ECU’s are
not designed redundant, in order to reduce costs, since the
failure of a single brake is not considered to be as severe
as the failure of the BBW-Manager.

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:37 from IEEE Xplore. Restrictions apply.

TTP bus 1

Brake 2

Brake 1

Brake 4

Brake 3

BBWM

TTP bus 2

Figure 6: An Example for an TTA Architecture

The functional of the BBW-Manager is to read the
sensor values of the brake pedal, the revolution counters
of the wheels, the yaw-sensor, the acceleration sensors,
and to calculate from these signals the brake force set
points for the four brake actuators. The BBW-Manager
also manages higher assistance functions like ABS,
traction and driving dynamic control. The brake
electronics get the brake force set points from the BBW-
Manager.

The whole communication between the BBW-
Manager, and the brake electronics is based on the fault
tolerant TTP system.

In contrast to event triggered systems a TTP system is
built upon a static message schedule. Figure 7 depicts the
result of this phase, the static synchronous time division
multiple access (TDMA) scheme and its constraint that
each subsystem has to send exactly once in a TDMA
cycle. The messages marked with ‘I’ are so called I-
Frames, used for reintegration of rebooted nodes and do
not transmit information for the application layer.

A TDMA slot has a length of about 1.2 msec. New
brake force set points are sent every 7.2 msec, which is
sufficient for an ABS control loop. The brake control
ECU’s send their status and the current brake force.
These messages are not so time critical as the
transmission of the brake force set points. The brake
ECU’s send their messages only once in a cluster cycle,
each 12 TDMA slots. In the remaining slots the brake
ECU’s send I-Frames for the network management.

5.3 Functional Design

As one example of a component with fail-silent
property we describe in this section the realisation of the
BBW-Manager. The four brake ECU’s are realised in a
similar manner. The BBW-Manager has the functionality
to calculate the four brake force set points. The brake
force set points are safety related and have to be protected
from transient and permanent faults. Figure 8 shows the
schedule which is periodically executed on the BBW-
Manager:
1. Pedal signal measurement, of the pedal signals from

the pedal sensors.
2. Pedal signal plausibility checks, from the three pedal

signals one valid value is calculated. This task is
executed three times, to detect faults.

3. Voter, a voter task votes from the result of the three
plausibility check tasks and starts an exception
handling if a fault is detected.

4. Brake force control, the brake forces for the four
actuators are calculated. This task is also executed
three times.

5. Voter, a voter task votes from the result of the three
brake force control tasks.

6. TTP-communication, the brake forces are send to the
brakes via the TTP communication network.

7. Diagnose, a diagnose task is executed.
8. Diagnose output, the diagnose values are transmitted

to an extern diagnose device.

110 1 2 3 4 5 6 7 8 9 10

Brake2

Brake3

Brake4

Brake1

Slot

M

Cluster Cycle
TDMA cycle

I

M

I

M

BBWM1

BBWM2

M

M

I

M

M

I

M

M Send Message I Send I-Frame

Figure 7: Communication Matrix of the Brake-by-wire Case
Study

Pedalsignal Plausibilitychecks

Voter

TTP-Communikation (TTP-Lifesign)

Pedalsignal Measurement

Voter

Brakeforce Control (ABS)

Diagnose-Output

Diagnose

1 2 3 54 Timeslot

Figure 8: Local Task Schedule of the BBW-Manager

5.4 Functional Simulation

The system model represents the same structure of
nodes as the real architecture. As an example we show the
functional model of the system architecture (see Figure

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:37 from IEEE Xplore. Restrictions apply.

9). We only present this part of the model, because the
description of the whole model is beyond the scope of this
paper.

The activity charts BBWM1_AC and BBWM2_AC
represents the BBW-Manager nodes 1 and 2, similar the
activity charts BRAKE_ACx the brake nodes. @ is part
of the StatemateTM syntax and means that a more detailed
description of the activity exists. The external activities
SENSORS and ACTUATORS represent the source and
sink for the input and output data flows. The external
activities MEDL_COMPILER and TADL_COMPILER,
the configuration of the communication and task schedule
of the nodes.

For the functional simulation first we use the single
step mode to verify the model being complete and
consistent. After this, we define the test pattern and
exercise the simulation in the batch mode. We instrument
the simulation for control and collecting of statistics
during execution.

5.5 Fault Modeling

The fault module is a optional part of the system model
and is represented by the activity chart
TTP_STRESS_AC. To compare the results between fault
modeling and fault injection the fault model has the same
function as the fault injection device (TTP-Stress). In the
real system we use a broadcast bus, therefore TTP-Stress
can be connected at an arbitrary point with the bus. In the

system model every TTP message transmitted on the bus
is piped through the fault module. For the verification of
the fault module behavior we use the same setup in fault
modeling and fault injection.

5.6 Realisation and Integration

For the realisation we use the capability of automatic
code generation of StatemateTM and
MATLAB/Simulink. By using automatic code
generation we still have the problem that we use non
validated code generators; this problem will be addressed
in our future work. As target platforms we use a VxWorks
[29] based system for the BBW-Manager and a controller
platform without floating point unit for the brake ECU´s.
Currently download and execution of automatic generated
code is only possible for the BBW-Manager. The
complexity of BBW-Manager is much higher than the
Brake ECU´s.

For system integration we use bus monitoring and
additionally every node sends its internal states via a
diagnosis bus to an external monitoring device. So we
have the capability of monitoring and logging of all
important system states.

5.7 Test and Fault Injection

We use functional test for the verification of our
implementation. To define the test pattern out of the

Figure 9: Functional Model of the System Architecture

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:37 from IEEE Xplore. Restrictions apply.

requirement specification we use classifications trees [4].
The test pattern for the fault injection is separated into

three groups; verification of the protocol behavior,
verification of the fault, and verification of the system
behavior under fault conditions.

The verification of the protocol behavior, depends on
the protocol specification. We generate the fault pattern
manually through examining the TTP specification. For
the examination of the system behavior under fault
conditions, we use the results of classification tree
analysis.

6 Conclusion

In this paper we present a framework for the
development of ultra-dependable automotive systems
based on a time-triggered architecture. In the first part of
the paper we introduce the time-triggered architecture and
the time-triggered protocol. We showed that time-
triggered architectures are well suited for safety critical
automotive by-wire applications. In the second part we
describe an approach is for the development of TTP
based systems. Our approach based on verification of the
system design by functional simulation, fault modeling,
functional test and fault injection in the real system. At
the end we gave a brief example of how this approach can
be used in a brake-by-wire case study.

References
[1] C. Alexander, Notes On The Synthesis of Form, Harvard

University Press, Cambridge, Massachusetts and London,
England, 1964.

[2] E. Dilger, L.A. Johansson, H. Kopetz, M. Krug, P. Lidén,
G. McCall, P. Mortara, B. Müller, U. Panizza, S. Poledna,
A.V. Schedl, J. Söderberg, M. Strömber, T. Thurner:
Towards an Architecture for Safety Related Fault Tolerant
Systems in Vehicles, Proceedings of the ESREL´97
International Conference, 1997.

[3] Fleisch, Ringler Th. and Belschner, R., Simulation of
Application Software for a TTP Real-Time Subsystem.
Proc. of European Simulation Symposium, Istanbul,
Turkey, June 1997.

[4] K. Grimm, M. Grochtmann, Classification Trees for
Partition Testing, in Software Testing, Verification and
Reliablility, Bd. 3, No. 2, pp. 63-82, 1993.

[5] D. Harel, Statecharts: a visual formalism for complex
systems, Science of Computer Programming, vol. 8, no. 3,
pp. 231-274,1987.

[6] D. Harel et al., On the formal semantics of Statecharts, in
Proc. 2nd IEEE Symposium on Logic in Computer Science,
IEEE Press, NY, USA, pp. 54-64, 1987.

[7] D. Harel et al., Statemate: a working environment for the
development of complex reactive systems, IEEE Trans. On
Software Engineering, vol. SE-16, no. 4, pp. 403-414,
1990.

[8] B. Hedenetz, R. Belschner, Brake-by-wire without
Mechanical Backup by Using a TTP-Communication

Network, SAE International Congress 1998.
[9] G. Heiner, T. Thurner, Time-Triggered Architecture for

Safety-Related Distributed Real-Time Systems in
Transportation Systems, FTCS-28, June 1998.

[10] IEEE Std. 1074.1991, IEEE Standard for Developing
Software Lifecycle Processes, The Institute of Electrical
and Electronics Engineers, Inc., 1991.

[11] ISO/ICE 1508, Functional safety: safety-related systems,
International Electrotechnical Commission, 1995.

[12] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber,
Integration and Comparison of Three Physical Fault
Injection Techniques, Predictably Dependable Computing
Systems, Springer Verlag 309-329, 1995.

[13] H. Kopetz, et. al., A Prototype Implementation of a TTP/C
Controller, Proceedings SAE Congress 1997, Detroit, MI,
USA, Febr. 1997. Society of Automotive Engineers, SAE
Press. SAE Paper No. 970296.

[14] H. Kopetz, Real-Time Systems - Design Principles for
Distributed Real-Time Systems, Kluwers Academic
Publishers, 1997.

[15] H. Kopetz, G. Grünsteidl, TTP - A Protocol for Fault-
Tolerant Real-Time Systems, IEEE Computer, pages 14-
23, January 1994.

[16] A. Krüger, Interface design for Time-Triggered Real-Time
System Architectures, doctor thesis, Institut für Technische
Informatik, Vienna University of Technology, 1997.

[17] M. Krug, A. V. Schedl, New Demands for Invehicle
Networks, Proceedings of the 23rd EUROMICRO
Conference, pp. 601-606, 1997.

[18] N. Leveson, Safeware - System safety and computers,
Addison-Wesley, Reading, MA, 1995.

[19] MathWorks, MATLAB - The Language of Technical
Computing, MathWorks Inc., MATLAB 5.1, June 1997.

[20] G.J. Myers, The Art of Software Testing, Wiley-
Interscience, Chichester, 1979.

[21] T.J. Ostrand, M.J. Balcer, The Category-Partition Method
for Specifying and Generating Functional Test, in
Communications of the ACM, Bd. 31, Nr. 6, Juni 1988.

[22] N. Parrington, M. Roper, Softwaretest; Mc Graw-Hill,
Hamburg, 1990

[23] S. Poledna, The Problem of Replica Determinism, Fault-
Tolerant Real-Time Systems, Kluwer Academic
Publishers, 1996.

[24] SAE, Control Area Network: an invehicle serial
communication protocol, SAE Information Report J1583,
SAE Handbook, 1990.

[25] SAE, Class C Application Requirement Considerations,
SAE Recommended Practice J2056/1, SAE, June 1993.

[26] SAE, Survey of Known Protocols, SAE Information Report
J2056/2, SAE, April 1993.

[27] I. Sommerville, Software Engineering, Addison-Wesley
Publishing Company, Wokingham, England, 3rd edition,
1989.

[28] URL: http://www.isi.com/products/matrixx/.
[29] URL: http://www.wrs.com/.

Authorized licensed use limited to: Seoul National University. Downloaded on February 3, 2010 at 03:37 from IEEE Xplore. Restrictions apply.

